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LegUp
• Open-source hardware synthesis tool developed at 

the University of Toronto since 2009 

• Supports pthreads, and OpenMP (using locks)
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Synthesis example
• Can we implement atomic stores/loads using just 

ordinary stores/loads?
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int x=0; int y=0;

T1() { T2() {

1.1 x=1; 2.1 if(y==1)

1.2 y=1; 2.2 r0=x;

} }

assert(r0 6= 0)

(a) A minimal violation of message-passing.

int x=0; int y=0;

T1(int a) { T2() {

1.1 x=a/3; 2.1 if(y==1)

1.2 y=1; 2.2 r0=x;

} }

assert(r0 6= 0)

(b) A message-passing violation witnessed in LegUp
(where thread T1 is launched with a = 3).

Cycle: 1 2 3 4 5 · · · 35 36

1.1 ld a

1.1 divide
1.1 st x
1.2 st y

2.1 ld y

2.2 ld x

2.2 slt y==1?
x:null

(c) Schedules for threads T1 (top) and T2 (bottom).

Figure 2: Violating message-passing in LegUp.

inserting extra loads of a second shared location, y. These
transformations result in LegUp finding the schedule shown
in Fig. 1c.1 Because of the high latency of the division oper-
ation, LegUp seeks to schedule the second read of x as early
as possible. It determines that line 1.3 depends neither on
line 1.2 (there is only a read-after-read (RAR) dependency
on x) nor on line 1.1, and hence can be executed first in
its thread. The repeated reads of y cause a delay between
the two reads of x, and it is during this gap that thread T2

updates x. In the main thread, threads T1 and T2 are forked
successively, which o↵sets the starts of their respective exe-
cutions by two cycles.

Message-passing.
Another example of an SC violation is illustrated by a

failure of the message-passing paradigm [24, §3], which is
illustrated in Fig. 2a. This example involves two shared
locations, x and y, where x represents the message being
passed from thread T1 to thread T2, and y is used as a ‘ready’
flag. A message-passing violation occurs if T2 observes that
y has been set (line 2.1) but then goes on to observe that x
is still zero (line 2.2).

As before, some innocuous code transformations are re-
quired to coax LegUp into revealing this behaviour, as shown
in Fig. 2b. This time, we simply arrange that the value being
stored to x is obtained by a division operation. As shown in
the resultant schedule (Fig. 2c), this high-latency operation

1The schedule is constrained by dual-ported memory access.

delays the store to x. Because lines 1.1 and 1.2 are deemed
independent, the schedule permits them to execute simul-
taneously, and the result is that y is written first. In the
reading thread (T2), LegUp schedules both loads simultane-
ously, having used if-conversion [23] to replace the control
flow with predicated statements (slt). By launching the
reading thread two clock cycles after the writing thread, we
can observe the new value of y but the old value of x – a
violation of message passing.

3. BACKGROUND
We now summarise existing HLS support for concurrent

programming (§3.1), and introduce the C11 MCM (§3.2).

3.1 High-level synthesis
Several HLS tools only accept sequential input, deriv-

ing parallelisation opportunities either automatically (e.g.
ROCCC [27], LegUp [6]) or with the aid of synthesis di-
rectives (e.g. Vivado HLS [31]). Other tools accept multi-
threaded input but only allow threads to synchronise via
locks (e.g. Kiwi [14]) or via execution barriers (e.g. SDAc-
cel [30]). Some HLS tools also support the OpenMP pro-
gramming standard, which defines an atomic directive that
enables lock-free programming. Leow et al. [21] transform
OpenMP to Handel-C for hardware synthesis and Cilardo
et al. [8] generate heterogeneous hardware/software systems
with OpenMP. Neither of these works support the explicit
multi-threading constructs defined by the Pthreads stan-
dard, so a direct comparison with the present work is di�-
cult. Altera’s SDK for OpenCL [3] supports lock-free pro-
gramming via atomics [26], though the commercial nature of
the tool makes it di�cult to ascertain exactly how these op-
erations are implemented. LEAP facilitates parallel memory
access through its provision of memory hierarchies that po-
tentially can be shared among Pthreads in a lock-free man-
ner [32].
The most important point of comparison between the tools

reviewed above and the present work is that we are the
first to synthesise hardware from software that features weak
atomics (as defined by C11 [17] and OpenCL 2.x [19]). E�-
cient implementations of weak atomics have been extensively
studied in the conventional processor domain, and they have
been shown to yield average, whole-program speedups of
1.13x on x86 (Core i7) CPUs [25, Fig. 5] over their SC coun-
terparts. Our circular bu↵er case study suggests that on
FPGAs, weak atomics can yield a 1.5x average speedup.
Finally, Huang et al. [16] and Cong et al. [9] have shown

that compiler optimisations can a↵ect the quality of HLS-
generated hardware. Our work shows that in a multi-thread-
ed context, some optimisations (as manifested through re-
laxed scheduling constraints) can even be unsound.

3.1.1 HLS Scheduling
An HLS front-end converts source code into a control/

data flow graph (CDFG) [11]. A CDFG is a directed graph
where each vertex is a basic block (BB) and each edge rep-
resents a control-flow path. Each BB is a data-flow graph
(DFG) with operations as vertices (V

op

) and dependencies as
edges (E

d

✓ V

op

⇥V

op

). Scheduling determines the start and
end cycles of each operation in a CDFG, taking into account
the control-flow and data dependencies as well as additional
constraints such as latency and resources. Scheduling is per-
formed alongside the allocation of resources and the binding
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line 1.2 (there is only a read-after-read (RAR) dependency
on x) nor on line 1.1, and hence can be executed first in
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y has been set (line 2.1) but then goes on to observe that x
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inserting extra loads of a second shared location, y. These
transformations result in LegUp finding the schedule shown
in Fig. 1c.1 Because of the high latency of the division oper-
ation, LegUp seeks to schedule the second read of x as early
as possible. It determines that line 1.3 depends neither on
line 1.2 (there is only a read-after-read (RAR) dependency
on x) nor on line 1.1, and hence can be executed first in
its thread. The repeated reads of y cause a delay between
the two reads of x, and it is during this gap that thread T2
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successively, which o↵sets the starts of their respective exe-
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illustrated in Fig. 2a. This example involves two shared
locations, x and y, where x represents the message being
passed from thread T1 to thread T2, and y is used as a ‘ready’
flag. A message-passing violation occurs if T2 observes that
y has been set (line 2.1) but then goes on to observe that x
is still zero (line 2.2).
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quired to coax LegUp into revealing this behaviour, as shown
in Fig. 2b. This time, we simply arrange that the value being
stored to x is obtained by a division operation. As shown in
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• Unsound: only respects RW/WR/WW 
dependencies

Implementing atomics
int x=0; atomic_int y=0;

x=1; r0=y.ld(ACQ);

y.st(1,REL); if(r0==1)

r1=x;

(a) a program

a: Wna x 1

b: WREL y 1

c: RACQ y 1

d: Rna x 0
rf

sb sb, cd

(b) a candidate trace

Figure 3: Example of C11 atomics.

traces (Figure 3b). We explain below why this particular
candidate trace is deemed inconsistent. The trace contains
four memory-related events (a, b, c, d), distributed between
two threads as shown by the dotted rectangles. The store
instructions give rise to write events (W) and the loads give
rise to reads (R). Each event is tagged with the location it
accesses (e.g., x or y), the value it reads or writes (e.g., 0 or
1), and whether it is non-atomic (na), atomic with consis-
tency mode release (REL), or atomic with consistency mode
acquire (ACQ). The sequenced before relation (sb) depicts the
order of the instructions in the program, while the cd rela-
tion represents the control-flow dependency induced by the
if-statement. The reads-from relation (rf ) records that, in
this particular trace, the read event c observes the 1 written
by the write event b, and that the read event d (which has
no incoming rf edge) observes the initial value, 0.

