
Remote-Scope Promotion:
clari

fied rectified
verified

Pittsburgh, 30 October 2015OOPSLA

John Wickerson
Imperial !

Mark Batty
Kent !

Brad Beckmann
AMD "

Ally Donaldson
Imperial !

In brief
• Remote-scope promotion is a GPU programming

extension from AMD for efficient work-stealing

In brief
• Remote-scope promotion is a GPU programming

extension from AMD for efficient work-stealing

• We formalised the design (at SW and HW level).
This led to a corrected and improved
implementation.

In brief
• Remote-scope promotion is a GPU programming

extension from AMD for efficient work-stealing

• We formalised the design (at SW and HW level).
This led to a corrected and improved
implementation.

• Formalise  
early in the  
design process!

This talk

1. Background: What is RSP?

2. Adding RSP to the OpenCL memory model

3. A formalised implementation of OpenCL+RSP

This talk

1. Background: What is RSP?

2. Adding RSP to the OpenCL memory model

3. A formalised implementation of OpenCL+RSP

C11: flat thread structure

T0 T1 T2 T3 T4 T5

OpenCL: thread groupings

T0 T1 T2 T3 T4 T5

workgroup workgroup workgroup
device device

GPUs: hierarchical memory

T0 T1 T2 T3 T4 T5

GLOBAL MEMORY

L2 CACHE

L1 CACHE L1 CACHE

L2 CACHE

L1 CACHE

workgroup workgroup workgroup
device device

Memory scopes

Memory scopes

T0 T1 T2 T3

workgroup workgroup

Memory scopes

T0 T1 T2 T3

store(x,42)

workgroup workgroup

Memory scopes

T0 T1 T2 T3

store(x,42)
load(x)

workgroup workgroup

Memory scopes

T0 T1 T2 T3

store(x,42,WG)
load(x,WG)

workgroup workgroup

Memory scopes

T0 T1 T2 T3

store(x,42,WG)
load(x,WG)

workgroup workgroup

Memory scopes

T0 T1 T2 T3

store(x,42,WG)
load(x,WG)

workgroup workgroup

fault
y!

Memory scopes

T0 T1 T2 T3

store(x,42,DV)
load(x,DV)

workgroup workgroup

Memory scopes

T0 T1 T2 T3

store(x,42,DV)
load(x,DV)

workgroup workgroup

ok!

Example: work-stealing

workgroup A workgroup B

Example: work-stealing

T0 T1 T2 T3

tailA headA tailB headB

workgroup A workgroup B

Example: work-stealing

T0 T1 T2 T3

tailA headA tailB headB

store(headA,_,WG) //pop

workgroup A workgroup B

Example: work-stealing

T0 T1 T2 T3

tailA headA tailB headB

store(headA,_,WG) //pop

store(headA,_,WG) //push

workgroup A workgroup B

Example: work-stealing

T0 T1 T2 T3

tailA headA

store(headA,_,WG) //pop

store(headA,_,WG) //push

tailB
headB

workgroup A workgroup B

Example: work-stealing

T0 T1 T2 T3

tailA headA

store(headA,_,WG) //pop

store(headA,_,WG) //push

load(headA,_,???) //steal

tailB
headB

workgroup A workgroup B

Example: work-stealing

T0 T1 T2 T3

tailA headA

store(headA,_,WG) //pop

store(headA,_,WG) //push

load(headA,_,???) //steal

tailB
headB

no wa
y to

plug
this

hole
in

OpenC
L!

Remote-scope promotion

T0 T1 T2 T3

store(x,42,WG) load(x,DV)

Remote-scope promotion

T0 T1 T2 T3

store(x,42,DV) load(x,DV)

Remote-scope promotion

T0 T1 T2 T3

store(x,42,WG) load(x,DV,remote)

Remote-scope promotion

T0 T1 T2 T3

store(x,42,DV,remote) load(x,WG)

workgroup A workgroup B

Work-stealing

T0 T1 T2 T3

tailA headA

store(headA,_,WG) //pop

store(headA,_,WG) //push

store(headA,_,DV,remote) //steal

tailB
headB

This talk

1. Background: What is RSP?

2. Adding RSP to the OpenCL memory model

3. A formalised implementation of OpenCL+RSP

Scope inclusion  
in OpenCL

Scope inclusion  
in OpenCL

• Operations A and B only synchronise if they have inclusive
scopes.

Scope inclusion  
in OpenCL

• Operations A and B only synchronise if they have inclusive
scopes.

• A and B have inclusive scopes iff  
A reaches B and B reaches A. 
 

Scope inclusion  
in OpenCL

• Operations A and B only synchronise if they have inclusive
scopes.

• A and B have inclusive scopes iff  
A reaches B and B reaches A. 
 

• A reaches B iff  
A has workgroup scope and B is in the same workgroup, or  
A has device scope and B is in the same device, or 
A has all-devices scope.

Scope inclusion  
in OpenCL+RSP

• Operations A and B only synchronise if they have inclusive
scopes.

• A and B have inclusive scopes iff  
A reaches B and B reaches A, or 
A reaches B and B is remote, or 
A is remote and B reaches A.

• A reaches B iff  
A has workgroup scope and B is in the same workgroup, or  
A has device scope and B is in the same device, or 
A has all-devices scope.

Testing OpenCL+RSP
programs

Testing OpenCL+RSP
programs

• We simulated the 12 litmus tests designed by the
original developers to define their expectations of
RSP.  
 
 
 
 
 
 

Testing OpenCL+RSP
programs

• We simulated the 12 litmus tests designed by the
original developers to define their expectations of
RSP.

• We found 8 were good, but:  
 2 had unintentional races,  
 1 enforced broken behaviour, and  
 1 forbade reasonable behaviour.

Testing OpenCL+RSP
programs

• We simulated the 12 litmus tests designed by the
original developers to define their expectations of
RSP.

• We found 8 were good, but:  
 2 had unintentional races,  
 1 enforced broken behaviour, and  
 1 forbade reasonable behaviour.

• We also found (and fixed) bugs in their work-
stealing queue implementation

This talk

1. Background: What is RSP?

2. Adding RSP to the OpenCL memory model

3. A formalised implementation of OpenCL+RSP

Implementing RSP

Implementing RSP
• Model of GPU hardware

Implementing RSP
• Model of GPU hardware

• Assembly-like language

Implementing RSP
• Model of GPU hardware

• Assembly-like language

• Compiler mapping from OpenCL+RSP operations
to sequences of assembly instructions

Implementing RSP
• Model of GPU hardware

• Assembly-like language

• Compiler mapping from OpenCL+RSP operations
to sequences of assembly instructions

• Can then prove that all behaviours of the compiled
program are allowed by the OpenCL+RSP memory
model.

Model of GPU hardware
x 2 Addr
r 2 Reg

v 2 Val
def
= Z

FifoEl
def
= Addr [{FLUSHdw t | d, w, t 2 N}

Fifo
def
= FifoEl queue

Hygiene
def
= {CLEAN, DIRTY}

Freshness
def
= {VALID, INV’D}

CacheEntry
def
= Val ⇥ (hy:Hygiene)⇥ (fr:Freshness)

C 2 Cache
def
= (Addr * CacheEntry)⇥ (fifo:Fifo)

Lock
def
= { , }

ThState
def
= Reg ! Val

WgState
def
= ThState list⇥ (L1:Cache)⇥ (rmw:Lock)

DvState
def
= WgState list⇥ (L2:Cache)⇥

(lockfile:Addr ! Lock)

Global
def
= Addr * Val

⌃ 2 SyState
def
= DvState list⇥ (gl:Global)

Figure 3. Machine states

R
eg

V
a
l

ThState

rmw:Lock

A
d
d
r

V
a
l

H
yg
ie
n
e

F
re
sh
n
es
s

L1:Cache

Fifo

WgState

A
d
d
r

V
a
l

H
yg
ie
n
e

F
re
sh
n
es
s

L2:Cache

Fifo

Addr Lock

DvState

SyState

A
d
d
r

V
a
l

Global

Figure 4. A machine state ⌃, pictorially

hygiene bit (CLEAN or DIRTY) and a freshness bit (VALID
or INV’D). The synchronisation fifo is a hardware compo-
nent introduced as part of AMD’s QuickRelease technol-
ogy [10]. It contains a queue of addresses that may need to
be flushed to the lower levels of the cache; by inserting flush
markers (FLUSH) among the addresses, tagged with their
own device/work-group/thread identifier, threads can ascer-
tain which addresses have been flushed. We assume that the
queue datatype supports in-place enqueue() and dequeue()

methods, and exposes a tail field.

Notation We write ⌃d for the state of device d, ⌃dw for
the state of work-group w in that device, and ⌃dwt for the
state of thread t in that work-group. When we pass an Addr
x to a Cache C, writing C(x), we are implicitly looking up
x in the first component of C.

5.2 Assembly language
We formalise our assembly language so that the behaviour
of each thread in each work-group in each device is spec-
ified independently. Accordingly, and in keeping with our
formalisation of OpenCL (§2.2), an assembly program is a
list (devices) of lists (work-groups) of lists (threads) of lists
(instructions of a thread) of assembly instructions.

