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Abstract
Weak memory models provide a complex, system-centric se-

mantics for concurrent programs, while transactional mem-

ory (TM) provides a simpler, programmer-centric semantics.

Both have been studied in detail, but their combined seman-

tics is not well understood. This is problematic because such

widely-used architectures and languages as x86, Power, and

C++ all support TM, and all have weak memory models.

Our work aims to clarify the interplay betweenweakmem-

ory and TM by extending existing axiomatic weak memory

models (x86, Power, ARMv8, and C++) with new rules for

TM. Our formal models are backed by automated tooling that

enables (1) the synthesis of tests for validating our models

against existing implementations and (2) the model-checking

of TM-related transformations, such as lock elision and com-

piling C++ transactions to hardware. A key finding is that a

proposed TM extension to ARMv8 currently being consid-

ered within ARM Research is incompatible with lock elision

without sacrificing portability or performance.
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1 Introduction
Transactional memory [28] (TM) is a concurrent program-

ming abstraction that promises scalable performance with-

out programmer pain. The programmer gathers instructions

into transactions, and the system guarantees that each ap-

pears to be performed entirely and instantaneously, or not
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at all. To achieve this, a typical TM system tracks each trans-

action’s memory accesses, and if it detects a conflict (i.e.,

another thread concurrently accessing the same location, at

least one access being a write), resolves it by aborting the

transaction and rolling back its changes.

1.1 Motivating Example: Lock Elision in ARMv8
One important use-case of TM is lock elision [22, 46], in which
the lock/unlock methods of a mutex are skipped and the

critical region (CR) is instead executed speculatively inside

a transaction. If two CRs do not conflict, this method allows

them to be executed simultaneously, rather than serially. If

a conflict is detected, the transaction is rolled back and the

system resorts to acquiring the mutex as usual.

Lock elision may not apply to all CRs, so an implemen-

tation must ensure mutual exclusion between transactional

and non-transactional CRs. This is typically done by starting

each transactional CR with a read of the lock variable (and

self-aborting if it is taken) [31, §16.2.1]. If the mutex is sub-

sequently acquired by a non-transactional CR then the TM

system will detect a conflict on the lock variable and abort

the transactional CR.

Thus, reasoning about lock elision requires a concurrency

model that accounts for both modes, transactional and non-

transactional. In particular, systems with memory models

weaker than sequential consistency (SC) [39] must ensure

that the non-transactional lock/unlock methods synchronise

sufficiently with transactions to provide mutual exclusion.

In their seminal paper introducing lock elision, Rajwar and

Goodman argued that “correctness is guaranteedwithout any

dependence on memory ordering” [46, §9]. In fact, by draw-

ing on a decade of weak memory formalisations [5, 24, 45]

and by extending state-of-the-art tools [4, 40, 55], we show

it is straightforward to contradict this claim automatically.

Example 1.1 (Lock elision is unsound under ARMv8).
Consider the program below, in which two threads use

CRs to update a shared location x .

Initially: [X0] = x = 0

lock() lock()
LDR W5,[X0]

x ← x + 2
MOV W7,#1

x ← 1
ADD W5,W5,#2 STR W7,[X0]
STR W5,[X0] unlock()
unlock()

Test: x = 2

https://doi.org/10.1145/3192366.3192373
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It must not terminate with x = 2, for this would violate

mutual exclusion. Now, let us instantiate the lock/unlock

calls with two possible implementations of those methods.

Initially: [X0] = x = 0, [X1] =m = 0

1 Loop:
atomically

updatem
from 0

to 1

3 TXBEGIN begin txn

LDAXR W2,[X1] LDR W6,[X1] loadm
and abort

if non-

zero

CBNZ W2,Loop CBZ W6,L1
4 MOV W3,#1 TXABORT
STXR W4,W3,[X1] L1:
CBNZ W4,Loop MOV W7,#1

x ← 1
2 LDR W5,[X0]

x ← x + 2
STR W7,[X0]

5 ADD W5,W5,#2 TXEND end txn

STR W5,[X0]
STLR WZR,[X1] m ← 0

Test: x = 2

The left thread executes its CR non-transactionally, using

the recommended ARMv8 spinlock [7, K9.3], while the

right thread uses lock elision (with unofficial but represen-

tative TM instructions). This program can terminate with

x = 2, thus witnessing the unsoundness of lock elision, as

follows:

1 The left thread reads the lock variable m as 0 (free).

LDAXR indicates an acquire load, which means that

the read cannot be reordered with any later event in

program-order.

2 The left thread reads x as 0. This load can execute specu-

latively because ARMv8 does not require that the earlier

store-exclusive (STXR) completes first [45].

3 The right thread starts a transaction, sees the lock is

still free, updates x to 1, and commits its transaction.

4 The left thread updatesm to 1 (taken). This is a store-

exclusive (STXR) [36], so it only succeeds ifm has not

been updated since the last load-exclusive (LDAXR). It
does succeed, because the right thread only readsm.

5 Finally, the left thread updates x to 2, andm to 0. STLR is
a release store, whichmeans that the update tom cannot

be reordered with any earlier event in program-order.

The crux of our counterexample is that a (non-transaction-

al) CR can start executing after the lock has been observed

to be free, but before it has actually been taken. Importantly,

this relaxation is safe if all CRs are mutex-protected (i.e.,

the spinlock in isolation is correct), since every lock acqui-

sition involves writing to the lock variable and at most one

store-exclusive can succeed. Rather, the counterexample only

arises when this relaxation is combined with any reasonable

TM extension to ARMv8. This includes a proposed extension

currently being considered within ARM Research.

Furthermore, there appears to be no easy fix. Re-implemen-

ting the spinlock by appending a DMB fence to the lock()
implementation would prevent the problematic reordering,

but would also inhibit compatibility with code that uses

the ARM-recommended spinlock, and may decrease perfor-

mance when lock elision is not in use. Otherwise, if software

portability is essential, transactional CRs could be made to

write to the lock variable (rather than just read it), but this

would induce serialisation, and thus nullify the potential

speedup from lock elision.

1.2 Our Work
In this paper, we use formalisation to tame the interaction

between TM and weak memory. Specifically, we propose

axiomatic models for how transactions behave in x86 [31],

Power [29], ARMv8 [7], and C++ [34]. As well as the lock

elision issue already explained, our formalisations revealed:

• an ambiguity in the specification of Power TM (§5.2),

• a bug in a register-transfer level (RTL) prototype imple-

mentation of ARMv8 TM (§6.2),

• a simplification to the C++ TM proposal (§7.2), and

• that coalescing transactions is unsound in Power (§8.1).

Although TM is conceptually simple, it is notoriously

challenging to implement correctly, as exemplified by In-

tel repeatedly having to disable TM in its processors due to

bugs [26, 30], IBM describing adding TM to Power as “ar-

guably the single-most invasive change ever made to IBM’s

RISC architecture” [1], and the C++ TM Study Group listing

“conflict with the C++ memory model and atomics” as one

of their hardest challenges [56]. To cope with the combined

complexity of transactions and weak memory that exist in

real systems, we build on several recent advances in auto-

mated tooling to help develop and validate our models. In

the x86 and Power cases, we use the SAT-based Memalloy

tool [55], extended with an exhaustive enumeration mode

à la Lustig et al. [40], to automatically synthesise exactly

the ‘minimally forbidden’ tests (up to a bounded size) that

distinguish our TM models from their respective non-TM

baselines. We then use the Litmus tool [4] to check that these

tests are never observed on existing hardware (i.e., that our

models are sound). We also generate a set of ‘maximally al-

lowed’ tests, which we use to assess the completeness of our

models (i.e., how many of the behaviours our models allow

are empirically observable).

