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C11 atomics

* A collection of indivisible operations for lock-free
programming, e.g.:

atomic store explicit(x, 1, memory order seq cst);
memory order rel acq

memory order acguire
The presence of these other memory Y_ —ac4

orders makes the semantics of SC .
atomics surprisingly complex

memory order release

memory order relaxed
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C11 memory model

* [race-based semantics (‘executions’).

* First phase: generate an overapproximation, by
considering each thread in isolation.

e Second phase: remove executions that are
inconsistent with the axioms of the memory model.
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*x = 42;
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Consistent executions

 Execution Xis consistent iff
there exists rf, mo and S such that
(X rf, mo,S) is well-formed and
satisfies all the consistency axioms.

e [P] = P's consistent executions™

*unless P also admits a faulty execution, then [P] = any execution



Candidate executions

a: Wha(x,0) b: Wha(y,0)

c: W(x,1,RLX) d:R(x,1,RLX) f: W(x,2,SC) h: W(y,1,SC)
lsb lsb sb

\
e: R(x,2,RLX) ¢: R(y,0,SC) 1i:R(x,1,SC)




Candidate executions

c: W(x,1,RLX) d:R(x,1,RLX) f:\W(x,2,SC) h: W(y, 1, SC)
T l Susb/ Slvsb
rf f

rf e: R(x,2,RLX) ¢: R(y,0,8C) i: R(x,1,SC)

a: Wha(x,0) b: Wha(y,0)
o e




Some axioms




Some axioms

rf

T 1"
X % X

irretlexive(rr)
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rf

T1
X % X

irreflexive(rf) irretlexive(mo ; mo ; rf1)




Some axioms
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. mo Mo mo\

X % X

irretlexive(rf) irreflexive(mo ; mo ; rf-7) irreflexive(mo ; rf)




All consistency axioms

irr(hb) (Hb)
irr((rf )" s mo ; rf " ; hb) (Coh)
irr(rf ; hb) (R)
empty ((7f ; [nal]) \ vis) (NaRf)

C

irr(rf U (mo ; mo; rf ") U (mo ; rf)) (Rmw)

irr(.S ;) here r1 = hb (S1)
irr(S ; r2) here ro = Fsb' : MO ; sbF’ (S2)
irr(.S ; r3) here 73 = rf ' ; [SC] ; mo  (S3)

here 74 = rf ' ; hbl; [W] (S4)
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irr(S ; rs) here r5 = Fsb; rb (S5)
irr(.S ; r6) here r¢ = rb ; sbF (56)
irr(.S ; r7) here r7 = F'sb; rb; sbF (S7)



Derived relations

acq
rel
rb
F'sb
sbF

/
s

s
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hb
hbl

V1S

dﬁf
def

def

dﬁf
def

def

def

def

def

def
def

(ACQUARUSC) N (RU F)
(RELUARUSC) (WUF)
(rf ™~ mo)\zd

F] 5 s

sb ; [F]

thd U (E”;[RN W)
moNrs \ ((mo\ rs’); mo)
([rel] ; Fsb' ; [W N A];rs’;
(RN A]:sbF’ ; [acq]) \ thd
(sbU (I x =I) U sw)™

hd N =ioc

(W x R)Nhbl \ (hbl; [W]; hb)
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Consistent executions

 Execution Xis consistent iff
there exists rf, mo and S such that
(X rf, mo,S) is well-formed and
satisfies all the consistency axioms.

e [P] = P's consistent executions™

*unless P also admits a faulty execution, then [P] = any execution



SC axioms

acy(SC2 N(riUreUrsUraUrs UreUry) \ id) (Spartial)



SC axioms

ac:y(SC2 N(riUreUrsUraUrs UreUry) \ id) (Spartial)




SC axioms

aCy SC2
( ||(7'1U7'2U7'3U7'4U7'5U7'6U7')\id) (S )
* 7 partial

This axiom IS faster to simulate!