The assembly language instructions are listed in the left-
hand column of Table 1. In summary, we have: loading
from an address to a register, storing from a register to an
address, atomically incrementing an address in the L1/L2
cache (this being the simplest representative of the class of
atomic RMW operations), inserting a FLUSH marker into
one or more L1 or L2 caches, invalidating all entries in one
or more L1 caches, locking/unlocking an address in the L2
cache, and obtaining/releasing all of the RMW locks in the
current work-group/device/system. Other standard instruc-
tions, and in particular control flow instructions, would be
required to provide a complete set; we limit the presentation
here to those that manipulate the memory system.

Table 1 also defines the effect of each assembly instruc-
tion when executed from state ⌃ by thread t in work-group w

in device d. Formally, each instruction is modelled as a non-
deterministic state transformer: a function from SyState to
P(SyState). A blocked instruction returns the empty set,
denoted block. For the time being, no instruction produces
more than one final state,3 so we define each instruction us-
ing deterministic, imperative pseudocode. We overload the
8-operator to provide an imperative foreach construct, leav-
ing the bounds implicit.

These pieces of pseudocode leave only one other aspect
of the instructions’ behaviours implicit: each piece of pseu-
docode, action , should be made conditional as follows:

if unflushedd,w,t(⌃) then block else action

where
unflushedd,w,t(⌃)

def
= (9d0. FLUSHdw t 2 ⌃d0

.L2.fifo) _
(9d0, w0

. FLUSHdw t 2 ⌃d0w0
.L1.fifo).

That is, a thread that has placed a FLUSH marker in an L1 or
L2 fifo must block until its marker is dequeued.
Loads and stores Regarding loads (LD) from address x:
if x’s L1 cache entry is valid, the cached value is copied
into the register file accordingly. Otherwise, the instruction
blocks, waiting for the environment to fetch a valid entry
from deeper in the cache hierarchy. In practice, the load
would initiate this fetch, but since our interest is in checking
safety properties, the existence of an environmental transi-
tion that will fetch the new entry means that it suffices to
suppose that the load simply blocks. We describe environ-
mental transitions in §5.3.

Regarding stores (ST) to address x: if x’s L1 entry is dirty
and invalid, the instruction blocks until it has been flushed by
3 While conducting our soundness proof, we make use of an alternative
semantics that ‘disengages’ the memory system, making loads completely
non-deterministic.

7 2015/3/26

Model of GPU hardware

x 2 Addr
r 2 Reg

v 2 Val
def
= Z

FifoEl
def
= Addr [{FLUSHdw t | d, w, t 2 N}

Fifo
def
= FifoEl queue

Hygiene
def
= {CLEAN, DIRTY}

Freshness
def
= {VALID, INV’D}

CacheEntry
def
= Val ⇥ (hy:Hygiene)⇥ (fr:Freshness)

C 2 Cache
def
= (Addr * CacheEntry)⇥ (fifo:Fifo)

Lock
def
= { , }

ThState
def
= Reg ! Val

WgState
def
= ThState list⇥ (L1:Cache)⇥ (rmw:Lock)

DvState
def
= WgState list⇥ (L2:Cache)⇥

(lockfile:Addr ! Lock)

Global
def
= Addr * Val

⌃ 2 SyState
def
= DvState list⇥ (gl:Global)

Figure 3. Machine states

R
eg

V
a
l

ThState

rmw:Lock

A
d
d
r

V
a
l

H
yg
ie
n
e

F
re
sh
n
es
s

L1:Cache

Fifo

WgState

A
d
d
r

V
a
l

H
yg
ie
n
e

F
re
sh
n
es
s

L2:Cache

Fifo

Addr Lock

DvState

SyState

A
d
d
r

V
a
l

Global

Figure 4. A machine state ⌃, pictorially

hygiene bit (CLEAN or DIRTY) and a freshness bit (VALID
or INV’D). The synchronisation fifo is a hardware compo-
nent introduced as part of AMD’s QuickRelease technol-
ogy [10]. It contains a queue of addresses that may need to
be flushed to the lower levels of the cache; by inserting flush
markers (FLUSH) among the addresses, tagged with their
own device/work-group/thread identifier, threads can ascer-
tain which addresses have been flushed. We assume that the
queue datatype supports in-place enqueue() and dequeue()

methods, and exposes a tail field.

Notation We write ⌃d for the state of device d, ⌃dw for
the state of work-group w in that device, and ⌃dwt for the
state of thread t in that work-group. When we pass an Addr
x to a Cache C, writing C(x), we are implicitly looking up
x in the first component of C.

5.2 Assembly language
We formalise our assembly language so that the behaviour
of each thread in each work-group in each device is spec-
ified independently. Accordingly, and in keeping with our
formalisation of OpenCL (§2.2), an assembly program is a
list (devices) of lists (work-groups) of lists (threads) of lists
(instructions of a thread) of assembly instructions.

The assembly language instructions are listed in the left-
hand column of Table 1. In summary, we have: loading
from an address to a register, storing from a register to an
address, atomically incrementing an address in the L1/L2
cache (this being the simplest representative of the class of
atomic RMW operations), inserting a FLUSH marker into
one or more L1 or L2 caches, invalidating all entries in one
or more L1 caches, locking/unlocking an address in the L2
cache, and obtaining/releasing all of the RMW locks in the
current work-group/device/system. Other standard instruc-
tions, and in particular control flow instructions, would be
required to provide a complete set; we limit the presentation
here to those that manipulate the memory system.

Table 1 also defines the effect of each assembly instruc-
tion when executed from state ⌃ by thread t in work-group w

in device d. Formally, each instruction is modelled as a non-
deterministic state transformer: a function from SyState to
P(SyState). A blocked instruction returns the empty set,
denoted block. For the time being, no instruction produces
more than one final state,3 so we define each instruction us-
ing deterministic, imperative pseudocode. We overload the
8-operator to provide an imperative foreach construct, leav-
ing the bounds implicit.

These pieces of pseudocode leave only one other aspect
of the instructions’ behaviours implicit: each piece of pseu-
docode, action , should be made conditional as follows:

if unflushedd,w,t(⌃) then block else action

where
unflushedd,w,t(⌃)

def
= (9d0. FLUSHdw t 2 ⌃d0

.L2.fifo) _
(9d0, w0

. FLUSHdw t 2 ⌃d0w0
.L1.fifo).

That is, a thread that has placed a FLUSH marker in an L1 or
L2 fifo must block until its marker is dequeued.
Loads and stores Regarding loads (LD) from address x:
if x’s L1 cache entry is valid, the cached value is copied
into the register file accordingly. Otherwise, the instruction
blocks, waiting for the environment to fetch a valid entry
from deeper in the cache hierarchy. In practice, the load
would initiate this fetch, but since our interest is in checking
safety properties, the existence of an environmental transi-
tion that will fetch the new entry means that it suffices to
suppose that the load simply blocks. We describe environ-
mental transitions in §5.3.

Regarding stores (ST) to address x: if x’s L1 entry is dirty
and invalid, the instruction blocks until it has been flushed by
3 While conducting our soundness proof, we make use of an alternative
semantics that ‘disengages’ the memory system, making loads completely
non-deterministic.

7 2015/3/26

Model of GPU hardware

x 2 Addr
r 2 Reg

v 2 Val
def
= Z

FifoEl
def
= Addr [{FLUSHdw t | d, w, t 2 N}

Fifo
def
= FifoEl queue

Hygiene
def
= {CLEAN, DIRTY}

Freshness
def
= {VALID, INV’D}

CacheEntry
def
= Val ⇥ (hy:Hygiene)⇥ (fr:Freshness)

C 2 Cache
def
= (Addr * CacheEntry)⇥ (fifo:Fifo)

Lock
def
= { , }

ThState
def
= Reg ! Val

WgState
def
= ThState list⇥ (L1:Cache)⇥ (rmw:Lock)

DvState
def
= WgState list⇥ (L2:Cache)⇥

(lockfile:Addr ! Lock)

Global
def
= Addr * Val

⌃ 2 SyState
def
= DvState list⇥ (gl:Global)

Figure 3. Machine states

R
eg

V
a
l

ThState

rmw:Lock

A
d
d
r

V
a
l

H
yg
ie
n
e

F
re
sh
n
es
s

L1:Cache

Fifo

WgState

A
d
d
r

V
a
l

H
yg
ie
n
e

F
re
sh
n
es
s

L2:Cache

Fifo

Addr Lock

DvState

SyState

A
d
d
r

V
a
l

Global

Figure 4. A machine state ⌃, pictorially

hygiene bit (CLEAN or DIRTY) and a freshness bit (VALID
or INV’D). The synchronisation fifo is a hardware compo-
nent introduced as part of AMD’s QuickRelease technol-
ogy [10]. It contains a queue of addresses that may need to
be flushed to the lower levels of the cache; by inserting flush
markers (FLUSH) among the addresses, tagged with their
own device/work-group/thread identifier, threads can ascer-
tain which addresses have been flushed. We assume that the
queue datatype supports in-place enqueue() and dequeue()

methods, and exposes a tail field.

Notation We write ⌃d for the state of device d, ⌃dw for
the state of work-group w in that device, and ⌃dwt for the
state of thread t in that work-group. When we pass an Addr
x to a Cache C, writing C(x), we are implicitly looking up
x in the first component of C.