Moreover, we investigate several properties of our mod-

els. For instance, C++ offers ‘atomic’ transactions and ‘re-

laxed’ transactions; we prove that atomic transactions are

strongly isolated, and that race-free programs with no non-

SC atomics and no relaxed transactions enjoy ‘transactional

SC’. Other properties of our models we verify up to a bound

using Memalloy; these are that introducing, enlarging, or

coalescing transactions introduces no new behaviours, and

that C++ transactions compile soundly to x86, Power, and

ARMv8.

Finally, we show how Memalloy can be used to check a

library implementation against its specification by encoding

it as a program transformation. We apply our technique to

check that x86 and Power lock elision libraries correctly
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implement mutual exclusion – but that this is not so, as we

have seen, in ARMv8.

Summary Our contributions are as follows:

• a fully-automated toolflow for generating tests from

an axiomatic memory model and using them to vali-

date the model’s soundness, its completeness, and its

metatheoretical properties (§4);

• formalisations of TM in the SC (§3), x86 (§5), Power (§5),

ARMv8 (§6), and C++ (§7) memory models;

• proofs that the transactional C++ memory model guar-

antees strong isolation for atomic transactions, and trans-

actional SC for race-free programswith no non-SC atom-

ics or non-atomic transactions (§7);

• the automatic, bounded verification of transactional

monotonicity and compilation from C++ transactions

to hardware (§8); and

• a technique for validating lock elision against hardware

TM models, which is shown to be effective through the

discovery of the serious flaw of Example 1.1 (§8).

Companion Material We provide all the models we pro-

pose (in the .cat format [5]), the automatically-generated

litmus tests used to validate our models, litmus tests corre-

sponding to all the executions discussed in our paper, and

Isabelle proofs of all statements marked with the symbol.

2 Background: Axiomatic Memory Models
Here we give the necessary background on the formal frame-

workwe use for reasoning about programs, which is standard

across several recent works [5, 40, 55].

Amemory model defines how threads interact with shared

memory. An axiomaticmemorymodel consists of constraints

(i.e., axioms) on candidate executions. An execution is a graph
representing a runtime behaviour, whose structure is defined

below. The candidate executions of a program are obtained

by assuming a non-deterministic memory system: each load

can observe a store from anywhere in the program. After

filtering away the candidates that fail the constraints, we are

left with the consistent executions; i.e., those that are allowed
in the presence of the actual memory system.

2.1 Executions
Let X be the set of all executions. Each execution is a graph

whose vertices, E, represent runtime memory-related events

and whose labelled edges represent various relations be-

tween them. The events are partitioned into R,W , and F , the
sets of read, write, and fence events.

1
Events in an execution

are connected by the following relations:

• po, program order (a.k.a. sequenced-before);

1
We encode fences as events (rather than edges) because this simplifies

execution minimisation (§4.2). We then derive architecture-specific fence

relations that connect events separated by fence events, which we use in

our models and execution graphs.

a:W x

b: R x

c:W xco

po
rf

Initially: [X0] = x = 0

a: [X0] ← 1 c: [X0] ← 2
b: r0 ← [X0]

Test: r0 = 2 ∧ x = 2

Figure 1. An execution and its litmus test

• addr/ctrl/data, an address/control/data dependency;

• rmw, to indicate read-modify-write operations;

• sloc, between events that access the same location;

• rf , the ‘reads-from’ relation; and

• co, the ‘coherence’ order in which writes hit memory.

We restrict our attention to executions that are well-formed
as follows: po forms, for each thread, a strict total order over

that thread’s events; addr , ctrl, and data are within po and
always originate at a read; rmw links the read of an RMW

operation to its corresponding write; rf connects writes to

reads accessing the same location, with no read having more

than one incoming rf edge; and co connects writes to the

same location and forms, for each location, a strict total order

over the writes to that location.

Notation Given a relation r , r−1 is its inverse, r ? is its reflex-
ive closure, r+ is its transitive closure, and r ∗ is its reflexive
transitive closure. We use ¬ for the complement of a set or

relation, implicitly with respect to the set of all events or

event pairs in the execution. We write ‘;’ for relational com-

position: r1 ; r2 = {(x , z) | ∃y. (x ,y) ∈ r1 ∧ (y, z) ∈ r2}. We

write [−] to lift a set to a relation: [s] = {(x ,x) | x ∈ s}. To
restrict a relation r to being inter-thread or intra-thread, we

use r e = r \ (po∪po−1)∗ or r i = r ∩(po∪po−1)∗, respectively.
Similarly, r loc = r ∩ sloc.

Derived Relations The from-read (fr) relation relates each

read event to all the write events on the same location that

are co-later than the write the read observed [40]. The com
relation captures three ways events can ‘communicate’ with

each other.

fr = ([R] ; sloc ; [W ]) \ (rf −1 ; (co−1)∗)
com = rf ∪ co ∪ fr

Visualising Executions We represent executions using

diagrams like the one in Fig. 1 (left). Here, the po-edges
separate the execution’s events into two threads, each drawn

in one column. Each event is labelled with the sets it belongs

to, such as R andW . We use location names such as x to

identify the sloc-classes.

2.2 From Executions to Litmus Tests
In order to test whether an execution of interest is observable

in practice, it is necessary to convert it into a litmus test (i.e.,
a program with a postcondition) [18]. This litmus test is

constructed so that the postcondition only passes when the

particular execution of interest has been taken [3, 55].
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a:W x

b: R x

c:W x
co

po
rf

Initially: [X0] = x = 0, [X1] = ok = 1

txbegin Lfail c: [X0] ← 2
a: [X0] ← 1
b: r0 ← [X0]

txend
goto Lsucc

Lfail: [X1] ← 0
Lsucc:

Test: ok = 1 ∧ r0 = 2 ∧ x = 2

Figure 2. A transactional execution and its litmus test

As an example, the execution on the left of Fig. 1 cor-

responds to the pseudocode litmus test on the right. Read

events become loads, writes become stores, and the po-edges
induce the order of instructions and their partitioning into

threads. To ensure that the litmus test passes only when the

intended rf -edges are present, we arrange that each store

writes a unique non-zero value, and then check that each

local register holds the value written by the store it was

intended to observe – this corresponds to the r0 = 2 in

the postcondition. To ensure that the intended co-edges are
present, we check the final value of each memory location –

this corresponds to the x = 2 in the postcondition.
2

3 Axiomatising Transactions
Transactional memory (TM) can be provided either at the

architecture level (x86, Power, ARMv8) or in software (C++).

Since we are concerned only with the specification of TM,

and not its implementation, we can formalise both forms

within a unified framework. In this section, we describe how

program executions can be extended to express transactions

(§3.1) and how we can derive litmus tests to test for these

executions (§3.2). We then propose axioms for capturing the

isolation of transactions (§3.3), and for strengthening the SC

memory model to obtain transactional SC (§3.4).

3.1 Transactional Executions
To enable transactions in an axiomatic memory modelling

framework, we extend executions with an stxn relation that

relates events in the same successful (i.e., committed) trans-

action. For an execution to be well-formed, stxn must be a

partial equivalence relation (i.e., symmetric and transitive),

and each stxn-class must coincide with a contiguous sub-

set of po. When generating the candidate executions of a

program with transactions, each transaction is assumed to

succeed or fail non-deterministically. That is, each either

gives rise to a stxn-class of events, or vanishes as a no-op.
Diagrammatically, we represent stxn using boxes. For in-

stance, events a and b in Fig. 2 form a successful transaction.