This trace is deemed inconsistent in C11 by the following
reasoning. The rf arrow between the release and the acquire
induces what is called ‘release/acquire synchronisation’ be-
tween the threads; we say that b happens-before c as a result.
Taken together with the two sb arrows, we can further de-
duce that a happens-before d. C11 prescribes that reads
must observe the most recent write in the happens-before
relation, but d, which observes x’s initial value, violates this
rule. Hence, the trace is disallowed.

4. METHOD
This section describes how we extend LegUp’s Pthread

flow [7] to support sequentially consistent (§4.2) and weakly
consistent (§4.3) atomics.

As we discussed in §3.1.2, LegUp’s MCM requires mu-
tual exclusion (locks) to ensure safe access to shared mem-
ory in a multi-threaded context. We propose strengthening
LegUp’s MCM so that multi-threaded programs can syn-
chronise using atomics rather than locks. We build on the
LegUp framework, as it o↵ers Pthread support and is open
source, but our method is generally applicable to HLS tools
that use SDC-based scheduling because we simply inject ex-
tra ordering edges as SDC data dependency constraints.

We compile atomic operations from the C11 standard with
Clang 3.5 into LLVM IR. From the LLVM IR we can extract
the atomicity of each memory operation, and the consistency
mode of each atomic operation, and use this information
to decide which ordering edges to inject into the scheduler.
We focus on atomic loads and atomic stores in this paper,
but our full implementation also includes fences [1]. We do
not consider atomic read-modify-write instructions (such as
compare-and-swap).

We propose three di↵erent strengthenings of LegUp’s ex-
isting MCM, E

mem

, which was discussed in §3.1.2. A naive
approach, which gives the strongest possible MCM, is to ad-
here to strict program order and forbid any parallel memory
access (§4.1). We also define an MCM that only imposes or-

dering on atomic memory accesses (§4.2) and a third MCM
that relaxes some ordering for weak atomics (§4.3).
To help visualise the scheduling implications of the various

MCMs, we provide a running example: a single thread that
loads from four di↵erent memory locations. The third load
is atomic with the acquire (ACQ) consistency mode; the rest
are non-atomic (na). Each schedule is obtained using ASAP
scheduling assuming an unlimited number of memory ports.

Cycle: 1 2
r0=w; ldna w

r1=x; ldna x

r2=y.ld(ACQ); ldACQ y

r3=z; ldna z

The schedule above shows our running example implemented
with LegUp’s current MCM. LegUp treats atomic operations
as regular memory operations and since these memory ac-
cesses do not alias, all four memory operations are free to
be scheduled simultaneously.

4.1 Preserving SC semantics
A naive solution for correct program behaviour is to seri-

alise all memory operations, regardless of any alias analysis.
This is achieved by redefining E

mem

as follows:

E

mem

= {(v, v0) 2 V

mem

⇥ V

mem

| sb(v, v0)}. (2)

E

mem

now includes every pair of memory operations (v, v0)
where v is sequenced before v

0. It overrides the memory
dependencies generated by LegUp’s existing MCM, E

LegUp

(§3.1.2)
The schedule of our running example in this MCM is

shown below.

Cycle: 1 2 3 4 5 6 7 8
r0=w; ldna w

r1=x; ldna x

r2=y.ld(ACQ); ldACQ y

r3=z; ldna z

Because of the serialisation, this schedule cannot utilise more
than one memory port for shared memory access. This stifles
any parallelism o↵ered by a multi-ported memory controller.

4.2 Exploring atomics
We now define an MCM that specifies ordering depen-

dencies only for the atomic operations within each thread,
V

at

✓ V

mem

. We treat all atomic operations as SC, regard-
less of the consistency mode specified in the program. To
do this, we augment LegUp’s original scheduling constraints
with those in E

at 9 and E

at 8 :

E

mem

= E

LegUp

[ E

at 9 [ E

at 8 (3)

where

E

at 9 = {(v0, v) 2 V

mem

⇥ V

mem

| sb(v0, v) ^ v 2 V

at

}

E

at 8 = {(v, v0) 2 V

mem

⇥ V

mem

| v 2 V

at

^ sb(v, v0)}.

E

at 9 specifies that for every atomic operation v and every
memory operation v

0 sequenced before v, there must exist
an ordering edge from v

0 to v. E

at 8 specifies that for ev-
ery atomic operation v and every memory operation v

0 se-
quenced after v, there must exist an ordering edge from v to
v

0. The combination of these two constraints and LegUp’s
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int x=0; atomic_int y=0;

x=1; r0=y.ld(ACQ);

y.st(1,REL); if(r0==1)

r1=x;

(a) a program

a: Wna x 1

b: WREL y 1

c: RACQ y 1

d: Rna x 0
rf

sb sb, cd

(b) a candidate trace

Figure 3: Example of C11 atomics.

traces (Figure 3b). We explain below why this particular
candidate trace is deemed inconsistent. The trace contains
four memory-related events (a, b, c, d), distributed between
two threads as shown by the dotted rectangles. The store
instructions give rise to write events (W) and the loads give
rise to reads (R). Each event is tagged with the location it
accesses (e.g., x or y), the value it reads or writes (e.g., 0 or
1), and whether it is non-atomic (na), atomic with consis-
tency mode release (REL), or atomic with consistency mode
acquire (ACQ). The sequenced before relation (sb) depicts the
order of the instructions in the program, while the cd rela-
tion represents the control-flow dependency induced by the
if-statement. The reads-from relation (rf ) records that, in
this particular trace, the read event c observes the 1 written
by the write event b, and that the read event d (which has
no incoming rf edge) observes the initial value, 0.

This trace is deemed inconsistent in C11 by the following
reasoning. The rf arrow between the release and the acquire
induces what is called ‘release/acquire synchronisation’ be-
tween the threads; we say that b happens-before c as a result.
Taken together with the two sb arrows, we can further de-
duce that a happens-before d. C11 prescribes that reads
must observe the most recent write in the happens-before
relation, but d, which observes x’s initial value, violates this
rule. Hence, the trace is disallowed.

4. METHOD
This section describes how we extend LegUp’s Pthread

flow [7] to support sequentially consistent (§4.2) and weakly
consistent (§4.3) atomics.

As we discussed in §3.1.2, LegUp’s MCM requires mu-
tual exclusion (locks) to ensure safe access to shared mem-
ory in a multi-threaded context. We propose strengthening
LegUp’s MCM so that multi-threaded programs can syn-
chronise using atomics rather than locks. We build on the
LegUp framework, as it o↵ers Pthread support and is open
source, but our method is generally applicable to HLS tools
that use SDC-based scheduling because we simply inject ex-
tra ordering edges as SDC data dependency constraints.

We compile atomic operations from the C11 standard with
Clang 3.5 into LLVM IR. From the LLVM IR we can extract
the atomicity of each memory operation, and the consistency
mode of each atomic operation, and use this information
to decide which ordering edges to inject into the scheduler.
We focus on atomic loads and atomic stores in this paper,
but our full implementation also includes fences [1]. We do
not consider atomic read-modify-write instructions (such as
compare-and-swap).