5.2 Assembly language
We formalise our assembly language so that the behaviour
of each thread in each work-group in each device is spec-
ified independently. Accordingly, and in keeping with our
formalisation of OpenCL (§2.2), an assembly program is a
list (devices) of lists (work-groups) of lists (threads) of lists
(instructions of a thread) of assembly instructions.

The assembly language instructions are listed in the left-
hand column of Table 1. In summary, we have: loading
from an address to a register, storing from a register to an
address, atomically incrementing an address in the L1/L2
cache (this being the simplest representative of the class of
atomic RMW operations), inserting a FLUSH marker into
one or more L1 or L2 caches, invalidating all entries in one
or more L1 caches, locking/unlocking an address in the L2
cache, and obtaining/releasing all of the RMW locks in the
current work-group/device/system. Other standard instruc-
tions, and in particular control flow instructions, would be
required to provide a complete set; we limit the presentation
here to those that manipulate the memory system.

Table 1 also defines the effect of each assembly instruc-
tion when executed from state ⌃ by thread t in work-group w

in device d. Formally, each instruction is modelled as a non-
deterministic state transformer: a function from SyState to
P(SyState). A blocked instruction returns the empty set,
denoted block. For the time being, no instruction produces
more than one final state,3 so we define each instruction us-
ing deterministic, imperative pseudocode. We overload the
8-operator to provide an imperative foreach construct, leav-
ing the bounds implicit.

These pieces of pseudocode leave only one other aspect
of the instructions’ behaviours implicit: each piece of pseu-
docode, action , should be made conditional as follows:

if unflushedd,w,t(⌃) then block else action

where
unflushedd,w,t(⌃)

def
= (9d0. FLUSHdw t 2 ⌃d0

.L2.fifo) _
(9d0, w0

. FLUSHdw t 2 ⌃d0w0
.L1.fifo).

That is, a thread that has placed a FLUSH marker in an L1 or
L2 fifo must block until its marker is dequeued.
Loads and stores Regarding loads (LD) from address x:
if x’s L1 cache entry is valid, the cached value is copied
into the register file accordingly. Otherwise, the instruction
blocks, waiting for the environment to fetch a valid entry
from deeper in the cache hierarchy. In practice, the load
would initiate this fetch, but since our interest is in checking
safety properties, the existence of an environmental transi-
tion that will fetch the new entry means that it suffices to
suppose that the load simply blocks. We describe environ-
mental transitions in §5.3.

Regarding stores (ST) to address x: if x’s L1 entry is dirty
and invalid, the instruction blocks until it has been flushed by
3 While conducting our soundness proof, we make use of an alternative
semantics that ‘disengages’ the memory system, making loads completely
non-deterministic.

7 2015/3/26

Model of GPU hardware

x 2 Addr
r 2 Reg

v 2 Val
def
= Z

FifoEl
def
= Addr [{FLUSHdw t | d, w, t 2 N}

Fifo
def
= FifoEl queue

Hygiene
def
= {CLEAN, DIRTY}

Freshness
def
= {VALID, INV’D}

CacheEntry
def
= Val ⇥ (hy:Hygiene)⇥ (fr:Freshness)

C 2 Cache
def
= (Addr * CacheEntry)⇥ (fifo:Fifo)

Lock
def
= { , }

ThState
def
= Reg ! Val

WgState
def
= ThState list⇥ (L1:Cache)⇥ (rmw:Lock)

DvState
def
= WgState list⇥ (L2:Cache)⇥

(lockfile:Addr ! Lock)

Global
def
= Addr * Val

⌃ 2 SyState
def
= DvState list⇥ (gl:Global)

Figure 3. Machine states

R
eg

V
a
l

ThState

rmw:Lock

A
d
d
r

V
a
l

H
yg
ie
n
e

F
re
sh
n
es
s

L1:Cache

Fifo

WgState

A
d
d
r

V
a
l

H
yg
ie
n
e

F
re
sh
n
es
s

L2:Cache

Fifo

Addr Lock

DvState

SyState

A
d
d
r

V
a
l

Global

Figure 4. A machine state ⌃, pictorially

hygiene bit (CLEAN or DIRTY) and a freshness bit (VALID
or INV’D). The synchronisation fifo is a hardware compo-
nent introduced as part of AMD’s QuickRelease technol-
ogy [10]. It contains a queue of addresses that may need to
be flushed to the lower levels of the cache; by inserting flush
markers (FLUSH) among the addresses, tagged with their
own device/work-group/thread identifier, threads can ascer-
tain which addresses have been flushed. We assume that the
queue datatype supports in-place enqueue() and dequeue()

methods, and exposes a tail field.

Notation We write ⌃d for the state of device d, ⌃dw for
the state of work-group w in that device, and ⌃dwt for the
state of thread t in that work-group. When we pass an Addr
x to a Cache C, writing C(x), we are implicitly looking up
x in the first component of C.

5.2 Assembly language
We formalise our assembly language so that the behaviour
of each thread in each work-group in each device is spec-
ified independently. Accordingly, and in keeping with our
formalisation of OpenCL (§2.2), an assembly program is a
list (devices) of lists (work-groups) of lists (threads) of lists
(instructions of a thread) of assembly instructions.

The assembly language instructions are listed in the left-
hand column of Table 1. In summary, we have: loading
from an address to a register, storing from a register to an
address, atomically incrementing an address in the L1/L2
cache (this being the simplest representative of the class of
atomic RMW operations), inserting a FLUSH marker into
one or more L1 or L2 caches, invalidating all entries in one
or more L1 caches, locking/unlocking an address in the L2
cache, and obtaining/releasing all of the RMW locks in the
current work-group/device/system. Other standard instruc-
tions, and in particular control flow instructions, would be
required to provide a complete set; we limit the presentation
here to those that manipulate the memory system.

Table 1 also defines the effect of each assembly instruc-
tion when executed from state ⌃ by thread t in work-group w

in device d. Formally, each instruction is modelled as a non-
deterministic state transformer: a function from SyState to
P(SyState). A blocked instruction returns the empty set,
denoted block. For the time being, no instruction produces
more than one final state,3 so we define each instruction us-
ing deterministic, imperative pseudocode. We overload the
8-operator to provide an imperative foreach construct, leav-
ing the bounds implicit.

These pieces of pseudocode leave only one other aspect
of the instructions’ behaviours implicit: each piece of pseu-
docode, action , should be made conditional as follows:

if unflushedd,w,t(⌃) then block else action

where
unflushedd,w,t(⌃)

def
= (9d0. FLUSHdw t 2 ⌃d0

.L2.fifo) _
(9d0, w0

. FLUSHdw t 2 ⌃d0w0
.L1.fifo).

That is, a thread that has placed a FLUSH marker in an L1 or
L2 fifo must block until its marker is dequeued.
Loads and stores Regarding loads (LD) from address x:
if x’s L1 cache entry is valid, the cached value is copied
into the register file accordingly. Otherwise, the instruction
blocks, waiting for the environment to fetch a valid entry
from deeper in the cache hierarchy. In practice, the load
would initiate this fetch, but since our interest is in checking
safety properties, the existence of an environmental transi-
tion that will fetch the new entry means that it suffices to
suppose that the load simply blocks. We describe environ-
mental transitions in §5.3.

Regarding stores (ST) to address x: if x’s L1 entry is dirty
and invalid, the instruction blocks until it has been flushed by
3 While conducting our soundness proof, we make use of an alternative
semantics that ‘disengages’ the memory system, making loads completely
non-deterministic.

7 2015/3/26

Model of GPU hardware

x 2 Addr
r 2 Reg

v 2 Val
def
= Z

FifoEl
def
= Addr [{FLUSHdw t | d, w, t 2 N}

Fifo
def
= FifoEl queue

Hygiene
def
= {CLEAN, DIRTY}

Freshness
def
= {VALID, INV’D}

CacheEntry
def
= Val ⇥ (hy:Hygiene)⇥ (fr:Freshness)

C 2 Cache
def
= (Addr * CacheEntry)⇥ (fifo:Fifo)

Lock
def
= { , }

ThState
def
= Reg ! Val

WgState
def
= ThState list⇥ (L1:Cache)⇥ (rmw:Lock)

DvState
def
= WgState list⇥ (L2:Cache)⇥

(lockfile:Addr ! Lock)

Global
def
= Addr * Val

⌃ 2 SyState
def
= DvState list⇥ (gl:Global)

Figure 3. Machine states

R
eg

V
a
l

ThState

rmw:Lock

A
d
d
r

V
a
l

H
yg
ie
n
e

F
re
sh
n
es
s

L1:Cache

Fifo

WgState

A
d
d
r

V
a
l

H
yg
ie
n
e

F
re
sh
n
es
s

L2:Cache

Fifo

Addr Lock

DvState

SyState

A
d
d
r

V
a
l

Global

Figure 4. A machine state ⌃, pictorially

hygiene bit (CLEAN or DIRTY) and a freshness bit (VALID
or INV’D). The synchronisation fifo is a hardware compo-
nent introduced as part of AMD’s QuickRelease technol-
ogy [10]. It contains a queue of addresses that may need to
be flushed to the lower levels of the cache; by inserting flush
markers (FLUSH) among the addresses, tagged with their
own device/work-group/thread identifier, threads can ascer-
tain which addresses have been flushed. We assume that the
queue datatype supports in-place enqueue() and dequeue()

methods, and exposes a tail field.