2
When there are more than two writes to a location, extra constraints on

executions are needed to fix all the co-edges [55].

R x

R x
W x

fr

rf
po

(a)

R x

W x
W x

fr

co
po

(b)

W x

R x
W x

co

rf
po

(c)

W x

W x
R x

rf

fr
co po

(d)

Figure 3. Four SC executions that are allowed by weak iso-

lation but forbidden by strong isolation

Remark 3.1. To study the behaviour of unsuccessful trans-

actions in more detail, one could add an explicit representa-

tion of them in executions, perhaps using dashed boxes.

However, the behaviour of unsuccessful transactions is

tricky to ascertain on hardware because of the rollback

mechanism. Moreover, it is unclear how they should inter-

act with co, since co is the order in which writes hit the

memory, which writes in unsuccessful transactions never

do.

3.2 From Transactional Executions to Litmus Tests
A transactional execution can be converted into a litmus test

by extending the construction of §2.2. As an example, the

execution on the left of Fig. 2 corresponds to the litmus test

on the right. The instructions in the transaction simply need

enclosing in instructions that begin and end a transaction.

We write these as txbegin and txend here; our tooling spe-

cialises these for each target architecture. The postcondition

checks that the transaction succeeded using the ‘ok’ location,
which is zeroed in the transaction’s fail-handler, Lfail, the
label of which is provided with the txbegin instruction.

3.3 Weak and Strong Isolation
We now explain how the isolation property of transactions

can be captured as a property of an execution graph. A TM

system provides weak isolation if transactions are isolated

from other transactions; that is, their intermediate state can-

not affect or be affected by other transactions [12, 27]. It

provides strong isolation if transactions are also isolated

from non-transactional code.

The four 3-event SC executions in Fig. 3 illustrate the

difference between strong and weak isolation. In each, the

interfering event would need to be within a transaction to

be forbidden by weak isolation; strong isolation does not

make this distinction. Executions (a) and (d) correspond to

what Blundell et al. call non-interference and containment,
respectively, and (b) is similar to the standard axiom for

RMW isolation (cf. RMWIsol in Fig. 5).

Failures of isolation can be characterised as communica-

tion cycles between transactions. To define these cycles, the

following constructions are useful:

weaklift(r , t) = t ; (r \ t) ; t

stronglift(r , t) = t? ; (r \ t) ; t?.
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acyclic(hb) where hb = po ∪ com (Order)

acyclic(stronglift(hb, stxn)) (TxnOrder)

Figure 4. SC axioms [49], with TSC extensions highlighted

If r relates events e1 and e2 in different transactions, then

weaklift(r , stxn) relates all the events in e1’s transaction to all
those in e2’s transaction. The stronglift version also includes

edges where the source and/or the target event are not in a

transaction. Weak and strong isolation can then be axioma-

tised by treating all the events in a transaction as a single

event whenever the transaction communicates with another

transaction (WeakIsol) or any other event (StrongIsol).

acyclic(weaklift(com, stxn)) (WeakIsol)

acyclic(stronglift(com, stxn)) (StrongIsol)

3.4 Transactional Sequential Consistency
Although isolation is a critical property for transactions, it

only provides a lower bound on the guarantees that real

architectures provide. Meanwhile, an upper bound on the

guarantees provided by a reasonable TM implementation is

transactional sequential consistency (TSC) [19]. The models

we propose in §5–7 all lie between these bounds.

TSC is a strengthening of the SC memory model in which

consecutive events in a transaction must appear consecu-

tively in the overall execution order. Where SC can be char-

acterised axiomatically (Fig. 4) by forbidding cycles in pro-

gram order and communication (Order) [49], we can obtain

TSC by additionally forbidding such cycles between transac-

tions and non-transactional events (TxnOrder). Note that

TxnOrder subsumes the StrongIsol axiom.

4 Methodology
We identify three components of amemorymodellingmethod-

ology: (1) developing and refining axioms, (2) synthesising

and running conformance tests, and (3) checking metatheo-

retical properties. In this section, we explain our approach

to each of these components, and in particular, how we have

extended the Memalloy tool [55] to support each task.

Background on Memalloy The original Memalloy tool,

built on top of Alloy [35], was developed for comparing

memory models. It takes two models (say, M and N ), and

searches for a single execution that distinguishes them (i.e., is

inconsistent underM but consistent under N ). Additionally,

if Memalloy is supplied with a translation on executions (e.g.,

representing a compiler mapping or a compiler optimisation),

then it searches for a witness that the translation is unsound.

This translation is defined by a relation, typically named π ,
from ‘source’ events to ‘target’ events.

4.1 Developing and Refining Axioms
For each model, we make a first attempt at a set of axioms us-

ing information obtained from specifications, programming

manuals, research papers, and discussions with designers.

Then, for each proposed change to the model, we use Memal-

loy to generate tests that become disallowed or allowed as

a result. We decide whether to accept the change based on

discussing these tests with designers, and running them on

existing hardware (where available) using the Litmus tool [4].

In order to extend Memalloy to support the development

of transactional memory models in this way, we augmented

the form of executions as described in §3.1, and modified the

litmus test generator as described in §3.2.

4.2 Synthesising and Running Conformance Tests
To build confidence in a model, we compare the behaviours

it admits against those allowed by the architecture or lan-

guage being modelled. It is vital that no behaviour allowed

by the architecture/language is forbidden by the model, so

we exhaustively generate all litmus tests (up to a bounded

size) that our model forbids, and confirm using Litmus that

none can be observed on existing hardware.

To achieve this, we extended Memalloy with a mode for

exhaustively generating conformance tests for a given model

M . The key to exhaustive generation is a suitable notion of

minimality, without which we would obtain an infeasibly

large number of tests. We closely follow Lustig et al. [40], and

define execution minimality with respect to the following

partial order between executions. Let X ⊏ Y hold when

execution X can be obtained from execution Y by:

(i) removing an event (plus any incident edges),

(ii) removing a dependency edge (addr , ctrl, data, rmw), or
(iii) downgrading an event (e.g. reducing an acquire-read to

a plain read in ARMv8).

We then calculate the set min-inconsistent(M) = {X ∈ X |
X < consistent(M) ∧ ∀X ′ ⊏ X .X ′ ∈ consistent(M)}.

Extending Memalloy to support the synthesis of transac-

tional conformance tests requires minimality to take trans-

actions into account. To do this, we arrange that X ⊏ Y also

holds when X can be obtained from Y by:

(v) making the first or last event in a transaction non-trans-

actional (i.e. removing all of its incident stxn edges).

(We avoid the ‘middle’ of a transaction so as not to create non-

contiguous transactions and hence ill-formed executions.)

Remark 4.1. While this is a slightly coarse notion of min-

imality – a more refined version would also allow a large

transaction to be chopped into two smaller ones – it is cheap

to implement in the constraint solver as it only requires

quantification over a single event. As a result, Memalloy

may generate some executions that appear non-minimal,

but as we show in §5.3, this does not impede our ability to

generate and run large batches of conformance tests.
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Generating Allowed Tests Having generated the minimal-

ly-forbidden tests, the question naturally arises of whether

we can generate the maximally-allowed tests too. Where the

minimally-forbidden tests include just enough fences/depen-

dencies/transactions to be forbidden (and failing to observe

these tests empirically suggests that the model is not too

strong), the maximally-allowed tests include just not enough
(and observing them suggests that the model is not too weak).