We propose three di↵erent strengthenings of LegUp’s ex-
isting MCM, E

mem

, which was discussed in §3.1.2. A naive
approach, which gives the strongest possible MCM, is to ad-
here to strict program order and forbid any parallel memory
access (§4.1). We also define an MCM that only imposes or-

dering on atomic memory accesses (§4.2) and a third MCM
that relaxes some ordering for weak atomics (§4.3).
To help visualise the scheduling implications of the various

MCMs, we provide a running example: a single thread that
loads from four di↵erent memory locations. The third load
is atomic with the acquire (ACQ) consistency mode; the rest
are non-atomic (na). Each schedule is obtained using ASAP
scheduling assuming an unlimited number of memory ports.

Cycle: 1 2
r0=w; ldna w

r1=x; ldna x

r2=y.ld(ACQ); ldACQ y

r3=z; ldna z

The schedule above shows our running example implemented
with LegUp’s current MCM. LegUp treats atomic operations
as regular memory operations and since these memory ac-
cesses do not alias, all four memory operations are free to
be scheduled simultaneously.

4.1 Preserving SC semantics
A naive solution for correct program behaviour is to seri-

alise all memory operations, regardless of any alias analysis.
This is achieved by redefining E

mem

as follows:

E

mem

= {(v, v0) 2 V

mem

⇥ V

mem

| sb(v, v0)}. (2)

E

mem

now includes every pair of memory operations (v, v0)
where v is sequenced before v

0. It overrides the memory
dependencies generated by LegUp’s existing MCM, E

LegUp

(§3.1.2)
The schedule of our running example in this MCM is

shown below.

Cycle: 1 2 3 4 5 6 7 8
r0=w; ldna w

r1=x; ldna x

r2=y.ld(ACQ); ldACQ y

r3=z; ldna z

Because of the serialisation, this schedule cannot utilise more
than one memory port for shared memory access. This stifles
any parallelism o↵ered by a multi-ported memory controller.

4.2 Exploring atomics
We now define an MCM that specifies ordering depen-

dencies only for the atomic operations within each thread,
V

at

✓ V

mem

. We treat all atomic operations as SC, regard-
less of the consistency mode specified in the program. To
do this, we augment LegUp’s original scheduling constraints
with those in E

at 9 and E

at 8 :

E

mem

= E

LegUp

[ E

at 9 [ E

at 8 (3)

where

E

at 9 = {(v0, v) 2 V

mem

⇥ V

mem

| sb(v0, v) ^ v 2 V

at

}

E

at 8 = {(v, v0) 2 V

mem

⇥ V

mem

| v 2 V

at

^ sb(v, v0)}.

E

at 9 specifies that for every atomic operation v and every
memory operation v

0 sequenced before v, there must exist
an ordering edge from v

0 to v. E

at 8 specifies that for ev-
ery atomic operation v and every memory operation v

0 se-
quenced after v, there must exist an ordering edge from v to
v

0. The combination of these two constraints and LegUp’s
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int x=0; atomic_int y=0;

x=1; r0=y.ld(ACQ);

y.st(1,REL); if(r0==1)

r1=x;

(a) a program

a: Wna x 1

b: WREL y 1

c: RACQ y 1

d: Rna x 0
rf

sb sb, cd

(b) a candidate trace

Figure 3: Example of C11 atomics.

traces (Figure 3b). We explain below why this particular
candidate trace is deemed inconsistent. The trace contains
four memory-related events (a, b, c, d), distributed between
two threads as shown by the dotted rectangles. The store
instructions give rise to write events (W) and the loads give
rise to reads (R). Each event is tagged with the location it
accesses (e.g., x or y), the value it reads or writes (e.g., 0 or
1), and whether it is non-atomic (na), atomic with consis-
tency mode release (REL), or atomic with consistency mode
acquire (ACQ). The sequenced before relation (sb) depicts the
order of the instructions in the program, while the cd rela-
tion represents the control-flow dependency induced by the
if-statement. The reads-from relation (rf ) records that, in
this particular trace, the read event c observes the 1 written
by the write event b, and that the read event d (which has
no incoming rf edge) observes the initial value, 0.

This trace is deemed inconsistent in C11 by the following
reasoning. The rf arrow between the release and the acquire
induces what is called ‘release/acquire synchronisation’ be-
tween the threads; we say that b happens-before c as a result.
Taken together with the two sb arrows, we can further de-
duce that a happens-before d. C11 prescribes that reads
must observe the most recent write in the happens-before
relation, but d, which observes x’s initial value, violates this
rule. Hence, the trace is disallowed.

4. METHOD
This section describes how we extend LegUp’s Pthread

flow [7] to support sequentially consistent (§4.2) and weakly
consistent (§4.3) atomics.

As we discussed in §3.1.2, LegUp’s MCM requires mu-
tual exclusion (locks) to ensure safe access to shared mem-
ory in a multi-threaded context. We propose strengthening
LegUp’s MCM so that multi-threaded programs can syn-
chronise using atomics rather than locks. We build on the
LegUp framework, as it o↵ers Pthread support and is open
source, but our method is generally applicable to HLS tools
that use SDC-based scheduling because we simply inject ex-
tra ordering edges as SDC data dependency constraints.

We compile atomic operations from the C11 standard with
Clang 3.5 into LLVM IR. From the LLVM IR we can extract
the atomicity of each memory operation, and the consistency
mode of each atomic operation, and use this information
to decide which ordering edges to inject into the scheduler.
We focus on atomic loads and atomic stores in this paper,
but our full implementation also includes fences [1]. We do
not consider atomic read-modify-write instructions (such as
compare-and-swap).

We propose three di↵erent strengthenings of LegUp’s ex-
isting MCM, E

mem

, which was discussed in §3.1.2. A naive
approach, which gives the strongest possible MCM, is to ad-
here to strict program order and forbid any parallel memory
access (§4.1). We also define an MCM that only imposes or-

dering on atomic memory accesses (§4.2) and a third MCM
that relaxes some ordering for weak atomics (§4.3).
To help visualise the scheduling implications of the various

MCMs, we provide a running example: a single thread that
loads from four di↵erent memory locations. The third load
is atomic with the acquire (ACQ) consistency mode; the rest
are non-atomic (na). Each schedule is obtained using ASAP
scheduling assuming an unlimited number of memory ports.

Cycle: 1 2
r0=w; ldna w

r1=x; ldna x

r2=y.ld(ACQ); ldACQ y

r3=z; ldna z

The schedule above shows our running example implemented
with LegUp’s current MCM. LegUp treats atomic operations
as regular memory operations and since these memory ac-
cesses do not alias, all four memory operations are free to
be scheduled simultaneously.

4.1 Preserving SC semantics
A naive solution for correct program behaviour is to seri-

alise all memory operations, regardless of any alias analysis.
This is achieved by redefining E

mem

as follows:

E

mem

= {(v, v0) 2 V

mem

⇥ V

mem

| sb(v, v0)}. (2)

E

mem

now includes every pair of memory operations (v, v0)
where v is sequenced before v

0. It overrides the memory
dependencies generated by LegUp’s existing MCM, E

LegUp

(§3.1.2)
The schedule of our running example in this MCM is

shown below.