Notation We write ⌃d for the state of device d, ⌃dw for
the state of work-group w in that device, and ⌃dwt for the
state of thread t in that work-group. When we pass an Addr
x to a Cache C, writing C(x), we are implicitly looking up
x in the first component of C.

5.2 Assembly language
We formalise our assembly language so that the behaviour
of each thread in each work-group in each device is spec-
ified independently. Accordingly, and in keeping with our
formalisation of OpenCL (§2.2), an assembly program is a
list (devices) of lists (work-groups) of lists (threads) of lists
(instructions of a thread) of assembly instructions.

The assembly language instructions are listed in the left-
hand column of Table 1. In summary, we have: loading
from an address to a register, storing from a register to an
address, atomically incrementing an address in the L1/L2
cache (this being the simplest representative of the class of
atomic RMW operations), inserting a FLUSH marker into
one or more L1 or L2 caches, invalidating all entries in one
or more L1 caches, locking/unlocking an address in the L2
cache, and obtaining/releasing all of the RMW locks in the
current work-group/device/system. Other standard instruc-
tions, and in particular control flow instructions, would be
required to provide a complete set; we limit the presentation
here to those that manipulate the memory system.

Table 1 also defines the effect of each assembly instruc-
tion when executed from state ⌃ by thread t in work-group w

in device d. Formally, each instruction is modelled as a non-
deterministic state transformer: a function from SyState to
P(SyState). A blocked instruction returns the empty set,
denoted block. For the time being, no instruction produces
more than one final state,3 so we define each instruction us-
ing deterministic, imperative pseudocode. We overload the
8-operator to provide an imperative foreach construct, leav-
ing the bounds implicit.

These pieces of pseudocode leave only one other aspect
of the instructions’ behaviours implicit: each piece of pseu-
docode, action , should be made conditional as follows:

if unflushedd,w,t(⌃) then block else action

where
unflushedd,w,t(⌃)

def
= (9d0. FLUSHdw t 2 ⌃d0

.L2.fifo) _
(9d0, w0

. FLUSHdw t 2 ⌃d0w0
.L1.fifo).

That is, a thread that has placed a FLUSH marker in an L1 or
L2 fifo must block until its marker is dequeued.
Loads and stores Regarding loads (LD) from address x:
if x’s L1 cache entry is valid, the cached value is copied
into the register file accordingly. Otherwise, the instruction
blocks, waiting for the environment to fetch a valid entry
from deeper in the cache hierarchy. In practice, the load
would initiate this fetch, but since our interest is in checking
safety properties, the existence of an environmental transi-
tion that will fetch the new entry means that it suffices to
suppose that the load simply blocks. We describe environ-
mental transitions in §5.3.

Regarding stores (ST) to address x: if x’s L1 entry is dirty
and invalid, the instruction blocks until it has been flushed by
3 While conducting our soundness proof, we make use of an alternative
semantics that ‘disengages’ the memory system, making loads completely
non-deterministic.

7 2015/3/26

Model of GPU hardware

x 2 Addr
r 2 Reg

v 2 Val
def
= Z

FifoEl
def
= Addr [{FLUSHdw t | d, w, t 2 N}

Fifo
def
= FifoEl queue

Hygiene
def
= {CLEAN, DIRTY}

Freshness
def
= {VALID, INV’D}

CacheEntry
def
= Val ⇥ (hy:Hygiene)⇥ (fr:Freshness)

C 2 Cache
def
= (Addr * CacheEntry)⇥ (fifo:Fifo)

Lock
def
= { , }

ThState
def
= Reg ! Val

WgState
def
= ThState list⇥ (L1:Cache)⇥ (rmw:Lock)

DvState
def
= WgState list⇥ (L2:Cache)⇥

(lockfile:Addr ! Lock)

Global
def
= Addr * Val

⌃ 2 SyState
def
= DvState list⇥ (gl:Global)

Figure 3. Machine states

R
eg

V
a
l

ThState

rmw:Lock

A
d
d
r

V
a
l

H
yg
ie
n
e

F
re
sh
n
es
s

L1:Cache

Fifo

WgState

A
d
d
r

V
a
l

H
yg
ie
n
e

F
re
sh
n
es
s

L2:Cache

Fifo

Addr Lock

DvState

SyState

A
d
d
r

V
a
l

Global

Figure 4. A machine state ⌃, pictorially

hygiene bit (CLEAN or DIRTY) and a freshness bit (VALID
or INV’D). The synchronisation fifo is a hardware compo-
nent introduced as part of AMD’s QuickRelease technol-
ogy [10]. It contains a queue of addresses that may need to
be flushed to the lower levels of the cache; by inserting flush
markers (FLUSH) among the addresses, tagged with their
own device/work-group/thread identifier, threads can ascer-
tain which addresses have been flushed. We assume that the
queue datatype supports in-place enqueue() and dequeue()

methods, and exposes a tail field.

Notation We write ⌃d for the state of device d, ⌃dw for
the state of work-group w in that device, and ⌃dwt for the
state of thread t in that work-group. When we pass an Addr
x to a Cache C, writing C(x), we are implicitly looking up
x in the first component of C.

5.2 Assembly language
We formalise our assembly language so that the behaviour
of each thread in each work-group in each device is spec-
ified independently. Accordingly, and in keeping with our
formalisation of OpenCL (§2.2), an assembly program is a
list (devices) of lists (work-groups) of lists (threads) of lists
(instructions of a thread) of assembly instructions.

The assembly language instructions are listed in the left-
hand column of Table 1. In summary, we have: loading
from an address to a register, storing from a register to an
address, atomically incrementing an address in the L1/L2
cache (this being the simplest representative of the class of
atomic RMW operations), inserting a FLUSH marker into
one or more L1 or L2 caches, invalidating all entries in one
or more L1 caches, locking/unlocking an address in the L2
cache, and obtaining/releasing all of the RMW locks in the
current work-group/device/system. Other standard instruc-
tions, and in particular control flow instructions, would be
required to provide a complete set; we limit the presentation
here to those that manipulate the memory system.

Table 1 also defines the effect of each assembly instruc-
tion when executed from state ⌃ by thread t in work-group w

in device d. Formally, each instruction is modelled as a non-
deterministic state transformer: a function from SyState to
P(SyState). A blocked instruction returns the empty set,
denoted block. For the time being, no instruction produces
more than one final state,3 so we define each instruction us-
ing deterministic, imperative pseudocode. We overload the
8-operator to provide an imperative foreach construct, leav-
ing the bounds implicit.

These pieces of pseudocode leave only one other aspect
of the instructions’ behaviours implicit: each piece of pseu-
docode, action , should be made conditional as follows:

if unflushedd,w,t(⌃) then block else action

where
unflushedd,w,t(⌃)

def
= (9d0. FLUSHdw t 2 ⌃d0

.L2.fifo) _
(9d0, w0

. FLUSHdw t 2 ⌃d0w0
.L1.fifo).

That is, a thread that has placed a FLUSH marker in an L1 or
L2 fifo must block until its marker is dequeued.
Loads and stores Regarding loads (LD) from address x:
if x’s L1 cache entry is valid, the cached value is copied
into the register file accordingly. Otherwise, the instruction
blocks, waiting for the environment to fetch a valid entry
from deeper in the cache hierarchy. In practice, the load
would initiate this fetch, but since our interest is in checking
safety properties, the existence of an environmental transi-
tion that will fetch the new entry means that it suffices to
suppose that the load simply blocks. We describe environ-
mental transitions in §5.3.

Regarding stores (ST) to address x: if x’s L1 entry is dirty
and invalid, the instruction blocks until it has been flushed by
3 While conducting our soundness proof, we make use of an alternative
semantics that ‘disengages’ the memory system, making loads completely
non-deterministic.

7 2015/3/26

Model of GPU hardware

x 2 Addr
r 2 Reg

v 2 Val
def
= Z

FifoEl
def
= Addr [{FLUSHdw t | d, w, t 2 N}

Fifo
def
= FifoEl queue

Hygiene
def
= {CLEAN, DIRTY}

Freshness
def
= {VALID, INV’D}

CacheEntry
def
= Val ⇥ (hy:Hygiene)⇥ (fr:Freshness)

C 2 Cache
def
= (Addr * CacheEntry)⇥ (fifo:Fifo)

Lock
def
= { , }

ThState
def
= Reg ! Val

WgState
def
= ThState list⇥ (L1:Cache)⇥ (rmw:Lock)

DvState
def
= WgState list⇥ (L2:Cache)⇥

(lockfile:Addr ! Lock)

Global
def
= Addr * Val

⌃ 2 SyState
def
= DvState list⇥ (gl:Global)

Figure 3. Machine states

R
eg

V
a
l

ThState

rmw:Lock

A
d
d
r

V
a
l

H
yg
ie
n
e

F
re
sh
n
es
s

L1:Cache

Fifo

WgState

A
d
d
r

V
a
l

H
yg
ie
n
e

F
re
sh
n
es
s

L2:Cache

Fifo

Addr Lock

DvState

SyState

A
d
d
r

V
a
l

Global

Figure 4. A machine state ⌃, pictorially

hygiene bit (CLEAN or DIRTY) and a freshness bit (VALID
or INV’D). The synchronisation fifo is a hardware compo-
nent introduced as part of AMD’s QuickRelease technol-
ogy [10]. It contains a queue of addresses that may need to
be flushed to the lower levels of the cache; by inserting flush
markers (FLUSH) among the addresses, tagged with their
own device/work-group/thread identifier, threads can ascer-
tain which addresses have been flushed. We assume that the
queue datatype supports in-place enqueue() and dequeue()

methods, and exposes a tail field.