Existing compilation schemes (x86 and

Power) remain valid.
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SC axioms

2 ?
acy(SC* N (Fsb™ ; (hb U rb U mo) ; sbF")). (Ssimp)
simp

pler for

This axiom is much sim
tand and to use

programmers to unders
Existing compilation schemes (x86 and
Power) remain valid.



Candidate executions

c: W(x,1,RLX) d:R(x,1,RLX) f:\W(x,2,SC) h: W(y, 1, SC)
T l Susb/ Slvsb
rf f

rf e: R(x,2,RLX) ¢: R(y,0,8C) i: R(x,1,SC)

a: Wha(x,0) b: Wha(y,0)
o e




Changing the standard

6.

10.

11.

There shall be a single total order S on all
memory_order_seq_cst operations, consistent with
the “happens before” order and modification orders for all
affected locations, such that each memory_order_seq_cst
operation B that loads a value from an atomic object M
observes one of the following values:

e the result of the last modification A of M that precedes B
in S, if it exists, or

o if A exists, the result of some modification of M in the
visible sequence of side effects with respect to B that is
not memory_order_seq_cst and that does not happen
before A, or

e if A does not exist, the result of some modification of M
in the visible sequence of side effects with respect to B
that is not memory_order_seq_cst.

N

. For an atomic operation B that reads the value of an

atomic object M, if there is a memory_order_seq_cst
fence X sequenced before B, then B observes either the
last memory_order_seq_cst modification of M preceding
X in the total order S or a later modification of M in its
modification order.

For atomic operations A and B on an atomic object M,
where A modifies M and B takes its value, if there is a
memory_order_seq_cst fence X such that A is sequenced
before X and B follows X in S, then B observes either the
effects of A or a later modification of M in its modification
order.

For atomic operations A and B on an atomic object M,
where A modifies M and B takes its value, if there are
memory_order_seq_cst fences X and Y such that A is
sequenced before X, Y is sequenced before B, and X
precedes Y in S, then B observes either the effects of A
or a later modification of M in its modification order.

[276 words; FK reading ease 41.2]

. A value computation A of an object M reads before a side

effect B on M if A and B are different operations and B
follows, in the modification order of M, the side effect that A
observes.

. If X reads before Y, or happens before Y, or precedes Y in

modification order, then X (as well as any fences sequenced
before X) is SC-before Y (as well as any fences sequenced
after Y).

. If A is SC-before B, and A and B are both memory_

order_seq_cst, then A is restricted-SC-before B.

. There must be no cycles in restricted-SC-before.

[93 words; FK reading ease 73.1]
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OpenCL

e Execution hierarchy:

 Many threads form a work-group

« Many work-groups execute on a device

e Several devices form a heterogeneous system
« Memory hierarchy:

 private (accessible to one thread)

* local (accessible to one work-group)

 global (accessible to all devices)

e global fga (accessible to all devices, allows inter-device
communication)
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OpenCL memory regions

device

work-group

local

global global_fga
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OpenCL memory scopes

* Memory consistency can be localised to one
subtree of the execution hierarchy.

atomic store explicit(x, 1,
memory order..., memory scope all svm devices);
memory scope device

memory scope WwWOrk group



*xX = 42; if (atomic load explicit(y,

atomic store explicit(y, 1, memory order acquilre,
memory order release, memory scope work group))
memory scope work group); print (x);

v/



*X = if (atomic load explicit(y,

atomic store explicit(y, 1, memory order acquilre,
memory order release, memory scope work group))
memory scope work group); print (x);

X



*xX = if (atomic load explicit(y,

atomic store explicit(y, 1, memory order acquilre,
memory order release, memory scope device))
memory scope device); print(x);

v/



*x = 42;
atomic store explicit(y,
memory order release,
memory scope device);

1,

if (atomic load explicit(y,
memory order acquire,
memory scope device))
print(x);

v/



*x = 42;
atomic store explicit(y,
memory order release,
memory scope device);

1,

if (atomic load explicit(y,
memory order acquire,

memory scope_work group))

print(x);

X



Scope inclusion

e (e1,e2) e incliff:
e1s scope Is wide enough to reach €2, and
eZ's scope Is wide enough to reach e7.
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SC axioms in OpenCL

 There is a total order Sover |[...]