Cycle: 1 2 3 4 5 6 7 8
r0=w; ldna w

r1=x; ldna x

r2=y.ld(ACQ); ldACQ y

r3=z; ldna z

Because of the serialisation, this schedule cannot utilise more
than one memory port for shared memory access. This stifles
any parallelism o↵ered by a multi-ported memory controller.

4.2 Exploring atomics
We now define an MCM that specifies ordering depen-

dencies only for the atomic operations within each thread,
V

at

✓ V

mem

. We treat all atomic operations as SC, regard-
less of the consistency mode specified in the program. To
do this, we augment LegUp’s original scheduling constraints
with those in E

at 9 and E

at 8 :

E

mem

= E

LegUp

[ E

at 9 [ E

at 8 (3)

where

E

at 9 = {(v0, v) 2 V

mem

⇥ V

mem

| sb(v0, v) ^ v 2 V

at

}

E

at 8 = {(v, v0) 2 V

mem

⇥ V

mem

| v 2 V

at

^ sb(v, v0)}.

E

at 9 specifies that for every atomic operation v and every
memory operation v

0 sequenced before v, there must exist
an ordering edge from v

0 to v. E

at 8 specifies that for ev-
ery atomic operation v and every memory operation v

0 se-
quenced after v, there must exist an ordering edge from v to
v

0. The combination of these two constraints and LegUp’s
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LegUp

allows us to define an MCM that sup-
ports SC atomics.

The schedule of our running example when implemented
in this MCM is shown below.

Cycle: 1 2 3 4 5 6
r0=w; ldna w

r1=x; ldna x

r2=y.ld(ACQ); ldACQ y

r0=z; ldna z

The atomic load of y is constrained to happen after the loads
of w and x (by E

at 9 ) but before the load of z (by E

at 8 ).
Even though the atomic load uses the acquire consistency
mode, this MCM treats it as a SC atomic load. The MCM
definition in (3) is generally less restrictive than the one in
(2) because ordering is only enforced with respect to atomics,
but in the worst case, it is equivalent to (2) when all memory
accesses are atomic (V

at

= V

mem

).

4.3 Exploiting weak atomics
In §4.2, we defined an MCM that treats all atomic opera-

tions as SC atomics. This approach is suboptimal whenever
any atomics have consistency modes that are weaker than
SC. In this subsection, we take advantage of the relaxations
allowed for these weak atomics by injecting fewer ordering
edges compared to SC atomics.

Let V

sc

, V

acq

, V

rel

, and V

rlx

be the sets of sequentially
consistent, acquire, release and relaxed atomics, such that
V

sc

[ V

acq

[ V

rel

[ V

rlx

= V

at

. We define a MCM that can
support weak atomics to be the union of LegUp’s existing
MCM, E

LegUp

, and the five sets of constraints given below:

E

mem

= E

LegUp

[ E

sc 8 [ E

sc 9 [ E

acq 8 [ E

rel 9 [ E

RAR

(4)

where

E

sc 8 = {(v, v0) 2 V

mem

⇥ V

mem

| v 2 V

sc

^ sb(v, v0)}

E

sc 9 = {(v0, v) 2 V

mem

⇥ V

mem

| sb(v0, v) ^ v 2 V

sc

}

E

acq 8 = {(v, v0) 2 V

mem

⇥ V

mem

| v 2 V

acq

^ sb(v, v0)}

E

rel 9 = {(v0, v) 2 V

mem

⇥ V

mem

| sb(v0, v) ^ v 2 V

rel

}

E

RAR

= {(v, v0) 2 V

mem

⇥ V

mem

| sb(v, v0) ^
v 2 V

at

\ V

ld

^ v

0
2 V

at

\ V

ld

^ sloc(v, v0)}.

We define five rules to implement an MCM that exploits
the performance benefits of weak atomics. E

sc 9 and E

sc 8
define the ordering dependencies for SC atomics, which are
similar to E

at 9 and E

at 8 from §4.2, except that they only ap-
ply to SC atomics rather than all atomics. E

acq 8 represents
the ordering edges for acquire atomics: for every memory op-
eration v

0 sequenced after an acquire atomic v, there must
exist an ordering edge from v to v

0. E
rel 9 represents the or-

dering edges for release atomics: for every memory operation
v

0 sequenced before a release atomic v, there must exist an
ordering edge from v

0 to v. E

RAR

enforces read-after-read
dependencies for all atomics: we inject an ordering edge from
v to v

0 whenever v is sequenced before v0 and both load from
the same memory location (sloc).

The schedule of our running example for this MCM is
shown below.

Cycle: 1 2 3 4
r0=w; ldna w

r1=x; ldna x

r2=y.ld(ACQ); ldACQ y

r3=z; ldna z

Event count: 3 4 5 6 7 8 9

1 sec.

1 min.

1 hour

1 day
1 week

S
ol
ve

ti
m
e

Figure 4: Solving time as the maximum number of

events increases (y-axis is logarithmic).

Since the load of y is an acquire atomic, it must be com-
pleted before the load of z (by E

acq 8 ), which is sequenced
after it. However, the memory operations sequenced before
the acquire load of y can be scheduled in parallel.

4.4 Ensuring correctness
Even though the scheduling constraints that we enforce

are relatively straightforward, it is still challenging to justify
that they are su�cient to rule out all executions deemed in-
consistent by C11’s MCM, because the specification of C11’s
MCM is so complex. Previous work has proved the correct-
ness of implementations of C11’s MCM both on CPUs [4]
and on GPUs [28], but such proofs are laborious and fragile,
and hence ill-suited to our prototype implementation.
Therefore, we turn to lightweight methods for verifying

correctness. We employ the Alloy model checker [18] both to
debug our implementation and to verify its correctness (up
to a bound on the size of programs). Wickerson et al. [29]
have previously used Alloy to check implementations of the
C11 and OpenCL MCMs for several CPU and GPU archi-
tectures. Here, we port their work from the conventional
processor domain to HLS.
Specifically, we use Alloy’s constraint-solving abilities to

search for a C11 trace T and a strict total order <T over the
events in T , such that

• T is disallowed by C11, but

• v <T v

0 holds for all (v, v0) 2 E

d

– that is, <T satisfies
all of the scheduling constraints given in §4.3.

The <T relation represents the order in which T ’s events
occur at run-time. The existence of such a trace implies
that the scheduling constraints need to be strengthened.
Figure 4 shows that Alloy’s execution time increases ex-

ponentially with the upper bound on the number of events.
The peformance figures were obtained on a machine with
four 16-core 2.1 GHz AMD Opteron processors and 128 GB
of RAM, and we used the Glucose SAT-solving backend. We
were able to verify up to a maximum of 9 events. Although
this bound appears small, many memory-related bugs can
be revealed using even smaller programs [22]. We also con-
firmed that LegUp’s original scheduling constraints are suf-
ficient to avoid memory-related bugs in a single-threaded
setting, again up to a 9-event bound.

5. EVALUATION
Thus far, our code examples have been relatively small,

and designed to convey the problems of weak behaviour and

6

int x=0; atomic_int y=0;

x=1; r0=y.ld(ACQ);

y.st(1,REL); if(r0==1)

r1=x;

(a) a program

a: Wna x 1

b: WREL y 1

c: RACQ y 1

d: Rna x 0
rf

sb sb, cd

(b) a candidate trace

Figure 3: Example of C11 atomics.

traces (Figure 3b). We explain below why this particular
candidate trace is deemed inconsistent. The trace contains
four memory-related events (a, b, c, d), distributed between
two threads as shown by the dotted rectangles. The store
instructions give rise to write events (W) and the loads give
rise to reads (R). Each event is tagged with the location it
accesses (e.g., x or y), the value it reads or writes (e.g., 0 or
1), and whether it is non-atomic (na), atomic with consis-
tency mode release (REL), or atomic with consistency mode
acquire (ACQ). The sequenced before relation (sb) depicts the
order of the instructions in the program, while the cd rela-
tion represents the control-flow dependency induced by the
if-statement. The reads-from relation (rf ) records that, in
this particular trace, the read event c observes the 1 written
by the write event b, and that the read event d (which has
no incoming rf edge) observes the initial value, 0.