We found the maximally-allowed tests valuable for commu-

nicating with engineers about the detailed relaxations per-

mitted by our models. However, in our experiments, allowed

tests are less conclusive than forbidden ones, because where

the observation of a forbidden test implies that the model

is unsound, the non-observation of an allowed test may be

caused by not performing enough runs, or by the machine

under test being implemented conservatively.

Moreover, the notion of executionmaximality is not as nat-

ural as minimality. For instance, an inconsistent execution

is only considered minimally-inconsistent if removing any

event makes it consistent, yet it is not sensible to deem a con-

sistent execution maximally-consistent only when adding
any event makes it inconsistent – such a condition is almost

impossible to satisfy. Even with event addition/removal set

aside, maximal-consistency tends to require executions to

be littered with redundant fences and dependencies.

Therefore, we approximate the maximally-consistent exe-

cutions as those obtained via a single ⊏-step from aminimally-

inconsistent execution. That is, we let max-consistent(M) =
{X ∈ X | ∃Y ∈ min-inconsistent(M).X ⊏ Y }.

4.3 Checking Metatheoretical Properties
As explained at the start of this section, Memalloy is able

to validate transformations between two memory models,

providing they can be encoded as a π -relation between ex-

ecutions. In §8, we exploit this ability to check several TM-

related transformations and compiler mappings.

In fact, Memalloy can also be used to check libraries under

weak memory. Prior work has (manually) verified that stack,

queue, and barrier libraries implement their specifications

under weak memory models [8, 52]; here we show how

checking these types of properties can be automated up to

a bounded number of library and client events. We see this

as a straightforward first-step towards a general verification

effort. The idea, which we apply to a lock elision library in

§8.3, is to treat the replacement of the library’s specification

with its implementation as a program transformation. To do

this, we first extend executions with events that represent

method calls. Second, we extend execution well-formedness

so that illegal call sequences (such as popping from an empty

stack) are rejected. Third, we strengthen thememorymodel’s

consistency predicate with axioms capturing the library’s

obligations (such as pops never returning data from later

pushes). Finally, we constrain π so that it maps each method

acyclic(poloc ∪ com) (Coherence)

empty(rmw ∩ (fre ; coe)) (RMWIsol)

acyclic(hb) (Order)

where ppo = ((W ×W ) ∪ (R ×W ) ∪ (R × R)) ∩ po
tfence = po ∩ ((¬stxn ; stxn) ∪ (stxn ;¬stxn))

L = domain(rmw) ∪ range(rmw)
implied = [L] ;po ∪ po ; [L] ∪ tfence

hb = mfence ∪ ppo ∪ implied ∪ rfe ∪ fr ∪ co
acyclic(stronglift(com, stxn)) (StrongIsol)

acyclic(stronglift(hb, stxn)) (TxnOrder)

Figure 5. x86 consistency axioms [5], with our TM additions

highlighted

call to an event sequence representing the implementation

of that method.

5 Transactions in x86 and Power
Over the next three sections, we show how our methodology

can be applied to four different targets. We begin with x86

and Power, which have both supported TM since 2013 [15,

32]. Intel’s Transactional Synchronisation Extensions (TSX)

provide XBEGIN, XEND, and XABORT instructions for starting,

committing, and aborting transactions, while Power provides

tbegin, tend, and tabort.

5.1 Background: the x86 and Power Memory Models
Both the x86 memory model [44] and the Power memory

model [5, 47, 48] allow certain instructions to execute out of

program order, with x86 allowing stores to be reordered with

later loads and Power allowing many more relaxations. Both

architectures provide fences (MFENCE in x86, and lwsync,
sync, and isync in Power) to allow these relaxations to be

controlled. The x86 architecture provides atomic RMWs via

LOCK-prefixed instructions, while Power implements RMWs

using exclusive instructions like those seen in Example 1.1.

Moreover, x86 is multicopy-atomic [18], which means that

writes are propagated to all other threads simultaneously.

Power does not have this property, so its memory model

includes explicit axioms to describe how writes propagate.

More formally, we extend executions with relations that

connect events in program order that are separated by a fence

event of a given type. For x86, we add an mfence relation,
and for Power, we add isync, lwsync, and sync.
An x86 execution is consistent if it satisfies all of the ax-

ioms in Fig. 5 (ignoring the highlighted regions for now).

The Coherence axiom forbids cycles in communication

edges and program order among events on the same location;

this guarantees programs that use only a single location to

have SC semantics. Happens-before (hb) imposes the event-

ordering constraints upon which all threads must agree, and

Order ensures that hb∗ is a partial order. The constraints
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acyclic(poloc ∪ com) (Coherence)

empty(rmw ∩ (fre ; coe)) (RMWIsol)

acyclic(hb) (Order)

where ppo = (preserved program order, elided)
tfence = po ∩ ((¬stxn ; stxn) ∪ (stxn ;¬stxn))
fence = sync ∪ tfence ∪ (lwsync \ (W × R))
ihb = ppo ∪ fence
thb = (rfe∪ ((fre∪coe)∗; ihb))∗; (fre∪coe)∗; rfe?

hb = (rfe? ; ihb ; rfe?) ∪ weaklift(thb, stxn)
acyclic(co ∪ prop) (Propagation)

where efence = rfe? ; fence ; rfe?

prop1 = [W ] ; efence ;hb∗ ; [W ]
prop2 = come

∗
; efence∗;hb∗; (sync ∪ tfence ) ;hb∗

tprop1 = rfe ; stxn ; [W ]
tprop2 = stxn ; rfe
prop = prop1 ∪ prop2 ∪ tprop1 ∪ tprop2

irreflexive(fre ;prop ;hb∗) (Observation)

acyclic(stronglift(com, stxn)) (StrongIsol)

acyclic(stronglift(hb, stxn)) (TxnOrder)

empty(rmw ∩ tfence∗) (TxnCancelsRMW)

Figure 6. Power consistency axioms [5], with our TM addi-

tions highlighted , and some details elided for brevity.

on hb arise from: fences placed by the programmer (mfence),
fences created implicitly by LOCK’d operations (implied), the
preserved fragment of the program order (ppo), inter-thread
observations (rfe) and communication edges (fr and co).

A Power execution is consistent if it satisfies all the axioms

in Fig. 6 (again, ignoring the highlights). The first axiom not

already seen is Order, which ensures that happens-before

(hb) is acyclic. In contrast to x86, the happens-before relation

in Power is formed from inter-thread observations (rfe), the
preserved fragment of the program order (ppo), and fences

(fence). We elide the definition of ppo as it is complex and

unchanged by our TM additions. The prop relation governs

how fences restrict “the order in which writes propagate” [5],

and the Propagation axiom ensures that this relation does

not contradict the coherence order. Observation governs

which writes a read can observe: if e1 propagates before

e2, then any read that happens after e2 is prohibited from

observing a write that precedes e1 in coherence order.

5.2 Adding Transactions
To extend the x86 and Power memory models to support

TM, we make the following amendments, each highlighted

in Figs. 5 and 6.

Strong Isolation (x86 andPower) The Powermanual says

that transactions “appear atomic with respect to both trans-

actional and non-transactional accesses performed by other

threads” [29, §5.1], and the TSX manual defines conflicts

not just between transactions, but between a transaction

and “another logical processor” (which is not required to

be executing a transaction) [31, §16.2]. We interpret these

statements to mean that x86 and Power transactions provide

strong isolation, so we add our StrongIsol axiom from §3.3.