« PROVIDING every SC operation

has memory scope all svm devices and
accesses global fga memory

* OR every SC operation
has memory scope device and
does not access global fga memory
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2 Can't always tell whether a location is global or
global fgal!

) The default. which is memory scope device,
IS not always enough!

=~ Non-compositional!
=~ Unnecessarily restrictive!

2 And too weak anyway!
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SC axioms in OpenCL

acy(SC” .
y(SC* N (Fsb™ ; (ghb U lhb U rb U mo) ; sbF") N incl)
(O'Sscoped)

Existing compilation scheme
(for AMD GPUs) remains valid.



Changing the standard

If one of the following two conditions holds:

e All memory_order_seq_cst operations have the scope
memory_scope_all_svm_devices and all affected memory
locations are contained in system allocations or fine grain
SVM buffers with atomics support

e All memory_order_seq_cst operations have the scope
memory_scope_device and all affected memory locations
are not located in system allocated regions or fine-grain SVM
buffers with atomics support

then there shall exist a single total order S for all
memory_order_seq_cst operations that is consistent with the
modification orders for all affected locations, as well as the appro-
priate global-happens-before and local-happens-before orders for
those locations, such that each memory_order_seq_cst opera-
tion B that loads a value from an atomic object M in global or
local memory observes one of the following values:

e the result of the last modification A of M that precedes B in
S, if it exists, or

e if A exists, the result of some modification of M in the
visible sequence of side effects with respect to B that is not
memory_order_seq_cst and that does not happen before A,
or

e if A does not exist, the result of some modification of M in
the visible sequence of side effects with respect to B that is
not memory_order_seq_cst.

[...]
If the total order S exists, the following rules hold:

e For an atomic operation B that reads the value of an
atomic object M, if there is a memory_order_seq_cst
fence X sequenced-before B, then B observes either the
last memory_order_seq_cst modification of M preceding
X in the total order S or a later modification of M in its
modification order.

e For atomic operations A and B on an atomic object M,
where A modifies M and B takes its value, if there is a
memory_order_seq_cst fence X such that A is sequenced-
before X and B follows X in S, then B observes either the
effects of A or a later modification of M in its modification
order.

e For atomic operations A and B on an atomic object M,
where A modifies M and B takes its value, if there are
memory_order_seq_cst fences X and Y such that A is
sequenced- before X, Y is sequenced-before B, and X
precedes Y in S, then B observes either the effects of A
or a later modification of M in its modification order.

e For atomic operations A and B on an atomic object M, if
there are memory_order_seq_cst fences X and Y such
that A is sequenced-before X, Y is sequenced-before B,
and X precedes Y in S, then B occurs later than A in the
modification order of M.

[391 words; FK reading ease -22.0]

. A value computation A of an object M reads before a side

effect B on M if A and B are different operations and B
follows, in the modification order of M, the side effect that A
observes.

. If X reads before Y, or global happens before Y, or local

happens before Y, or precedes Y in modification order, then
X (as well as any fences sequenced before X) is SC-before
Y (as well as any fences sequenced after V).

.If A is SC-before B, and A and B are both memory_

order_seq_cst, and A and B have inclusive scopes, then A
is restricted-SC-before B.

. There must be no cycles in restricted-SC-before.

[106 words; FK reading ease 71.0]



TL;DR

* [he rules for sequentially-consistent atomic

operations and fences ('SC atomics") in C11 and
OpenCL are

~ too complex,
~ too weak, and

“’ too strong.

* We suggest how to fix them = .