This trace is deemed inconsistent in C11 by the following
reasoning. The rf arrow between the release and the acquire
induces what is called ‘release/acquire synchronisation’ be-
tween the threads; we say that b happens-before c as a result.
Taken together with the two sb arrows, we can further de-
duce that a happens-before d. C11 prescribes that reads
must observe the most recent write in the happens-before
relation, but d, which observes x’s initial value, violates this
rule. Hence, the trace is disallowed.

4. METHOD
This section describes how we extend LegUp’s Pthread

flow [7] to support sequentially consistent (§4.2) and weakly
consistent (§4.3) atomics.

As we discussed in §3.1.2, LegUp’s MCM requires mu-
tual exclusion (locks) to ensure safe access to shared mem-
ory in a multi-threaded context. We propose strengthening
LegUp’s MCM so that multi-threaded programs can syn-
chronise using atomics rather than locks. We build on the
LegUp framework, as it o↵ers Pthread support and is open
source, but our method is generally applicable to HLS tools
that use SDC-based scheduling because we simply inject ex-
tra ordering edges as SDC data dependency constraints.

We compile atomic operations from the C11 standard with
Clang 3.5 into LLVM IR. From the LLVM IR we can extract
the atomicity of each memory operation, and the consistency
mode of each atomic operation, and use this information
to decide which ordering edges to inject into the scheduler.
We focus on atomic loads and atomic stores in this paper,
but our full implementation also includes fences [1]. We do
not consider atomic read-modify-write instructions (such as
compare-and-swap).

We propose three di↵erent strengthenings of LegUp’s ex-
isting MCM, E

mem

, which was discussed in §3.1.2. A naive
approach, which gives the strongest possible MCM, is to ad-
here to strict program order and forbid any parallel memory
access (§4.1). We also define an MCM that only imposes or-

dering on atomic memory accesses (§4.2) and a third MCM
that relaxes some ordering for weak atomics (§4.3).
To help visualise the scheduling implications of the various

MCMs, we provide a running example: a single thread that
loads from four di↵erent memory locations. The third load
is atomic with the acquire (ACQ) consistency mode; the rest
are non-atomic (na). Each schedule is obtained using ASAP
scheduling assuming an unlimited number of memory ports.

Cycle: 1 2
r0=w; ldna w

r1=x; ldna x

r2=y.ld(ACQ); ldACQ y

r3=z; ldna z

The schedule above shows our running example implemented
with LegUp’s current MCM. LegUp treats atomic operations
as regular memory operations and since these memory ac-
cesses do not alias, all four memory operations are free to
be scheduled simultaneously.

4.1 Preserving SC semantics
A naive solution for correct program behaviour is to seri-

alise all memory operations, regardless of any alias analysis.
This is achieved by redefining E

mem

as follows:

E

mem

= {(v, v0) 2 V

mem

⇥ V

mem

| sb(v, v0)}. (2)

E

mem

now includes every pair of memory operations (v, v0)
where v is sequenced before v

0. It overrides the memory
dependencies generated by LegUp’s existing MCM, E

LegUp

(§3.1.2)
The schedule of our running example in this MCM is

shown below.

Cycle: 1 2 3 4 5 6 7 8
r0=w; ldna w

r1=x; ldna x

r2=y.ld(ACQ); ldACQ y

r3=z; ldna z

Because of the serialisation, this schedule cannot utilise more
than one memory port for shared memory access. This stifles
any parallelism o↵ered by a multi-ported memory controller.

4.2 Exploring atomics
We now define an MCM that specifies ordering depen-

dencies only for the atomic operations within each thread,
V

at

✓ V

mem

. We treat all atomic operations as SC, regard-
less of the consistency mode specified in the program. To
do this, we augment LegUp’s original scheduling constraints
with those in E

at 9 and E

at 8 :

E

mem

= E

LegUp

[ E

at 9 [ E

at 8 (3)

where

E

at 9 = {(v0, v) 2 V

mem

⇥ V

mem

| sb(v0, v) ^ v 2 V

at

}

E

at 8 = {(v, v0) 2 V

mem

⇥ V

mem

| v 2 V

at

^ sb(v, v0)}.

E

at 9 specifies that for every atomic operation v and every
memory operation v

0 sequenced before v, there must exist
an ordering edge from v

0 to v. E

at 8 specifies that for ev-
ery atomic operation v and every memory operation v

0 se-
quenced after v, there must exist an ordering edge from v to
v

0. The combination of these two constraints and LegUp’s
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existing MCM E

LegUp

allows us to define an MCM that sup-
ports SC atomics.

The schedule of our running example when implemented
in this MCM is shown below.

Cycle: 1 2 3 4 5 6
r0=w; ldna w

r1=x; ldna x

r2=y.ld(ACQ); ldACQ y

r0=z; ldna z

The atomic load of y is constrained to happen after the loads
of w and x (by E

at 9 ) but before the load of z (by E

at 8 ).
Even though the atomic load uses the acquire consistency
mode, this MCM treats it as a SC atomic load. The MCM
definition in (3) is generally less restrictive than the one in
(2) because ordering is only enforced with respect to atomics,
but in the worst case, it is equivalent to (2) when all memory
accesses are atomic (V

at

= V

mem

).

4.3 Exploiting weak atomics
In §4.2, we defined an MCM that treats all atomic opera-

tions as SC atomics. This approach is suboptimal whenever
any atomics have consistency modes that are weaker than
SC. In this subsection, we take advantage of the relaxations
allowed for these weak atomics by injecting fewer ordering
edges compared to SC atomics.

Let V

sc

, V

acq

, V

rel

, and V

rlx

be the sets of sequentially
consistent, acquire, release and relaxed atomics, such that
V

sc

[ V

acq

[ V

rel

[ V

rlx

= V

at

. We define a MCM that can
support weak atomics to be the union of LegUp’s existing
MCM, E

LegUp

, and the five sets of constraints given below:

E

mem

= E

LegUp

[ E

sc 8 [ E

sc 9 [ E

acq 8 [ E

rel 9 [ E

RAR

(4)

where

E

sc 8 = {(v, v0) 2 V

mem

⇥ V

mem

| v 2 V

sc

^ sb(v, v0)}

E

sc 9 = {(v0, v) 2 V

mem

⇥ V

mem

| sb(v0, v) ^ v 2 V

sc

}

E

acq 8 = {(v, v0) 2 V

mem

⇥ V

mem

| v 2 V

acq

^ sb(v, v0)}

E

rel 9 = {(v0, v) 2 V

mem

⇥ V

mem

| sb(v0, v) ^ v 2 V

rel

}

E

RAR

= {(v, v0) 2 V

mem

⇥ V

mem

| sb(v, v0) ^
v 2 V

at

\ V

ld

^ v

0
2 V

at

\ V

ld

^ sloc(v, v0)}.