Implicit Transaction Fences (x86 and Power) In both

x86 and Power, fences are created at the boundaries of suc-

cessful transactions. In x86, “a successfully committed [trans-

action] has the same ordering semantics as a LOCK prefixed
instruction” [31, §16.3.6], and in Power, “[a] tbegin instruc-

tion that begins a successful transaction creates a [cumu-

lative] memory barrier”, as does “a tend instruction that

ends a successful transaction” [29, §1.8]. Hence, we define

tfence as the program-order edges that enter (¬stxn ; stxn)
or exit (stxn ;¬stxn) a successful transaction, and add tfence
alongside the existing fence relations (mfence and sync).

Transaction Atomicity (x86 and Power) We extend the

prohibition on hb cycles among events to include cycles

among transactions (TxnOrder). This essentially treats all

the transaction’s events as one indivisible event, and is justi-

fied by the atomicity guarantee given to transactions, which

in x86 is “that all memory operations [. . . ] appear to have

occurred instantaneously when viewed from other logical

processors” [31, §16.2], and in Power is that each successful

transaction “appears to execute as an atomic unit as viewed

by other processors and mechanisms” [29, §1.8].

Barriers within Transactions (Power only) Each trans-

action contains an “integrated memory barrier”, which en-

sures that writes observed by a successful transaction are

propagated to other threads before writes performed by the

transaction itself [29, §1.8]. This behaviour is epitomised by

theWRC-style execution below [15, Fig. 6],

a:W x b: R x

c:W y

d : Ry

e: R xfr

rf
rf

po ppo (1)

which must be ruled out because the transaction’s write (c)
has propagated to the third thread before a write (a) that the
transaction observed. We capture this constraint by extend-

ing the prop relation so that it connects any write observed

by a transaction to any write within that transaction (tprop1).
In execution (1), this puts a prop edge from a to c . The execu-
tion is thus forbidden by the existing Observation axiom.

Remark 5.1. The following executions are similar to (1),

and like (1), they could not be observed empirically. How-

ever, the Power manual is ambiguous about whether they

should be forbidden.

W x R x

Ry

W y

R xfr

rf
fr

po sync
W x R x

Ry

W y

W xco
rf

fr
po sync
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In particular, because the transactions are read-only, we

cannot appeal to the integrated memory barrier. We have

reported this ambiguity to IBM architects, and while we

await a clarified specification, our model errs on the side

of caution by permitting these executions.

Propagation of Transactional Writes (Power only) Al-

though Power is not multicopy-atomic in general, transac-
tional writes are multicopy-atomic; that is, the architecture

will “propagate the transactional stores fully before commit-

ting the transaction” [15, §4.2]. This behaviour is epitomised

by anotherWRC-style execution, inwhich themiddle thread

sees the transactional write to x before the right thread does.

a:W x b: R x

c:W y

d : Ry

e: R xfr

rf
rf

ppo ppo (2)

To rule out such executions, it suffices to extend the prop re-

lation with reads-from edges that exit a transaction (tprop2),
and then to invoke Observation again.

Read-modify-writes (Power only) In Power, when a store-

exclusive is separated from its corresponding load-exclusive

by “a state change from Transactional to Non-transactional

or Non-transactional to Transactional”, the RMW operation

will always fail [29, §1.8]. Therefore, the TxnCancelsRMW

axiom ensures that no consistent execution has an rmw edge

crossing a transaction boundary.

Transaction Ordering (Power only) The Power manual

states that “successful transactions are serialised in some

order”, and that it is impossible for contradictions to this

order to be observed [29, p. 824].

We capture this constraint by extending the hb relation
to include a new thb relation between transactions. The thb
relation imposes constraints on the order in which transac-

tions can be serialised. By including it in hb and requiring

thb to be a partial order, we guarantee the existence of a

suitable transaction serialisation order, without having to

construct this order explicitly.

The definition of the thb relation is a little convoluted,

but the intuition is quite straightforward: it contains all non-

empty chains of intra-thread happens-before edges (ihb) and
inter-thread communication edges (come), except those that

contain an fre or coe edge followed by an rfe edge that does
not terminate the chain. The rationale for excluding fre ; rfe
and coe ; rfe chains is that these do not provide ordering in a

non-multicopy-atomic architecture. That is, from

a b c
fre rfe

or a b c
coe rfe

we cannot deduce that a happens before c , because this be-
haviour can also be attributed to thewriteb being propagated
to c’s thread before a’s thread.

Table 1. Testing our transactional x86 and Power models

Arch. |E | Synthesis
time (s)

Forbid Allow
T S ¬S T S ¬S

x86 2 4 0 0 0 2 2 0

3 22 4 0 4 24 23 1

4 87 22 0 22 99 99 0

5 260 42 0 42 249 244 5

6 4402 133 0 133 895 832 63

7 >7200 307 0 307 2457 1901 556

Total (x86): 508 0 508 3726 3101 625

Power 2 13 2 0 2 7 7 0

3 58 9 0 9 44 44 0

4 318 60 0 60 184 175 9

5 9552 353 0 353 1517 1330 187

6 >7200 922 0 922 5043 4407 636

Total (Power): 1346 0 1346 6795 5963 832

Cain et al. epitomise the transaction-ordering constraint

using the IRIW-style execution reproduced below [15, Fig. 5].

a:W x b: R x

c: Ry

d : Ry

e: R x

f :W y

fr fr

rf rfppoppo (3)

The execution must be disallowed because different threads

observe incompatible transaction orders: the second thread

observes a before f , but the third observes f before a. Our
model disallows this execution on the basis of a thb cycle

between the two transactions.

We must be careful not to overgeneralise here, because

a behaviour similar to (3) but with only one write transac-
tional was observed during our empirical testing, and is duly

allowed by our model.

5.3 Empirical Testing
Table 1 gives the results obtained using our testing strategy

from §4.2. We use Memalloy to synthesise litmus tests that

are forbidden by our transactional models but allowed under

the non-transactional baselines (the Forbid set), up to a

bounded number of events (|E |). We then derive the Allow
sets by relaxing each test. We report synthesis times on a

4-core Haswell i7-4771 machine with 32GB RAM, using a

timeout of 2 hours. For both sets we give the number of tests

(T) found; we say this number is complete if synthesis did

not reach timeout and non-exhaustive otherwise. We say a

test is seen (S) if it is observed on any implementation, and

not seen (¬S) otherwise. Each x86 test is run 1M times on

four TSX implementations: a Haswell (i7-4771), a Broadwell-

Mobile (i7-5650U), a Skylake (i7-6700), and a Kabylake (i7-

7600U). Each Power test is run 10M times on an 80-core

POWER8 (TN71-BP012)machine.When testing thismachine,

we use Litmus’s affinity parameter [4], which places threads
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Figure 7. The distribution of synthesis times for the 7-event

x86 Forbid tests

incrementally across the logical processors to encourage

IRIW-style behaviours.

We were able to generate the complete set of x86 For-
bid executions that have up to 6 events, and the complete

set of Power Forbid executions up to 5 events. Regarding

these bounds: we remark that since our events only repre-

sent memory accesses and fences (not, for instance, starting

or committing transactions), we can capture many inter-

esting behaviours with relatively few events. For instance,

these bounds are large enough to include all the executions

discussed in this section.

Of our 508 x86 Forbid tests, 29% had one transaction, 44%

had two, and 27% had three, and of the 1346 Power Forbid
tests, 29% had one transaction, 54% had two, and 17% had

three. No Forbid test was empirically observable on either

architecture, which gives us confidence that our models are

not too strong. Of the x86Allow tests, 83% could be observed

on at least one implementation, as could 88% of the Power

Allow tests; this provides some evidence that our models are

not excessively weak. Many of the unobserved PowerAllow
tests are based on the load-buffering (LB) shape, which has

never actually been observed on a Power machine, even

without transactions [6].