Notation We write ⌃d for the state of device d, ⌃dw for
the state of work-group w in that device, and ⌃dwt for the
state of thread t in that work-group. When we pass an Addr
x to a Cache C, writing C(x), we are implicitly looking up
x in the first component of C.

5.2 Assembly language
We formalise our assembly language so that the behaviour
of each thread in each work-group in each device is spec-
ified independently. Accordingly, and in keeping with our
formalisation of OpenCL (§2.2), an assembly program is a
list (devices) of lists (work-groups) of lists (threads) of lists
(instructions of a thread) of assembly instructions.

The assembly language instructions are listed in the left-
hand column of Table 1. In summary, we have: loading
from an address to a register, storing from a register to an
address, atomically incrementing an address in the L1/L2
cache (this being the simplest representative of the class of
atomic RMW operations), inserting a FLUSH marker into
one or more L1 or L2 caches, invalidating all entries in one
or more L1 caches, locking/unlocking an address in the L2
cache, and obtaining/releasing all of the RMW locks in the
current work-group/device/system. Other standard instruc-
tions, and in particular control flow instructions, would be
required to provide a complete set; we limit the presentation
here to those that manipulate the memory system.

Table 1 also defines the effect of each assembly instruc-
tion when executed from state ⌃ by thread t in work-group w

in device d. Formally, each instruction is modelled as a non-
deterministic state transformer: a function from SyState to
P(SyState). A blocked instruction returns the empty set,
denoted block. For the time being, no instruction produces
more than one final state,3 so we define each instruction us-
ing deterministic, imperative pseudocode. We overload the
8-operator to provide an imperative foreach construct, leav-
ing the bounds implicit.

These pieces of pseudocode leave only one other aspect
of the instructions’ behaviours implicit: each piece of pseu-
docode, action , should be made conditional as follows:

if unflushedd,w,t(⌃) then block else action

where
unflushedd,w,t(⌃)

def
= (9d0. FLUSHdw t 2 ⌃d0

.L2.fifo) _
(9d0, w0

. FLUSHdw t 2 ⌃d0w0
.L1.fifo).

That is, a thread that has placed a FLUSH marker in an L1 or
L2 fifo must block until its marker is dequeued.
Loads and stores Regarding loads (LD) from address x:
if x’s L1 cache entry is valid, the cached value is copied
into the register file accordingly. Otherwise, the instruction
blocks, waiting for the environment to fetch a valid entry
from deeper in the cache hierarchy. In practice, the load
would initiate this fetch, but since our interest is in checking
safety properties, the existence of an environmental transi-
tion that will fetch the new entry means that it suffices to
suppose that the load simply blocks. We describe environ-
mental transitions in §5.3.

Regarding stores (ST) to address x: if x’s L1 entry is dirty
and invalid, the instruction blocks until it has been flushed by
3 While conducting our soundness proof, we make use of an alternative
semantics that ‘disengages’ the memory system, making loads completely
non-deterministic.

7 2015/3/26

Model of GPU hardware

x 2 Addr
r 2 Reg

v 2 Val
def
= Z

FifoEl
def
= Addr [{FLUSHdw t | d, w, t 2 N}

Fifo
def
= FifoEl queue

Hygiene
def
= {CLEAN, DIRTY}

Freshness
def
= {VALID, INV’D}

CacheEntry
def
= Val ⇥ (hy:Hygiene)⇥ (fr:Freshness)

C 2 Cache
def
= (Addr * CacheEntry)⇥ (fifo:Fifo)

Lock
def
= { , }

ThState
def
= Reg ! Val

WgState
def
= ThState list⇥ (L1:Cache)⇥ (rmw:Lock)

DvState
def
= WgState list⇥ (L2:Cache)⇥

(lockfile:Addr ! Lock)

Global
def
= Addr * Val

⌃ 2 SyState
def
= DvState list⇥ (gl:Global)

Figure 3. Machine states

R
eg

V
a
l

ThState

rmw:Lock

A
d
d
r

V
a
l

H
yg
ie
n
e

F
re
sh
n
es
s

L1:Cache

Fifo

WgState

A
d
d
r

V
a
l

H
yg
ie
n
e

F
re
sh
n
es
s

L2:Cache

Fifo

Addr Lock

DvState

SyState

A
d
d
r

V
a
l

Global

Figure 4. A machine state ⌃, pictorially

hygiene bit (CLEAN or DIRTY) and a freshness bit (VALID
or INV’D). The synchronisation fifo is a hardware compo-
nent introduced as part of AMD’s QuickRelease technol-
ogy [10]. It contains a queue of addresses that may need to
be flushed to the lower levels of the cache; by inserting flush
markers (FLUSH) among the addresses, tagged with their
own device/work-group/thread identifier, threads can ascer-
tain which addresses have been flushed. We assume that the
queue datatype supports in-place enqueue() and dequeue()

methods, and exposes a tail field.

Notation We write ⌃d for the state of device d, ⌃dw for
the state of work-group w in that device, and ⌃dwt for the
state of thread t in that work-group. When we pass an Addr
x to a Cache C, writing C(x), we are implicitly looking up
x in the first component of C.

5.2 Assembly language
We formalise our assembly language so that the behaviour
of each thread in each work-group in each device is spec-
ified independently. Accordingly, and in keeping with our
formalisation of OpenCL (§2.2), an assembly program is a
list (devices) of lists (work-groups) of lists (threads) of lists
(instructions of a thread) of assembly instructions.

The assembly language instructions are listed in the left-
hand column of Table 1. In summary, we have: loading
from an address to a register, storing from a register to an
address, atomically incrementing an address in the L1/L2
cache (this being the simplest representative of the class of
atomic RMW operations), inserting a FLUSH marker into
one or more L1 or L2 caches, invalidating all entries in one
or more L1 caches, locking/unlocking an address in the L2
cache, and obtaining/releasing all of the RMW locks in the
current work-group/device/system. Other standard instruc-
tions, and in particular control flow instructions, would be
required to provide a complete set; we limit the presentation
here to those that manipulate the memory system.

Table 1 also defines the effect of each assembly instruc-
tion when executed from state ⌃ by thread t in work-group w

in device d. Formally, each instruction is modelled as a non-
deterministic state transformer: a function from SyState to
P(SyState). A blocked instruction returns the empty set,
denoted block. For the time being, no instruction produces
more than one final state,3 so we define each instruction us-
ing deterministic, imperative pseudocode. We overload the
8-operator to provide an imperative foreach construct, leav-
ing the bounds implicit.

These pieces of pseudocode leave only one other aspect
of the instructions’ behaviours implicit: each piece of pseu-
docode, action , should be made conditional as follows:

if unflushedd,w,t(⌃) then block else action

where
unflushedd,w,t(⌃)

def
= (9d0. FLUSHdw t 2 ⌃d0

.L2.fifo) _
(9d0, w0

. FLUSHdw t 2 ⌃d0w0
.L1.fifo).

That is, a thread that has placed a FLUSH marker in an L1 or
L2 fifo must block until its marker is dequeued.
Loads and stores Regarding loads (LD) from address x:
if x’s L1 cache entry is valid, the cached value is copied
into the register file accordingly. Otherwise, the instruction
blocks, waiting for the environment to fetch a valid entry
from deeper in the cache hierarchy. In practice, the load
would initiate this fetch, but since our interest is in checking
safety properties, the existence of an environmental transi-
tion that will fetch the new entry means that it suffices to
suppose that the load simply blocks. We describe environ-
mental transitions in §5.3.

Regarding stores (ST) to address x: if x’s L1 entry is dirty
and invalid, the instruction blocks until it has been flushed by
3 While conducting our soundness proof, we make use of an alternative
semantics that ‘disengages’ the memory system, making loads completely
non-deterministic.