We define five rules to implement an MCM that exploits
the performance benefits of weak atomics. E

sc 9 and E

sc 8
define the ordering dependencies for SC atomics, which are
similar to E

at 9 and E

at 8 from §4.2, except that they only ap-
ply to SC atomics rather than all atomics. E

acq 8 represents
the ordering edges for acquire atomics: for every memory op-
eration v

0 sequenced after an acquire atomic v, there must
exist an ordering edge from v to v

0. E
rel 9 represents the or-

dering edges for release atomics: for every memory operation
v

0 sequenced before a release atomic v, there must exist an
ordering edge from v

0 to v. E

RAR

enforces read-after-read
dependencies for all atomics: we inject an ordering edge from
v to v

0 whenever v is sequenced before v0 and both load from
the same memory location (sloc).

The schedule of our running example for this MCM is
shown below.

Cycle: 1 2 3 4
r0=w; ldna w

r1=x; ldna x

r2=y.ld(ACQ); ldACQ y

r3=z; ldna z

Event count: 3 4 5 6 7 8 9

1 sec.

1 min.

1 hour

1 day
1 week

S
ol
ve

ti
m
e

Figure 4: Solving time as the maximum number of

events increases (y-axis is logarithmic).

Since the load of y is an acquire atomic, it must be com-
pleted before the load of z (by E

acq 8 ), which is sequenced
after it. However, the memory operations sequenced before
the acquire load of y can be scheduled in parallel.

4.4 Ensuring correctness
Even though the scheduling constraints that we enforce

are relatively straightforward, it is still challenging to justify
that they are su�cient to rule out all executions deemed in-
consistent by C11’s MCM, because the specification of C11’s
MCM is so complex. Previous work has proved the correct-
ness of implementations of C11’s MCM both on CPUs [4]
and on GPUs [28], but such proofs are laborious and fragile,
and hence ill-suited to our prototype implementation.
Therefore, we turn to lightweight methods for verifying

correctness. We employ the Alloy model checker [18] both to
debug our implementation and to verify its correctness (up
to a bound on the size of programs). Wickerson et al. [29]
have previously used Alloy to check implementations of the
C11 and OpenCL MCMs for several CPU and GPU archi-
tectures. Here, we port their work from the conventional
processor domain to HLS.
Specifically, we use Alloy’s constraint-solving abilities to

search for a C11 trace T and a strict total order <T over the
events in T , such that

• T is disallowed by C11, but

• v <T v

0 holds for all (v, v0) 2 E

d

– that is, <T satisfies
all of the scheduling constraints given in §4.3.

The <T relation represents the order in which T ’s events
occur at run-time. The existence of such a trace implies
that the scheduling constraints need to be strengthened.
Figure 4 shows that Alloy’s execution time increases ex-

ponentially with the upper bound on the number of events.
The peformance figures were obtained on a machine with
four 16-core 2.1 GHz AMD Opteron processors and 128 GB
of RAM, and we used the Glucose SAT-solving backend. We
were able to verify up to a maximum of 9 events. Although
this bound appears small, many memory-related bugs can
be revealed using even smaller programs [22]. We also con-
firmed that LegUp’s original scheduling constraints are suf-
ficient to avoid memory-related bugs in a single-threaded
setting, again up to a 9-event bound.

5. EVALUATION
Thus far, our code examples have been relatively small,

and designed to convey the problems of weak behaviour and

6

• Weak-atomics: acquires cannot move down; 
releases cannot move up; SCs cannot move at all
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• We used the Alloy Analyzer to check that there is 
no execution (with ≤9 memory events) that: 

• is allowed by our scheduling constraints, but  

• is inconsistent according to the C memory 
model.
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Abstract
A memory consistency model (MCM) is the part of a programming

language or computer architecture specification that defines which

values can legally be read from shared memory locations. Because

MCMs take into account various optimisations employed by archi-

tectures and compilers, they are often complex and counterintu-

itive, which makes them challenging to design and to understand.

We identify four tasks involved in designing and understanding

MCMs: generating conformance tests, distinguishing two MCMs,

checking compiler optimisations, and checking compiler map-

pings. We show that all four tasks are instances of a general

constraint-satisfaction problem to which the solution is either a pro-

gram or a pair of programs. Although this problem is intractable for

automatic solvers when phrased over programs directly, we show

how to solve analogous constraints over program executions, and

then construct programs that satisfy the original constraints.

Our technique, which is implemented in the Alloy modelling

framework, is illustrated on several software- and architecture-level

MCMs, both axiomatically and operationally defined. We automat-

ically recreate several known results, often in a simpler form, in-

cluding: distinctions between variants of the C11 MCM; a fail-

ure of the ‘SC-DRF guarantee’ in an early C11 draft; that x86 is

‘multi-copy atomic’ and Power is not; bugs in common C11 com-

piler optimisations; and bugs in a compiler mapping from OpenCL

to AMD-style GPUs. We also use our technique to develop and

validate a new MCM for NVIDIA GPUs that supports a natural

mapping from OpenCL.

Categories and Subject Descriptors C.1.4 [Processor Archi-

tectures]: Parallel processors; D.3.4 [Programming Languages]:

Compilers; F.3.2 [Logics and Meanings of Programs]: Semantics

of Programming Languages

Keywords C/C++, constraint solving, graphics processor (GPU),

model checking, OpenCL, program synthesis, shared memory con-

currency, weak memory models

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction

In the specification of a concurrent programming language or a par-

allel architecture, the memory consistency model (MCM) defines

which values can legally be read from shared memory locations [4].

MCMs have to be general enough to enable portability, but specific

enough to enable efficient implementations. They must also admit

optimisations employed by architectures (such as store buffering

and instruction reordering [30]) and by compilers (such as com-

mon subexpression elimination and constant propagation [7]). This

profusion of design goals has led to MCMs for languages (such as

C11 [38] and OpenCL 2.0 [42]), for CPU architectures (such as

x86, ARM, and IBM Power), and for GPU architectures (such as

AMD and NVIDIA), that are complicated and counterintuitive. In

particular, all of these MCMs permit executions that are not sequen-

tially consistent (SC), which means that they do not correspond to

a simple interleaving of concurrent instructions [45]. As a result,

designing and reasoning about MCMs is extremely challenging.

Responding to this challenge, researchers have built numerous

automatic tools (see §8). These typically address the question of

whether a program P

, executed under an MCM M

, can reach the

final state �. Put another way: can the litmus test (P ,�) pass under

M

? While useful, there are several other questions whose answers

are valuable for MCM reasoning and development. Four that have

appeared frequently in the literature are:

Q1 Which programs can be run to test whether a compiler or

machine conforms to a given MCM? [11, 24]

Q2 Is one MCM more permissive than another? That is, is there

a litmus test that can pass under one but must fail under the

other? [11, 14, 43, 48, 50, 58, 63]

Q3 Can ‘strengthening’ a program (syntactically) ever enable ad-

ditional behaviours? For instance, can we take a litmus test that

must fail, impose additional sequencing or dependencies be-

tween its instructions (or, in the C11 case, give an atomic op-

eration a stronger ‘memory order’ [38 (§7.17.3)]), and thereby

allow it to pass? [21, 22, 55, 77, 79, 80]

Q4 Is a given software/architecture compiler mapping correct?