Increasing the timeout to 48 hours is sufficient to generate

the complete set of x86 Forbid executions for 7 events. It

takes 34 hours for Memalloy to find all 313 tests. Figure 7

shows how the percentage of executions found is affected by

various caps on the synthesis time. We observe that many

tests are found quickly: 98% of the tests are found within

2 hours (i.e., 6% of the total synthesis time), and all of the

tests are found within 9 hours (the remaining synthesis time

is used to confirm that there are no further tests). During

the development process, we exploited this observation to

obtain preliminary test results more rapidly.

6 Transactions in ARMv8
The ARMv8 memory model sits roughly between x86 and

Power. Like x86, it is multicopy-atomic [45], but like Power, it

permits several relaxations to the program order. Unwanted

relaxations can be inhibited either using barriers (DMB, DMB LD,
DMB ST, ISB) or using release/acquire instructions (LDAR, STLR)
that act like one-way fences.

acyclic(poloc ∪ com) (Coherence)

acyclic(ob) (Order)

where dob = (order imposed by dependencies, elided)
aob = (order imposed by atomic RMWs, elided)
bob = (order imposed by barriers, elided)

tfence = po ∩ ((¬stxn ; stxn) ∪ (stxn ;¬stxn))
ob = come ∪ dob ∪ aob ∪ bob ∪ tfence

empty(rmw ∩ (fre ; coe)) (RMWIsol)

acyclic(stronglift(com, stxn)) (StrongIsol)

acyclic(stronglift(ob, stxn)) (TxnOrder)

empty(rmw ∩ tfence∗) (TxnCancelsRMW)

Figure 8. ARMv8 consistency axioms [7, 21], with our TM

additions highlighted , and some details elided for brevity.

Formally, ARMv8 executions are obtained by adding six

extra fields: Acq and Rel, which are the sets of acquire and re-

lease events, and dmb/dmbld/dmbst/isb, which relate events

in program order that are separated by barriers.

An ARMv8 execution is consistent if it satisfies all of the

axioms in Fig. 8 (ignoring the highlighted regions). We have

seen the Coherence and RMWIsol axioms already. The

ordered-before relation (ob) plays the same role as happens-

before in x86: it imposes the event-ordering constraints upon

which all threads must agree, and must be free from cycles

(Order). These constraints arise from communication (come),

dependencies (dob), atomic RMWs (aob), and barriers (bob).

6.1 Adding Transactions
The ARMv8 architecture does not support TM, so the exten-

sions proposed below (highlighted in Fig. 8) are unofficial.

Nonetheless, the extensions we give are based upon a pro-

posal currently being considered within ARM Research and

upon extensive conversations with ARM architects.

• StrongIsol is a natural choice for hardware TM.

• As in x86 and Power, we place implicit fences (tfence) at
the boundaries of successful transactions.

• We bring the TxnOrder axiom from x86 and Power to

forbid ob-cycles among transactions.

• Like Power, ARMv8 has exclusive instructions, so it in-

herits the TxnCancelsRMW axiom to ensure the failure

of RMWs that straddle a transaction boundary.

6.2 Empirical Testing
ARM hardware does not support TM so we cannot test our

model as we did for x86 and Power. However, we generated

the Forbid and Allow suites anyway, and gave them to

ARM architects. They were able to use these to reveal a

bug (specifically, a violation of the TxnOrder axiom) in a

register-transfer level (RTL) prototype implementation.
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irreflexive(hb ; com∗) (HbCom)

where sw = (synchronises-with, elided)
ecom = com ∪ (co ; rf )
tsw = weaklift(ecom, stxn)
hb = (sw ∪ tsw ∪ po)+

empty(rmw ∩ (fre ; coe)) (RMWIsol)

acyclic(po ∪ rf ) (NoThinAir)

acyclic(psc) (SeqCst)

where psc = (constraints on SC events, elided)

empty(cnf \ Ato2 \ (hb ∪ hb−1)) (NoRace)

where cnf = ((W ×W ) ∪ (R×W ) ∪ (W ×R)) ∩ sloc \ id

Figure 9. C++ consistency and race-freedom axioms [38],

with our TM additions highlighted , and some details elided.

7 Transactions in C++
We now turn our attention from hardware to software. TM is

supported in C++ via an ISO technical specification that has

been under development by the C++ TM Study Group since

2012 [34, 50]. In this section, we formalise how the proposed

TM extensions interact with the existing C++memorymodel,

and detail a possible simplification to the specification.

C++ TM offers two main types of transactions: relaxed
transactions (written synchronized{...}) can contain arbi-

trary code, but only promise weak isolation, while atomic
transactions (written atomic{...}) promise strong isolation

but cannot contain certain operations, such as atomic opera-

tions [34, §8.4.4]. Some atomic transactions can be aborted by

the programmer, but we do not support these in this paper.

7.1 Background: the C++ Memory Model
Our presentation of the baseline C++ memory model follows

Lahav et al. [38]. We choose to build on their formalisation

because it incorporates a fix that allows correct compilation

to Power – without this, we could not check the compilation

of C++ transactions to Power transactions (§8.2).

C++ executions identify four additional subsets of events:

Ato contains the events from atomic operations, while Acq,
Rel, and SC contain events from atomic operations that use

the acquire, release, and SC consistency modes [33, §29.3].

Unlike the architecture-level memory models, the C++

memory model defines two predicates on executions (Fig. 9).

The first characterises the consistent candidate executions. If
any consistent execution violates a second race-freedom pred-

icate, then the program is completely undefined. Otherwise,

the allowed executions are the consistent executions.

A C++ execution is consistent if it satisfies all of the consis-

tency axioms given at the top of Fig. 9 (ignoring highlighted

regions for now). The first, HbCom, governs the happens-

before relation, which is constructed from the program order

and the synchronises-with relation (sw). Roughly speaking,

an sw edge is induced when an acquire read observes a re-

lease write; but it also handles fences and the ‘release se-

quence’ [9, 38]. The second axiom is standard for capturing

the isolation of RMW operations. The NoThinAir axiom is

Lahav et al.’s solution to C++’s ‘thin air’ problem [10]. Finally,

SeqCst forbids certain cycles among SC events; we omit its

definition as it does not interact with our TM extensions.

A consistent C++ execution is race-free if it satisfies the

NoRace axiom at the bottom of Fig. 9, which states that

whenever two conflicting (cnf ) events in different threads

are not both atomic, they must be ordered by happens-before.

7.2 Adding Transactions
The specification for C++ TM makes two amendments to

the C++ memory model: one for data races, and one for

transactional synchronisation.

Transactions and Data Races The definition of a race is

unchanged in the presence of TM. In particular, the program

atomic{ x=1; } atomic_store(&x,2);

is racy – which is perhaps contrary to the intuition that an

atomic transaction with a single non-atomic store should be

interchangeable with a non-transactional atomic store.

Remark 7.1. The specification also clarifies that although

events in an unsuccessful transaction are unobservable,

they can still participate in races. This implies that the

program

atomic{ x=1; abort(); } atomic_store(&x,2);

must be considered racy. In our formalisation, transactions

either succeed (giving rise to an stxn-class) or fail, giving
rise to no events (cf. §3.1). This treatment correctly handles

races involving unsuccessful transactions, because the race

will be detected in the case where the transaction succeeds,

but it cannot handle transactions that never succeed, such as
the one above. Therefore, we leave the handling of abort()
for future work.

Transactional Synchronisation The second amendment

by the C++ TM extension defines when two transactions

synchronise [34, §1.10]. An execution is deemed consistent

only if there is a total order on transactions such that:

1. this order does not contradict happens-before, and

2. if transactionT1 is ordered before conflicting transaction
T2, then the end of T1 synchronises with the start of T2.