7 2015/3/26

Model of GPU hardware

x 2 Addr
r 2 Reg

v 2 Val
def
= Z

FifoEl
def
= Addr [{FLUSHdw t | d, w, t 2 N}

Fifo
def
= FifoEl queue

Hygiene
def
= {CLEAN, DIRTY}

Freshness
def
= {VALID, INV’D}

CacheEntry
def
= Val ⇥ (hy:Hygiene)⇥ (fr:Freshness)

C 2 Cache
def
= (Addr * CacheEntry)⇥ (fifo:Fifo)

Lock
def
= { , }

ThState
def
= Reg ! Val

WgState
def
= ThState list⇥ (L1:Cache)⇥ (rmw:Lock)

DvState
def
= WgState list⇥ (L2:Cache)⇥

(lockfile:Addr ! Lock)

Global
def
= Addr * Val

⌃ 2 SyState
def
= DvState list⇥ (gl:Global)

Figure 3. Machine states

R
eg

V
a
l

ThState

rmw:Lock

A
d
d
r

V
a
l

H
yg
ie
n
e

F
re
sh
n
es
s

L1:Cache

Fifo

WgState

A
d
d
r

V
a
l

H
yg
ie
n
e

F
re
sh
n
es
s

L2:Cache

Fifo

Addr Lock

DvState

SyState

A
d
d
r

V
a
l

Global

Figure 4. A machine state ⌃, pictorially

hygiene bit (CLEAN or DIRTY) and a freshness bit (VALID
or INV’D). The synchronisation fifo is a hardware compo-
nent introduced as part of AMD’s QuickRelease technol-
ogy [10]. It contains a queue of addresses that may need to
be flushed to the lower levels of the cache; by inserting flush
markers (FLUSH) among the addresses, tagged with their
own device/work-group/thread identifier, threads can ascer-
tain which addresses have been flushed. We assume that the
queue datatype supports in-place enqueue() and dequeue()

methods, and exposes a tail field.

Notation We write ⌃d for the state of device d, ⌃dw for
the state of work-group w in that device, and ⌃dwt for the
state of thread t in that work-group. When we pass an Addr
x to a Cache C, writing C(x), we are implicitly looking up
x in the first component of C.

5.2 Assembly language
We formalise our assembly language so that the behaviour
of each thread in each work-group in each device is spec-
ified independently. Accordingly, and in keeping with our
formalisation of OpenCL (§2.2), an assembly program is a
list (devices) of lists (work-groups) of lists (threads) of lists
(instructions of a thread) of assembly instructions.

The assembly language instructions are listed in the left-
hand column of Table 1. In summary, we have: loading
from an address to a register, storing from a register to an
address, atomically incrementing an address in the L1/L2
cache (this being the simplest representative of the class of
atomic RMW operations), inserting a FLUSH marker into
one or more L1 or L2 caches, invalidating all entries in one
or more L1 caches, locking/unlocking an address in the L2
cache, and obtaining/releasing all of the RMW locks in the
current work-group/device/system. Other standard instruc-
tions, and in particular control flow instructions, would be
required to provide a complete set; we limit the presentation
here to those that manipulate the memory system.

Table 1 also defines the effect of each assembly instruc-
tion when executed from state ⌃ by thread t in work-group w

in device d. Formally, each instruction is modelled as a non-
deterministic state transformer: a function from SyState to
P(SyState). A blocked instruction returns the empty set,
denoted block. For the time being, no instruction produces
more than one final state,3 so we define each instruction us-
ing deterministic, imperative pseudocode. We overload the
8-operator to provide an imperative foreach construct, leav-
ing the bounds implicit.

These pieces of pseudocode leave only one other aspect
of the instructions’ behaviours implicit: each piece of pseu-
docode, action , should be made conditional as follows:

if unflushedd,w,t(⌃) then block else action

where
unflushedd,w,t(⌃)

def
= (9d0. FLUSHdw t 2 ⌃d0

.L2.fifo) _
(9d0, w0

. FLUSHdw t 2 ⌃d0w0
.L1.fifo).

That is, a thread that has placed a FLUSH marker in an L1 or
L2 fifo must block until its marker is dequeued.
Loads and stores Regarding loads (LD) from address x:
if x’s L1 cache entry is valid, the cached value is copied
into the register file accordingly. Otherwise, the instruction
blocks, waiting for the environment to fetch a valid entry
from deeper in the cache hierarchy. In practice, the load
would initiate this fetch, but since our interest is in checking
safety properties, the existence of an environmental transi-
tion that will fetch the new entry means that it suffices to
suppose that the load simply blocks. We describe environ-
mental transitions in §5.3.

Regarding stores (ST) to address x: if x’s L1 entry is dirty
and invalid, the instruction blocks until it has been flushed by
3 While conducting our soundness proof, we make use of an alternative
semantics that ‘disengages’ the memory system, making loads completely
non-deterministic.

7 2015/3/26

Model of GPU hardware

x 2 Addr
r 2 Reg

v 2 Val
def
= Z

FifoEl
def
= Addr [{FLUSHdw t | d, w, t 2 N}

Fifo
def
= FifoEl queue

Hygiene
def
= {CLEAN, DIRTY}

Freshness
def
= {VALID, INV’D}

CacheEntry
def
= Val ⇥ (hy:Hygiene)⇥ (fr:Freshness)

C 2 Cache
def
= (Addr * CacheEntry)⇥ (fifo:Fifo)

Lock
def
= { , }

ThState
def
= Reg ! Val

WgState
def
= ThState list⇥ (L1:Cache)⇥ (rmw:Lock)

DvState
def
= WgState list⇥ (L2:Cache)⇥

(lockfile:Addr ! Lock)

Global
def
= Addr * Val

⌃ 2 SyState
def
= DvState list⇥ (gl:Global)

Figure 3. Machine states

R
eg

V
a
l

ThState

rmw:Lock

A
d
d
r

V
a
l

H
yg
ie
n
e

F
re
sh
n
es
s

L1:Cache

Fifo

WgState

A
d
d
r

V
a
l

H
yg
ie
n
e

F
re
sh
n
es
s

L2:Cache

Fifo

Addr Lock

DvState

SyState

A
d
d
r

V
a
l

Global

Figure 4. A machine state ⌃, pictorially

hygiene bit (CLEAN or DIRTY) and a freshness bit (VALID
or INV’D). The synchronisation fifo is a hardware compo-
nent introduced as part of AMD’s QuickRelease technol-
ogy [10]. It contains a queue of addresses that may need to
be flushed to the lower levels of the cache; by inserting flush
markers (FLUSH) among the addresses, tagged with their
own device/work-group/thread identifier, threads can ascer-
tain which addresses have been flushed. We assume that the
queue datatype supports in-place enqueue() and dequeue()

methods, and exposes a tail field.

Notation We write ⌃d for the state of device d, ⌃dw for
the state of work-group w in that device, and ⌃dwt for the
state of thread t in that work-group. When we pass an Addr
x to a Cache C, writing C(x), we are implicitly looking up
x in the first component of C.

5.2 Assembly language
We formalise our assembly language so that the behaviour
of each thread in each work-group in each device is spec-
ified independently. Accordingly, and in keeping with our
formalisation of OpenCL (§2.2), an assembly program is a
list (devices) of lists (work-groups) of lists (threads) of lists
(instructions of a thread) of assembly instructions.

The assembly language instructions are listed in the left-
hand column of Table 1. In summary, we have: loading
from an address to a register, storing from a register to an
address, atomically incrementing an address in the L1/L2
cache (this being the simplest representative of the class of
atomic RMW operations), inserting a FLUSH marker into
one or more L1 or L2 caches, invalidating all entries in one
or more L1 caches, locking/unlocking an address in the L2
cache, and obtaining/releasing all of the RMW locks in the
current work-group/device/system. Other standard instruc-
tions, and in particular control flow instructions, would be
required to provide a complete set; we limit the presentation
here to those that manipulate the memory system.

Table 1 also defines the effect of each assembly instruc-
tion when executed from state ⌃ by thread t in work-group w

in device d. Formally, each instruction is modelled as a non-
deterministic state transformer: a function from SyState to
P(SyState). A blocked instruction returns the empty set,
denoted block. For the time being, no instruction produces
more than one final state,3 so we define each instruction us-
ing deterministic, imperative pseudocode. We overload the
8-operator to provide an imperative foreach construct, leav-
ing the bounds implicit.

These pieces of pseudocode leave only one other aspect
of the instructions’ behaviours implicit: each piece of pseu-
docode, action , should be made conditional as follows:

if unflushedd,w,t(⌃) then block else action

where
unflushedd,w,t(⌃)

def
= (9d0. FLUSHdw t 2 ⌃d0

.L2.fifo) _
(9d0, w0

. FLUSHdw t 2 ⌃d0w0
.L1.fifo).

That is, a thread that has placed a FLUSH marker in an L1 or
L2 fifo must block until its marker is dequeued.
Loads and stores Regarding loads (LD) from address x:
if x’s L1 cache entry is valid, the cached value is copied
into the register file accordingly. Otherwise, the instruction
blocks, waiting for the environment to fetch a valid entry
from deeper in the cache hierarchy. In practice, the load
would initiate this fetch, but since our interest is in checking
safety properties, the existence of an environmental transi-
tion that will fetch the new entry means that it suffices to
suppose that the load simply blocks. We describe environ-
mental transitions in §5.3.

Regarding stores (ST) to address x: if x’s L1 entry is dirty
and invalid, the instruction blocks until it has been flushed by
3 While conducting our soundness proof, we make use of an alternative
semantics that ‘disengages’ the memory system, making loads completely
non-deterministic.