Or is there a litmus test that must fail under the software-

level MCM, but which, when compiled, can pass under the

architecture-level MCM? [15, 16, 46, 47, 81, 82]

1.1 Key Idea 1: Generalising the Question

Our first key idea is the observation that all four of the questions

listed above can be answered, sometimes positively and sometimes

negatively, by exhibiting programs P and Q

and state � such that

the litmus test (P ,�) must fail under a given MCM M

, P and Q

1
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Case study: circular FIFO
atomic_int tail=0; head=0;

int arr[SIZE]; res[MSGS];

1.1 while(prod<MSGS) { while(cons<MSGS) { 2.1

1.2 chead = head.ld(ACQ); ctail = tail.ld(ACQ); 2.2

1.3 ctail = tail.ld(RLX); chead = head.ld(RLX); 2.3

1.4 ntail = (ctail+1)%SIZE; nhead = (chead+1)%SIZE; 2.4

1.5 if(ntail != chead){ if(ctail != chead){ 2.5

1.6 arr[ctail] = prod res[cons] = arr[chead]; 2.6

1.7 tail.st(ntail,REL); head.st(nhead,REL); 2.7

1.8 prod++; cons++; 2.8

1.9 } } 2.9

1.10 } } 2.10

Figure 5: Acquire-Release semantics.

head

tail

The head and tail pointers
advance counterclockwise.

Figure 6: The circular bu↵er, diagrammatically.

demonstrate the potential of strengthening MCMs to imple-
ment atomics. In our evaluation, we investigate the perfor-
mance of SC atomics and weak atomics on a real-world ex-
ample: a lock-free single-producer-single-consumer (SPSC)
circular bu↵er due to Hedström [15]. Data structures sim-
ilar to this circular bu↵er are used in many real-time and
memory-sensitive systems, and also appear in the Boost
C++ library and the Linux kernel [5].

5.1 Case Study: SPSC Circular Buffer
Figure 5 shows the C-like code of a producer (on the left)

and consumer (on the right) communicating via a circular
bu↵er that is visualised in Figure 6. The bu↵er consists of
atomic head and tail pointers, a bu↵er array (arr) and
a result array (res). The producer only adds tasks and
the consumer only removes tasks, as reflected by the store
to arr (line 1.6) and the load from arr (line 2.6). The
producer and consumer first check that the bu↵er is not full
(line 1.5) and not empty (line 2.5), respectively. Finally, the
producer and consumer update the tail (line 1.7) and head

(line 2.7) pointers respectively with their next values. These
next tail (line 1.4) and head (line 2.4) values are computed
by a modular increment of SIZE to create a counterclockwise
update, as depicted in Figure 6. We fix the bu↵er size (SIZE)
at 64 and the number of messages transmitted (MSGS) to be
256. In addition, each atomic load (ld()) and atomic store
(st()) is assigned a weak consistency mode: either ACQ for
acquire, REL for release, or RLX for relaxed.

Ensuring correctness.
Hedström explains in detail why each memory access does

not require full SC [15]. Roughly speaking, the non-atomic
stores to arr (by the producer in line 1.6) do not race with
the non-atomic loads of arr (by the consumer in line 2.6)
because they are always separated by a release/acquire pair
on the tail or the head pointer. These pairs ensure correct
message-passing behaviour. The tail pair (lines 1.7 and 2.2)
ensures that the consumer always reads from the latest write
of the producer. Similarly, the head pair (lines 2.7 and 1.2)
ensures that the consumer completes the read from arr be-
fore the producer writes to arr again.
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Figure 7: Architecture diagram.

Ensuring the correctness of any concurrent program in a
weakly consistent setting is di�cult because of the counter-
intuitive behaviours allowed by a weak MCM, and testing
is inconclusive because implementations of weakly consis-
tent operations vary significantly between architectures. As
such, to gain additional confidence in the correctness of this
code, we turn to automatic verification. We use the Cpp-
Mem tool [4] to confirm that the accesses of the shared non-
atomic variable do not cause a race. Because CppMem does
not support arrays, we replace arr with a scalar variable,
and because CppMem’s performance degrades rapidly with
the number of events, we remove the while-loops. We give
the actual code we verified online [1]. CppMem’s result is
of course weakened by the inclusion of these simplifications,
but taken together with the informal argument for correct-
ness given by Hedström, we obtain a reasonable degree of
confidence in the program’s correctness.

Implementation.
We map our bu↵er application to hardware via LegUp’s

pure hardware flow. We place-and-route our designs on
a Xilinx Zynq 7000 (XC7Z020) with 53200 Look-up Ta-
bles (LUTs), 106400 registers, and 36 KB of block RAMs.
Figure 7 shows the generated architecture. We synthesise
each Pthread as a hardware accelerator, with global mem-
ory implemented on the FPGA either as registers or block
RAMs. We accesses memory-mapped control registers from
the ARM processor via an AXI slave connection, which we
use to execute the accelerator system and extract both the
verified results and the cycle counts from an on-board hard-
ware timer. Shared memory access is protected by a mem-
ory controller. Although each thread has simultaneous dual-
ported access to global memory, the memory controller can
only perform two memory operations at a time. An arbiter
ensures that only one thread is given access (to both ports)
at a time. Also, LegUp’s hardware locks are connected to the
same memory controller via custom synchronisation logic.

5.2 Experiment Setup
We investigate the circular bu↵er on seven di↵erent design

variations (as shown in Table 1): an unsound version, three
lock-based versions, and three lock-free versions. Four of the
seven are implemented with LegUp’s pre-existing MCM and
three are implemented with the MCMs discussed in §4.
The first version, Unsound, uses neither atomics nor locks.

Although the results obtained from this implementation were
verified to be correct experimentally, its correctness is coin-
cidental and fragile. Small changes to the code, similar to
those discussed in §2, could lead to incorrect results. We
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atomic_int tail=0; head=0;

int arr[SIZE]; res[MSGS];

1.1 while(prod<MSGS) { while(cons<MSGS) { 2.1

1.2 chead = head.ld(ACQ); ctail = tail.ld(ACQ); 2.2

1.3 ctail = tail.ld(RLX); chead = head.ld(RLX); 2.3

1.4 ntail = (ctail+1)%SIZE; nhead = (chead+1)%SIZE; 2.4

1.5 if(ntail != chead){ if(ctail != chead){ 2.5

1.6 arr[ctail] = prod res[cons] = arr[chead]; 2.6

1.7 tail.st(ntail,REL); head.st(nhead,REL); 2.7

1.8 prod++; cons++; 2.8

1.9 } } 2.9

1.10 } } 2.10

Figure 5: Acquire-Release semantics.
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Figure 6: The circular bu↵er, diagrammatically.

demonstrate the potential of strengthening MCMs to imple-
ment atomics. In our evaluation, we investigate the perfor-
mance of SC atomics and weak atomics on a real-world ex-
ample: a lock-free single-producer-single-consumer (SPSC)
circular bu↵er due to Hedström [15]. Data structures sim-
ilar to this circular bu↵er are used in many real-time and
memory-sensitive systems, and also appear in the Boost
C++ library and the Linux kernel [5].