We could incorporate these requirements into the formal

model by extending executions with a transaction-ordering

relation, to, that serialises all the stxn-classes in an order

that does not contradict happens-before (point 1), and up-

dating the synchronises-with relation to include events in

conflicting transactions that are ordered by to (point 2).
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However, this formulation is unsatisfying. It is awkward

that to is used to define happens-before but is also forbid-

den to contradict happens-before. Moreover, having the con-

sistency predicate involve quantification over all possible

transaction serialisations makes simulation expensive [9].

Fortunately, we can formulate the C++ TMmemory model

without relying on a total order over transactions. The idea

is that if two transactions are in conflict, then their order can

be deduced from the existing rf , co, and fr edges, and if they
are not, then there is no need to order them.

In more detail, and with reference to the highlighted parts

of Fig. 9: observe that whenever two events in an execu-

tion conflict (cnf ), they must be connected one way or the

other by ‘extended communication’ (ecom), which is the

communication relation extended with co ; rf chains. That

is, cnf = ecom ∪ ecom−1 [ ]. We then say that transactions

synchronise with (tsw) each other in ecom order, and we

extend happens-before to include tsw.
By simply extending the definition of hb like this, we

avoid the need for the to relation altogether, and we avoid

adding any axioms to the consistency predicate. To make our

proposal concrete, we provide in our companion material

some text that the specification could incorporate (currently

under review by the C++ TM Study Group).

Strong Isolation for Atomic Transactions The seman-

tics described thus far provides the desired weak-isolating

behaviour for relaxed transactions; that is, the WeakIsol

axiom follows from the other C++ consistency axioms [ ].

However, atomic transactions must be strongly isolated. In

fact, atomic transactions enjoy strong isolation simply by

being forbidden to contain atomic operations. The idea is

that for a non-transactional event to observe or affect a trans-

action’s intermediate state, it must conflict with an event in

that transaction. If this event cannot be atomic, there must

be a race. Thus, for race-free programs, atomic transactions

are guaranteed to be strongly isolated.

To formalise this property, we extend C++ executions with

an stxnat relation that identifies a subset of transactions as

atomic. It satisfies stxnat ⊆ stxn and (stxnat ; stxn) ⊆ stxnat.
We then prove the following theorem.

Theorem 7.2 (Strong isolation for atomic transactions). If
NoRace holds, and atomic transactions contain no atomic

operations (i.e., domain(stxnat) ∩ Ato = ∅), then

acyclic(stronglift(com, stxnat)).

Proof sketch. A cycle in stronglift(com, stxnat) is either a com-

cycle or an r -cycle, where r = stxnat ; (com \ stxnat)+ ; stxnat.
From NoRace, we have com \ Ato2 ⊆ hb. Using this and the

expansion com+ = ecom ∪ (fr ; rf ) we can obtain r ⊆ hb. To
finish the proof, note that execution well-formedness forbids

com-cycles, and that r -cycles are forbidden too because they

are also hb-cycles, which violate HbCom.

Table 2. Summary of our metatheoretical results. Timings

are for a machine with four 16-core Opteron processors and

128GB RAM, using the Plingeling solver [11]. A ✗ means the

property holds up to the given number of events, a ✓ means

a counterexample was found, and U indicates a timeout.

Property § Target Events Time C’ex?

Monotonicity 8.1 x86 6 20m ✗
Power 2 <1s ✓
ARMv8 2 <1s ✓
C++ 6 91h ✗

Compilation 8.2 C++/x86 6 14h ✗
C++/Power 6 16h ✗
C++/ARMv8 6 20h ✗

Lock elision 8.3 x86 8 >48h U
Power 9 >48h U
ARMv8 7 63s ✓
ARMv8 (fixed) 8 >48h U

A Transactional SC-DRF Guarantee A central property

of the C++ memory model is its SC-DRF guarantee [2, 13]:

all race-free C++ programs that avoid non-SC atomic oper-

ations enjoy SC semantics. This guarantee can be lifted to

a transactional setting [19, 50]: all race-free C++ programs

that avoid relaxed transactions and non-SC atomic opera-

tions enjoy TSC semantics (cf. §3.4). This is formalised in

the following theorem, which we prove in our companion

material.

Theorem 7.3 (Transactional SC-DRF guarantee). If a C++-
consistent execution has

• no relaxed transactions (i.e. stxn = stxnat),
• no non-SC atomics (i.e. Ato = SC), and
• no data races (i.e. NoRace holds),

then it is consistent under TSC.

8 Metatheory
We now study several metatheoretical properties of our pro-

posed models. For instance, one straightforward but impor-

tant property, which follows immediately from the model

definitions, is that our TMmodels give the same semantics to

transaction-free programs as the original models [ ]. In this

section, we use Memalloy to check some more interesting

properties of our models, as summarised in Tab. 2.

8.1 Monotonicity
We check that adding stxn-edges can never make an in-

consistent execution consistent. This implies that all of the

following program transformations are sound: introducing

a transaction (e.g., • • ), enlarging a transaction (e.g.,

• • • • ), and coalescing two consecutive transactions

(e.g., • • • • ).
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Memalloy confirmed that the transactional x86 and C++

models enjoy this monotonicity property for all executions

with up to 6 events. For Power and ARMv8, it found the

following counterexample:

R x

W x

R x

W x
rmw rmw

The left execution is inconsistent in both models because of

the TxnCancelsRMW axiom: that a store-exclusive sepa-

rated from its corresponding load-exclusive by a transaction

boundary always fails. The right execution, however, is con-

sistent. This counterexample implies that techniques that

involve transaction coalescing [17, 53] must be applied with

care in the presence of RMWs.

8.2 Mapping C++ Transactions to Hardware
We check that it is sound to compile C++ transactions to x86,

Power, and ARMv8 transactions. A realistic compiler would

be more complex – perhaps including fallback options for

when hardware transactions fail – but our direct mapping is

nonetheless instructive for comparing the guarantees given

to transactions in software and in hardware.

Specifically, we use Memalloy to search for a pair of execu-

tions, X and Y , such that X is an inconsistent C++ execution,

Y is a consistent x86/Power/ARMv8 execution, and X is re-

lated to Y via the relevant compilation mapping, encoded

in the relation π . Such a pair would demonstrate that the

compilation mapping is invalid. Wickerson et al. [55] have

encoded non-transactional compilation mappings; we only

need to extend them to handle transactions, which we do by

requiring π to preserve all stxn-edges:

stxnY = π−1 ; stxnX ;π .

Memalloy confirmed that compilation to x86, Power, and

ARMv8 is sound for all C++ executions with up to 6 events.

8.3 Checking Lock Elision
We now check the soundness of lock elision in x86, Power,

and ARMv8 using the technique proposed in §4.3.

First, we extend executions with four new event types:

• L, the lock() calls that will be implemented by acquir-

ing the lock in the ordinary fashion,

• U , the corresponding unlock() calls,

• Lt, the lock() calls that will be transactionalised, and

• U t
, the corresponding unlock() calls.

When generating candidate executions from programs, we

assume that each lock()/unlock() pair gives rise to a L-U
pair or a Lt-U t

pair. (Distinguishing these two modes at the

execution level eases the definition of the mapping relation.)

We obtain from these lock/unlock events a derived scr rela-
tion that forms an equivalence class among all the events

in the same CR. Similarly, scr t is a subrelation of scr that
comprises just those CRs that are to be transactionalised.