7 2015/3/26

Model of GPU hardware

x 2 Addr
r 2 Reg

v 2 Val
def
= Z

FifoEl
def
= Addr [{FLUSHdw t | d, w, t 2 N}

Fifo
def
= FifoEl queue

Hygiene
def
= {CLEAN, DIRTY}

Freshness
def
= {VALID, INV’D}

CacheEntry
def
= Val ⇥ (hy:Hygiene)⇥ (fr:Freshness)

C 2 Cache
def
= (Addr * CacheEntry)⇥ (fifo:Fifo)

Lock
def
= { , }

ThState
def
= Reg ! Val

WgState
def
= ThState list⇥ (L1:Cache)⇥ (rmw:Lock)

DvState
def
= WgState list⇥ (L2:Cache)⇥

(lockfile:Addr ! Lock)

Global
def
= Addr * Val

⌃ 2 SyState
def
= DvState list⇥ (gl:Global)

Figure 3. Machine states

R
eg

V
a
l

ThState

rmw:Lock

A
d
d
r

V
a
l

H
yg
ie
n
e

F
re
sh
n
es
s

L1:Cache

Fifo

WgState

A
d
d
r

V
a
l

H
yg
ie
n
e

F
re
sh
n
es
s

L2:Cache

Fifo

Addr Lock

DvState

SyState

A
d
d
r

V
a
l

Global

Figure 4. A machine state ⌃, pictorially

hygiene bit (CLEAN or DIRTY) and a freshness bit (VALID
or INV’D). The synchronisation fifo is a hardware compo-
nent introduced as part of AMD’s QuickRelease technol-
ogy [10]. It contains a queue of addresses that may need to
be flushed to the lower levels of the cache; by inserting flush
markers (FLUSH) among the addresses, tagged with their
own device/work-group/thread identifier, threads can ascer-
tain which addresses have been flushed. We assume that the
queue datatype supports in-place enqueue() and dequeue()

methods, and exposes a tail field.

Notation We write ⌃d for the state of device d, ⌃dw for
the state of work-group w in that device, and ⌃dwt for the
state of thread t in that work-group. When we pass an Addr
x to a Cache C, writing C(x), we are implicitly looking up
x in the first component of C.

5.2 Assembly language
We formalise our assembly language so that the behaviour
of each thread in each work-group in each device is spec-
ified independently. Accordingly, and in keeping with our
formalisation of OpenCL (§2.2), an assembly program is a
list (devices) of lists (work-groups) of lists (threads) of lists
(instructions of a thread) of assembly instructions.

The assembly language instructions are listed in the left-
hand column of Table 1. In summary, we have: loading
from an address to a register, storing from a register to an
address, atomically incrementing an address in the L1/L2
cache (this being the simplest representative of the class of
atomic RMW operations), inserting a FLUSH marker into
one or more L1 or L2 caches, invalidating all entries in one
or more L1 caches, locking/unlocking an address in the L2
cache, and obtaining/releasing all of the RMW locks in the
current work-group/device/system. Other standard instruc-
tions, and in particular control flow instructions, would be
required to provide a complete set; we limit the presentation
here to those that manipulate the memory system.

Table 1 also defines the effect of each assembly instruc-
tion when executed from state ⌃ by thread t in work-group w

in device d. Formally, each instruction is modelled as a non-
deterministic state transformer: a function from SyState to
P(SyState). A blocked instruction returns the empty set,
denoted block. For the time being, no instruction produces
more than one final state,3 so we define each instruction us-
ing deterministic, imperative pseudocode. We overload the
8-operator to provide an imperative foreach construct, leav-
ing the bounds implicit.

These pieces of pseudocode leave only one other aspect
of the instructions’ behaviours implicit: each piece of pseu-
docode, action , should be made conditional as follows:

if unflushedd,w,t(⌃) then block else action

where
unflushedd,w,t(⌃)

def
= (9d0. FLUSHdw t 2 ⌃d0

.L2.fifo) _
(9d0, w0

. FLUSHdw t 2 ⌃d0w0
.L1.fifo).

That is, a thread that has placed a FLUSH marker in an L1 or
L2 fifo must block until its marker is dequeued.
Loads and stores Regarding loads (LD) from address x:
if x’s L1 cache entry is valid, the cached value is copied
into the register file accordingly. Otherwise, the instruction
blocks, waiting for the environment to fetch a valid entry
from deeper in the cache hierarchy. In practice, the load
would initiate this fetch, but since our interest is in checking
safety properties, the existence of an environmental transi-
tion that will fetch the new entry means that it suffices to
suppose that the load simply blocks. We describe environ-
mental transitions in §5.3.

Regarding stores (ST) to address x: if x’s L1 entry is dirty
and invalid, the instruction blocks until it has been flushed by
3 While conducting our soundness proof, we make use of an alternative
semantics that ‘disengages’ the memory system, making loads completely
non-deterministic.

7 2015/3/26

Model of GPU hardware

x 2 Addr
r 2 Reg

v 2 Val
def
= Z

FifoEl
def
= Addr [{FLUSHdw t | d, w, t 2 N}

Fifo
def
= FifoEl queue

Hygiene
def
= {CLEAN, DIRTY}

Freshness
def
= {VALID, INV’D}

CacheEntry
def
= Val ⇥ (hy:Hygiene)⇥ (fr:Freshness)

C 2 Cache
def
= (Addr * CacheEntry)⇥ (fifo:Fifo)

Lock
def
= { , }

ThState
def
= Reg ! Val

WgState
def
= ThState list⇥ (L1:Cache)⇥ (rmw:Lock)

DvState
def
= WgState list⇥ (L2:Cache)⇥

(lockfile:Addr ! Lock)

Global
def
= Addr * Val

⌃ 2 SyState
def
= DvState list⇥ (gl:Global)

Figure 3. Machine states

R
eg

V
a
l

ThState

rmw:Lock

A
d
d
r

V
a
l

H
yg
ie
n
e

F
re
sh
n
es
s

L1:Cache

Fifo

WgState

A
d
d
r

V
a
l

H
yg
ie
n
e

F
re
sh
n
es
s

L2:Cache

Fifo

Addr Lock

DvState

SyState

A
d
d
r

V
a
l

Global

Figure 4. A machine state ⌃, pictorially

hygiene bit (CLEAN or DIRTY) and a freshness bit (VALID
or INV’D). The synchronisation fifo is a hardware compo-
nent introduced as part of AMD’s QuickRelease technol-
ogy [10]. It contains a queue of addresses that may need to
be flushed to the lower levels of the cache; by inserting flush
markers (FLUSH) among the addresses, tagged with their
own device/work-group/thread identifier, threads can ascer-
tain which addresses have been flushed. We assume that the
queue datatype supports in-place enqueue() and dequeue()

methods, and exposes a tail field.

Notation We write ⌃d for the state of device d, ⌃dw for
the state of work-group w in that device, and ⌃dwt for the
state of thread t in that work-group. When we pass an Addr
x to a Cache C, writing C(x), we are implicitly looking up
x in the first component of C.

5.2 Assembly language
We formalise our assembly language so that the behaviour
of each thread in each work-group in each device is spec-
ified independently. Accordingly, and in keeping with our
formalisation of OpenCL (§2.2), an assembly program is a
list (devices) of lists (work-groups) of lists (threads) of lists
(instructions of a thread) of assembly instructions.

The assembly language instructions are listed in the left-
hand column of Table 1. In summary, we have: loading
from an address to a register, storing from a register to an
address, atomically incrementing an address in the L1/L2
cache (this being the simplest representative of the class of
atomic RMW operations), inserting a FLUSH marker into
one or more L1 or L2 caches, invalidating all entries in one
or more L1 caches, locking/unlocking an address in the L2
cache, and obtaining/releasing all of the RMW locks in the
current work-group/device/system. Other standard instruc-
tions, and in particular control flow instructions, would be
required to provide a complete set; we limit the presentation
here to those that manipulate the memory system.

Table 1 also defines the effect of each assembly instruc-
tion when executed from state ⌃ by thread t in work-group w

in device d. Formally, each instruction is modelled as a non-
deterministic state transformer: a function from SyState to
P(SyState). A blocked instruction returns the empty set,
denoted block. For the time being, no instruction produces
more than one final state,3 so we define each instruction us-
ing deterministic, imperative pseudocode. We overload the
8-operator to provide an imperative foreach construct, leav-
ing the bounds implicit.

These pieces of pseudocode leave only one other aspect
of the instructions’ behaviours implicit: each piece of pseu-
docode, action , should be made conditional as follows:

if unflushedd,w,t(⌃) then block else action

where
unflushedd,w,t(⌃)

def
= (9d0. FLUSHdw t 2 ⌃d0

.L2.fifo) _
(9d0, w0

. FLUSHdw t 2 ⌃d0w0
.L1.fifo).

That is, a thread that has placed a FLUSH marker in an L1 or
L2 fifo must block until its marker is dequeued.
Loads and stores Regarding loads (LD) from address x:
if x’s L1 cache entry is valid, the cached value is copied
into the register file accordingly. Otherwise, the instruction
blocks, waiting for the environment to fetch a valid entry
from deeper in the cache hierarchy. In practice, the load
would initiate this fetch, but since our interest is in checking
safety properties, the existence of an environmental transi-
tion that will fetch the new entry means that it suffices to
suppose that the load simply blocks. We describe environ-
mental transitions in §5.3.