5.1 Case Study: SPSC Circular Buffer
Figure 5 shows the C-like code of a producer (on the left)

and consumer (on the right) communicating via a circular
bu↵er that is visualised in Figure 6. The bu↵er consists of
atomic head and tail pointers, a bu↵er array (arr) and
a result array (res). The producer only adds tasks and
the consumer only removes tasks, as reflected by the store
to arr (line 1.6) and the load from arr (line 2.6). The
producer and consumer first check that the bu↵er is not full
(line 1.5) and not empty (line 2.5), respectively. Finally, the
producer and consumer update the tail (line 1.7) and head

(line 2.7) pointers respectively with their next values. These
next tail (line 1.4) and head (line 2.4) values are computed
by a modular increment of SIZE to create a counterclockwise
update, as depicted in Figure 6. We fix the bu↵er size (SIZE)
at 64 and the number of messages transmitted (MSGS) to be
256. In addition, each atomic load (ld()) and atomic store
(st()) is assigned a weak consistency mode: either ACQ for
acquire, REL for release, or RLX for relaxed.

Ensuring correctness.
Hedström explains in detail why each memory access does

not require full SC [15]. Roughly speaking, the non-atomic
stores to arr (by the producer in line 1.6) do not race with
the non-atomic loads of arr (by the consumer in line 2.6)
because they are always separated by a release/acquire pair
on the tail or the head pointer. These pairs ensure correct
message-passing behaviour. The tail pair (lines 1.7 and 2.2)
ensures that the consumer always reads from the latest write
of the producer. Similarly, the head pair (lines 2.7 and 1.2)
ensures that the consumer completes the read from arr be-
fore the producer writes to arr again.
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Ensuring the correctness of any concurrent program in a
weakly consistent setting is di�cult because of the counter-
intuitive behaviours allowed by a weak MCM, and testing
is inconclusive because implementations of weakly consis-
tent operations vary significantly between architectures. As
such, to gain additional confidence in the correctness of this
code, we turn to automatic verification. We use the Cpp-
Mem tool [4] to confirm that the accesses of the shared non-
atomic variable do not cause a race. Because CppMem does
not support arrays, we replace arr with a scalar variable,
and because CppMem’s performance degrades rapidly with
the number of events, we remove the while-loops. We give
the actual code we verified online [1]. CppMem’s result is
of course weakened by the inclusion of these simplifications,
but taken together with the informal argument for correct-
ness given by Hedström, we obtain a reasonable degree of
confidence in the program’s correctness.

Implementation.
We map our bu↵er application to hardware via LegUp’s

pure hardware flow. We place-and-route our designs on
a Xilinx Zynq 7000 (XC7Z020) with 53200 Look-up Ta-
bles (LUTs), 106400 registers, and 36 KB of block RAMs.
Figure 7 shows the generated architecture. We synthesise
each Pthread as a hardware accelerator, with global mem-
ory implemented on the FPGA either as registers or block
RAMs. We accesses memory-mapped control registers from
the ARM processor via an AXI slave connection, which we
use to execute the accelerator system and extract both the
verified results and the cycle counts from an on-board hard-
ware timer. Shared memory access is protected by a mem-
ory controller. Although each thread has simultaneous dual-
ported access to global memory, the memory controller can
only perform two memory operations at a time. An arbiter
ensures that only one thread is given access (to both ports)
at a time. Also, LegUp’s hardware locks are connected to the
same memory controller via custom synchronisation logic.

5.2 Experiment Setup
We investigate the circular bu↵er on seven di↵erent design

variations (as shown in Table 1): an unsound version, three
lock-based versions, and three lock-free versions. Four of the
seven are implemented with LegUp’s pre-existing MCM and
three are implemented with the MCMs discussed in §4.
The first version, Unsound, uses neither atomics nor locks.

Although the results obtained from this implementation were
verified to be correct experimentally, its correctness is coin-
cidental and fragile. Small changes to the code, similar to
those discussed in §2, could lead to incorrect results. We
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Figure 9: Throughput for the chaining experiment (left) and the bursting experiment (right).
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Figure 10: LUT utilisation for the chaining experiment (left) and the bursting experiment (right)

tion with the increase in threads and elements per transac-
tion across all design points. At maximum LUT utilisation,
we fill 22% of the FPGA fabric. OMP-criticals and Mutexes
have the highest LUT utilisation. This can be attributed to
both of these implementations requiring the synchronisation
controller and hardware locks. SC and SC atomics have the
smallest LUT utilisations, which can be attributed to them
using only one memory port per thread due to serialisation
(information we extract from LegUp’s binding reports).

In the chaining experiment, we see that both the Un-
sound and the Weak atomics implementations use two mem-
ory ports per thread, resulting in their LUT utilisations be-
ing similar. For OMP-atomics, LUT utilisation lies between
the SC and the Mutexes implementations. This may be be-
cause OMP-atomics requires the synchronisation controller
and hardware locks (like Mutexes) but only uses one mem-
ory port per thread (like SC).

As we introduce more non-atomic memory accesses in the
bursting experiment, some implementations can parallelise

their intra-thread memory accesses and hence exploit the
second memory port provided by LegUp. This can explain
the rise in LUT utilisation that is particularly noticeable for
SC atomics and OMP-atomics.

6. CONCLUSION
This work has investigated how to implement lock-free al-

gorithms on FPGAs using HLS. Our case study suggests
that careful reasoning about memory consistency, as op-
posed to relying on locks, allows us to recover most of the
performance of unsound implementations, while guarantee-
ing correctness. Even our worst-case lock-free implemen-
tation (SC in Table 1) is on average 2.5x faster than our
best-case lock-based implementation (Mutexes). We have
also shown that weakly consistent atomics have a smaller
performance overhead than sequentially consistent atomics.
We hope our work will stimulate further support in HLS

tools for fine-grained synchronisation in multi-threaded C
programs, and raise awareness of the possibility of synthesis-
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tion with the increase in threads and elements per transac-
tion across all design points. At maximum LUT utilisation,
we fill 22% of the FPGA fabric. OMP-criticals and Mutexes
have the highest LUT utilisation. This can be attributed to
both of these implementations requiring the synchronisation
controller and hardware locks. SC and SC atomics have the
smallest LUT utilisations, which can be attributed to them
using only one memory port per thread due to serialisation
(information we extract from LegUp’s binding reports).

In the chaining experiment, we see that both the Un-
sound and the Weak atomics implementations use two mem-
ory ports per thread, resulting in their LUT utilisations be-
ing similar. For OMP-atomics, LUT utilisation lies between
the SC and the Mutexes implementations. This may be be-
cause OMP-atomics requires the synchronisation controller
and hardware locks (like Mutexes) but only uses one mem-
ory port per thread (like SC).

As we introduce more non-atomic memory accesses in the
bursting experiment, some implementations can parallelise

their intra-thread memory accesses and hence exploit the
second memory port provided by LegUp. This can explain
the rise in LUT utilisation that is particularly noticeable for
SC atomics and OMP-atomics.

6. CONCLUSION
This work has investigated how to implement lock-free al-

gorithms on FPGAs using HLS. Our case study suggests
that careful reasoning about memory consistency, as op-
posed to relying on locks, allows us to recover most of the
performance of unsound implementations, while guarantee-
ing correctness. Even our worst-case lock-free implemen-
tation (SC in Table 1) is on average 2.5x faster than our
best-case lock-based implementation (Mutexes). We have
also shown that weakly consistent atomics have a smaller
performance overhead than sequentially consistent atomics.
We hope our work will stimulate further support in HLS

tools for fine-grained synchronisation in multi-threaded C
programs, and raise awareness of the possibility of synthesis-
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Conclusion
• First implementation of weak atomics in a hardware 

synthesis tool 

• Implementing atomics using scheduling constraints 
seems more efficient than using locks 

• Limitations: no support for RMW operations; small 
and artificial benchmarks; only on-chip memory 

• Next steps: add support for loop pipelining
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