Table 3. Key constraints on π for defining lock elision

Source
event, e

Target event(s), π (e)

x86 Power ARMv8 ARMv8 (fixed)

L

R

R

W

ctrl

rmw
R

W

isync

rmw, ctrl

ctrl

R,Acq

W
rmw, ctrl

R,Acq

W

dmb

rmw, ctrl

po

U W

sync

W
po

W , Rel W , Rel

Lt R R R R

U t
- - - -

Moreover:

slocY = I 2 ∪ ((¬I )2 ∩ (π−1 ; slocX ;π )) (LockVar)

where I = π (L ∪U ∪ Lt ∪U t)

scr t \ (¬U t)2 = π ; stxnY ;π−1 (TxnIntro)

empty([L] ;π ; rf ;π−1 ; [Lt]) (TxnReadsLockFree)

Second, we extend execution well-formedness so that ev-

ery L event must be followed by a U event without an inter-

vening Lt orU t
, and so on.

Third, the consistency predicates from Figs. 5, 6, and 8 are

extended with the following axiom that forces the serialis-

ability of CRs.

acyclic(weaklift(po ∪ com, scr)) (CROrder)

Finally, we define a mapping π from the events of an

‘abstract’ execution X to those of a ‘concrete’ execution Y ,
that captures the implementation of lock elision. Table 3

sketches the main constraints we impose on π so that it cap-

tures lock elision for x86, Power, and ARMv8. It preserves

all the execution structure except for lock/unlock events.

The LockVar constraint imposes that all the reads/writes

in Y that are introduced by the mapping (call these I ) ac-
cess the same location (i.e., the lock variable) and that this

location is not accessed elsewhere in Y . The TxnIntro con-

straint imposes that events in the same transactionalised

CR in X become events in the same transaction in Y . The L
and U events are mapped to sequences of events that rep-

resent the recommended spinlock implementation for each

architecture. Each L event maps to a successful RMW on

the lock variable, which in ARMv8 is an acquire-RMW [7,

§K.9.3.1], in Power is followed by a control dependency
3
and

an isync [29, §B.2.1.1], and in x86 is preceded by an addi-

tional read (the ‘test-and-test-and-set’ idiom) [31, §8.10.6.1].

Each U event maps to a write on the lock variable, which

in ARMv8 is a release-write [7, §K.9.3.2], and in Power is

3
In Power, ctrl edges can begin at a store-exclusive [47].
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L

R x

W x

U

Lt

W x

U t

R,Acq m

W m

R x

W x

W , Rel m

R m

W x

fr

co

po

po, data

po

po

po

po, rmw, ctrl

po

po, data

po

po
fr
fr

co
co

fr

Figure 10. A pair of executions that demonstrates lock eli-

sion being unsound in ARMv8

preceded by a sync [29, §B.2.2.1]. Each Lt event maps to a

read of the lock variable. This read does not observe a write

from an L event (TxnReadsLockFree), to ensure that it sees

the lock as free. Finally,U t
events vanish (because we do not

have explicit events for beginning/ending transactions).

Figure 10 shows a pair of ARMv8 executions,X (left) andY
(right), and a π relation (dotted arrows), that satisfy all of the

constraints above. From this example, which was automati-

cally generated using Memalloy in 63 seconds, we manually

constructed the pair of litmus tests shown in Example 1.1. It

thus demonstrates that lock elision is unsound in ARMv8.

This example is actually one of several found by Memalloy;

we provide another example in our companion material.

We also used Memalloy to check lock elision in x86 and

Power, and again in ARMv8 after applying the fix proposed

in §1.1 (appending a DMB to the lock() implementation).

Given that each architecture implements L events with a

different number of primitive events (Tab. 3), we ensured

that the event count was large enough in each case to allow

examples similar to Fig. 10 to be found. We were unable

to find bugs in any of these cases, but Memalloy timed out

before it could verify their absence. As such, we cannot claim

lock elision in x86 and Power to be verified, but the timeout

provides a high degree of confidence that these designs are

bug-free up to the given bounds because, as Tab. 2 shows,

when counterexamples exist they tend to be found quickly.

9 Related Work
In concurrent but independent work, Dongol et al. [23] have

also proposed adding TM to the x86, Power, and ARMv8

memory models. Like us, Dongol et al. build their axioms by

lifting relations from events to transactions. However, their

models are significantly weaker than ours, because they

capture only the atomicity of transactions, not the ordering
of transactions. Because of this, their Power model is too

weak to validate the natural compiler mapping from C++.

This is demonstrated by the following execution, which is

forbidden by C++ (owing to an hb cycle), but allowed by their
Power model (though not actually observable on hardware).

W x

W y

R y

R x

po
rf

po
fr

Moreover, unlike our work, Dongol et al.’s models have not

been empirically validated – and nor have earlier models that

combine TM and weak memory [20, 41]. Nonetheless, our

models being stronger than Dongol et al.’s implies that our

endeavours are complementary: our experiments validate

their models, and their proofs carry over to our models.

Cerone et al. [16] have studied the weak consistency guar-

antees provided by transactions in database systems. A key

difference is that for Cerone et al., weak behaviours are at-

tributed to weakly consistent transactions, but in our work,

weak behaviours are attributed to weakly consistent non-

transactional events surrounding strongly consistent trans-

actions. Nonetheless, similar axiomatisations can be used in

both settings, and similar weak behaviours can manifest.

Our models follow the axiomatic style, but there also ex-

ist operational memory models for x86 [44], Power [48],

ARMv8 [45], and C++ [43]. It would be interesting to con-

sider how these could be extended to handle TM.

Other architectures and languages that could be targetted

by our methodology include RISC-V, which plans to incorpo-

rate TM in the future [54], and Java. Indeed, Grossman et al.

[25] and Shpeisman et al. [51] identify several tricky corner

cases that arise when attempting to extend Java’s weak mem-

ory model to handle transactions, and our methodology can

be seen as a way to automate the generation of these.

Regarding the analysis of programs that provide TM, an

automatic tool for testing (software) TM implementations

above a weakmemorymodel has been developed byManovit

et al. [42]. Like us, they use automatically-generated litmus

tests to probe the implementations, but where our test suites

are constructed to be exhaustive and to contain only ‘interest-

ing’ tests, their tests are randomly generated. Regarding the

analysis of programs that use TM, we note that the formula-

tion of the C++memorymodel by Lahav et al. [38] leads to an

efficient model checker for multithreaded C++ Kokologian-

nakis et al. [37]. Since our C++ TM model builds on Lahav

et al.’s model, it may be possible to get a model checker for

C++ TM similarly.

Regarding tooling for axiomatic memory models in gen-

eral: our methodology builds on tools due to Wickerson et al.

[55] and Lustig et al. [40], both of which build on Alloy [35].

Related tools include Diy [3], which generates litmus tests by

enumerating relaxations of SC. Compared to Diy, Memalloy

is more easily extensible with constructs such as transactions,

and only generates the tests needed to validate amodel. Mem-

Synth [14] can synthesise memory models from a corpus of

litmus tests and their expected outcomes, though it does not

currently handle software models or control dependencies.
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10 Conclusion
We have extended axiomatic memory models for x86, Power,

ARMv8, and C++ to support transactions. Using our exten-

sions to Memalloy, we synthesised meaningful sets of litmus

tests that precisely capture the subtle interactions between

weak memory and transactions. These tests allowed us to

validate our new models by running them on available hard-

ware, discussing them with architects, and checking them

against technical manuals. We also used Memalloy to check

several metatheoretical properties of our models, including

the validity of program transformations and compiler map-

pings, and the correctness – or lack thereof – of lock elision.
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