Regarding stores (ST) to address x: if x’s L1 entry is dirty
and invalid, the instruction blocks until it has been flushed by
3 While conducting our soundness proof, we make use of an alternative
semantics that ‘disengages’ the memory system, making loads completely
non-deterministic.

7 2015/3/26

Model of GPU hardware

x 2 Addr
r 2 Reg

v 2 Val
def
= Z

FifoEl
def
= Addr [{FLUSHdw t | d, w, t 2 N}

Fifo
def
= FifoEl queue

Hygiene
def
= {CLEAN, DIRTY}

Freshness
def
= {VALID, INV’D}

CacheEntry
def
= Val ⇥ (hy:Hygiene)⇥ (fr:Freshness)

C 2 Cache
def
= (Addr * CacheEntry)⇥ (fifo:Fifo)

Lock
def
= { , }

ThState
def
= Reg ! Val

WgState
def
= ThState list⇥ (L1:Cache)⇥ (rmw:Lock)

DvState
def
= WgState list⇥ (L2:Cache)⇥

(lockfile:Addr ! Lock)

Global
def
= Addr * Val

⌃ 2 SyState
def
= DvState list⇥ (gl:Global)

Figure 3. Machine states

R
eg

V
a
l

ThState

rmw:Lock

A
d
d
r

V
a
l

H
yg
ie
n
e

F
re
sh
n
es
s

L1:Cache

Fifo

WgState

A
d
d
r

V
a
l

H
yg
ie
n
e

F
re
sh
n
es
s

L2:Cache

Fifo

Addr Lock

DvState

SyState

A
d
d
r

V
a
l

Global

Figure 4. A machine state ⌃, pictorially

hygiene bit (CLEAN or DIRTY) and a freshness bit (VALID
or INV’D). The synchronisation fifo is a hardware compo-
nent introduced as part of AMD’s QuickRelease technol-
ogy [10]. It contains a queue of addresses that may need to
be flushed to the lower levels of the cache; by inserting flush
markers (FLUSH) among the addresses, tagged with their
own device/work-group/thread identifier, threads can ascer-
tain which addresses have been flushed. We assume that the
queue datatype supports in-place enqueue() and dequeue()

methods, and exposes a tail field.

Notation We write ⌃d for the state of device d, ⌃dw for
the state of work-group w in that device, and ⌃dwt for the
state of thread t in that work-group. When we pass an Addr
x to a Cache C, writing C(x), we are implicitly looking up
x in the first component of C.

5.2 Assembly language
We formalise our assembly language so that the behaviour
of each thread in each work-group in each device is spec-
ified independently. Accordingly, and in keeping with our
formalisation of OpenCL (§2.2), an assembly program is a
list (devices) of lists (work-groups) of lists (threads) of lists
(instructions of a thread) of assembly instructions.

The assembly language instructions are listed in the left-
hand column of Table 1. In summary, we have: loading
from an address to a register, storing from a register to an
address, atomically incrementing an address in the L1/L2
cache (this being the simplest representative of the class of
atomic RMW operations), inserting a FLUSH marker into
one or more L1 or L2 caches, invalidating all entries in one
or more L1 caches, locking/unlocking an address in the L2
cache, and obtaining/releasing all of the RMW locks in the
current work-group/device/system. Other standard instruc-
tions, and in particular control flow instructions, would be
required to provide a complete set; we limit the presentation
here to those that manipulate the memory system.

Table 1 also defines the effect of each assembly instruc-
tion when executed from state ⌃ by thread t in work-group w

in device d. Formally, each instruction is modelled as a non-
deterministic state transformer: a function from SyState to
P(SyState). A blocked instruction returns the empty set,
denoted block. For the time being, no instruction produces
more than one final state,3 so we define each instruction us-
ing deterministic, imperative pseudocode. We overload the
8-operator to provide an imperative foreach construct, leav-
ing the bounds implicit.

These pieces of pseudocode leave only one other aspect
of the instructions’ behaviours implicit: each piece of pseu-
docode, action , should be made conditional as follows:

if unflushedd,w,t(⌃) then block else action

where
unflushedd,w,t(⌃)

def
= (9d0. FLUSHdw t 2 ⌃d0

.L2.fifo) _
(9d0, w0

. FLUSHdw t 2 ⌃d0w0
.L1.fifo).

That is, a thread that has placed a FLUSH marker in an L1 or
L2 fifo must block until its marker is dequeued.
Loads and stores Regarding loads (LD) from address x:
if x’s L1 cache entry is valid, the cached value is copied
into the register file accordingly. Otherwise, the instruction
blocks, waiting for the environment to fetch a valid entry
from deeper in the cache hierarchy. In practice, the load
would initiate this fetch, but since our interest is in checking
safety properties, the existence of an environmental transi-
tion that will fetch the new entry means that it suffices to
suppose that the load simply blocks. We describe environ-
mental transitions in §5.3.

Regarding stores (ST) to address x: if x’s L1 entry is dirty
and invalid, the instruction blocks until it has been flushed by
3 While conducting our soundness proof, we make use of an alternative
semantics that ‘disengages’ the memory system, making loads completely
non-deterministic.

7 2015/3/26

Original scheme
na or WG DV (not remote) DV (remote)

r=load(x) LD r x INVL1 WG
LD r x

FLUL1 DV
INVL1 WG
LD r x

store(x,r) ST r x FLUL1 WG
ST r x

FLUL1 WG
ST r x
INVL1 DV

r=fetch_inc(x) INCL1 r x
FLUL1 WG
INVL1 WG
INCL2 r x

FLUL1 DV
INVL1 WG
INCL2 r x
INVL1 DV

LK x}
} LK x

}LK x
LKrmw

Original scheme
na or WG DV (not remote) DV (remote)

r=load(x) LD r x INVL1 WG
LD r x

FLUL1 DV
INVL1 WG
LD r x

store(x,r) ST r x FLUL1 WG
ST r x

FLUL1 WG
ST r x
INVL1 DV

r=fetch_inc(x) INCL1 r x
FLUL1 WG
INVL1 WG
INCL2 r x

FLUL1 DV
INVL1 WG
INCL2 r x
INVL1 DV

LK x}
} LK x

}LK x
LKrmw

Original scheme
na or WG DV (not remote) DV (remote)

r=load(x) LD r x INVL1 WG
LD r x

FLUL1 DV
INVL1 WG
LD r x

store(x,r) ST r x FLUL1 WG
ST r x

FLUL1 WG
ST r x
INVL1 DV

r=fetch_inc(x) INCL1 r x
FLUL1 WG
INVL1 WG
INCL2 r x

FLUL1 DV
INVL1 WG
INCL2 r x
INVL1 DV

LK x}
} LK x

}LK x
LKrmw

message-passing fails

Original scheme
na or WG DV (not remote) DV (remote)

r=load(x) LD r x INVL1 WG
LD r x

FLUL1 DV
INVL1 WG
LD r x

store(x,r) ST r x FLUL1 WG
ST r x

FLUL1 WG
ST r x
INVL1 DV

r=fetch_inc(x) INCL1 r x
FLUL1 WG
INVL1 WG
INCL2 r x

FLUL1 DV
INVL1 WG
INCL2 r x
INVL1 DV

LK x}
} LK x

}LK x
LKrmw

message-passing fails

RMW atomicity fails

Original scheme
na or WG DV (not remote) DV (remote)

r=load(x) LD r x INVL1 WG
LD r x

FLUL1 DV
INVL1 WG
LD r x

store(x,r) ST r x FLUL1 WG
ST r x

FLUL1 WG
ST r x
INVL1 DV

r=fetch_inc(x) INCL1 r x
FLUL1 WG
INVL1 WG
INCL2 r x

FLUL1 DV
INVL1 WG
INCL2 r x
INVL1 DV

LK x}
} LK x

}LK x
LKrmw

message-passing fails

unnecessary cacheline stalling

RMW atomicity fails

Revised scheme
na or WG DV (not remote) DV (remote)

r=load(x) LD r x LD r x
INVL1 WG

LD r x  
FLUL1 DV
INVL1 WG

store(x,r) ST r x FLUL1 WG
ST r x

FLUL1 WG
INVL1 DV
ST r x

r=fetch_inc(x) INCL1 r x
FLUL1 WG
INCL2 r x  
INVL1 WG

FLUL1 WG
INVL1 DV
INCL2 r x
FLUL1 DV
INVL1 WG

} LKrmw

}LKrmw

Original scheme
na or WG DV (not remote) DV (remote)

r=load(x) LD r x INVL1 WG
LD r x

FLUL1 DV
INVL1 WG
LD r x

store(x,r) ST r x FLUL1 WG
ST r x

FLUL1 WG
ST r x
INVL1 DV

r=fetch_inc(x) INCL1 r x
FLUL1 WG
INVL1 WG
INCL2 r x

FLUL1 DV
INVL1 WG
INCL2 r x
INVL1 DV

LK x}
} LK x

}LK x
LKrmw

Proof of correctness

• Theorem stated in Isabelle, proved by hand.

Summary
• Remote-scope promotion is a GPU programming

extension from AMD for efficient work-stealing

• We formalised the design (at SW and HW level).
This led to a corrected and improved
implementation.

• Formalise early in the design process!

