Overhauling SC atomics
N C11 and OpenCL

John Wickerson. Mark Batty, and Alastair F. Donaldson

Imperial Concurrency Workshof8 :
July 2015

TL;DR

* [he rules for sequentially-consistent atomic
operations and fences ('SC atomics") in C11 and
OpenCL are

TL;DR

* [he rules for sequentially-consistent atomic
operations and fences ('SC atomics") in C11 and
OpenCL are

~ too complex,

TL;DR

* [he rules for sequentially-consistent atomic
operations and fences ('SC atomics") in C11 and
OpenCL are

~ too complex,

~ too weak, and

TL;DR

* [he rules for sequentially-consistent atomic
operations and fences ('SC atomics") in C11 and
OpenCL are

~ too complex,
~ too weak, and

“’ too strong.

TL;DR

* [he rules for sequentially-consistent atomic

operations and fences ('SC atomics") in C11 and
OpenCL are

~ too complex,
~ too weak, and

“’ too strong.

* We suggest how to fix them = .

Outline

Introduction to the C11 memory model
Overhauling the rules for SC atomics in C11
Introduction to the OpenCL memory model

Overhauling the rules for SC atomics in OpenCL

C11 atomics

* A collection of indivisible operations for lock-free
programming, e.g.:

atomic store explicit(x, 1, memory order relaxed);

C11 atomics

* A collection of indivisible operations for lock-free
programming, e.g.:

atomic store explicit(x, 1, memory order release);
memory order relaxed

C11 atomics

* A collection of indivisible operations for lock-free
programming, e.g.:

atomic store explicit(x, 1, memory order acquire);
memory order release
memory order relaxed

C11 atomics

* A collection of indivisible operations for lock-free
programming, e.g.:

atomic store explicit(x, 1, memory order rel acq);
memory order acquire
memory order release

memory order relaxed

C11 atomics

* A collection of indivisible operations for lock-free
programming, e.g.:

atomic store explicit(x, 1, memory order seq cst);
memory order rel acq
memory order acquire
memory order release
memory order relaxed

C11 atomics

* A collection of indivisible operations for lock-free
programming, e.g.:

atomic store explicit(x, 1, memory order seq cst);
memory order rel acq

memory order acguire
The presence of these other memory Y_ —ac4

orders makes the semantics of SC .
atomics surprisingly complex

memory order release

memory order relaxed

C11 memory model

* [race-based semantics (‘executions’).

C11 memory model

* [race-based semantics (‘executions’).

* First phase: generate an overapproximation, by
considering each thread in isolation.

C11 memory model

* [race-based semantics (‘executions’).

* First phase: generate an overapproximation, by
considering each thread in isolation.

e Second phase: remove executions that are
inconsistent with the axioms of the memory model.

Example

*xX = 42 if (atomic load explicit(y,
atomic store explicit(y, 1, memory order acquire))
memory order release); print (*x);

Example

*xX = 42;
atomic store explicit(y, 1,
memory order release);

Example

*x = 42;
atomic store explicit(y, 1,
memory order release);

Wna(x,42)

Example

if (atomic load explicit(y,
memory order acquire))
print(*x);

Example

if (atomic load explicit(y,
memory order acquire))
print(*x);

R(y,0,ACQ)

Example

if (atomic load explicit(y,
memory order acquire))
print(*x);

Example

if (atomic load explicit(y,
memory order acquire))
print(*x);

Rna(x,23)

Example

if (atomic load explicit(y,
memory order acquire))
print(*x);

Rna(x,82)

Example

if (atomic load explicit(y,
memory order acquire))
print(*x);

Example

Wna(x,42)
Wna(x,42)

Rna(x,42)

Wna(x,42)
Wna(x,42)

Example

Wna(x,42)
Wna(x,42)

Rna(x,42)

Wna(x,42)
Wna(x,42)

Example

Wna(x,42)
Wna(x,42)

Rna(x,42)

Wna(x,42)
Wna(x,42)

Example

Wna(x,42)
Wna(x,42)

Rna(x,42)

Wna(x,42)
Wna(x,42)

Example

Wna(x,42)
Wna(x,42)

Rna(x,42)

Wna(x,42)
Wna(x,42)

Consistent executions

Consistent executions

e Execution XIs consistent iff

satisfies all the consistency axioms.

Consistent executions

e Execution XIs consistent iff

satisfies all the consistency axioms.

e [P] = P's consistent executions™

Consistent executions

e Execution XIs consistent iff

satisfies all the consistency axioms.

e [P] = P's consistent executions™

*unless P also admits a faulty execution, then [P] = any execution

Consistent executions

 Execution Xis consistent iff
there exists rf, mo and S such that
(X rf, mo,S) is well-formed and
satisfies all the consistency axioms.

e [P] = P's consistent executions™

*unless P also admits a faulty execution, then [P] = any execution

Candidate executions

a: Wha(x,0) b: Wha(y,0)

c: W(x,1,RLX) d:R(x,1,RLX) f: W(x,2,SC) h: W(y,1,SC)
lsb lsb sb

\
e: R(x,2,RLX) ¢: R(y,0,SC) 1i:R(x,1,SC)

Candidate executions

c: W(x,1,RLX) d:R(x,1,RLX) f:\W(x,2,SC) h: W(y, 1, SC)
T l Susb/ Slvsb
rf f

rf e: R(x,2,RLX) ¢: R(y,0,8C) i: R(x,1,SC)

a: Wha(x,0) b: Wha(y,0)
o e

Some axioms

Some axioms

rf

T 1"
X % X

irretlexive(rr)

Some axioms

rf

T1
X % X

irreflexive(rf) irretlexive(mo ; mo ; rf1)

Some axioms

rf

r

\

-
. mo Mo mo\

X % X

irretlexive(rf) irreflexive(mo ; mo ; rf-7) irreflexive(mo ; rf)

All consistency axioms

irr(hb) (Hb)
irr((rf)" s mo ; rf " ; hb) (Coh)
irr(rf ; hb) (R)
empty ((7f ; [nal]) \ vis) (NaRf)

C

irr(rf U (mo ; mo; rf ") U (mo ; rf)) (Rmw)

irr(.S ;) here r1 = hb (S1)
irr(S ; r2) here ro = Fsb' : MO ; sbF’ (S2)
irr(.S ; r3) here 73 = rf ' ; [SC] ; mo (S3)

here 74 = rf ' ; hbl; [W] (S4)

=
©n
—
S
S
2
£
£ ££% 2 £ %

irr(S ; rs) here r5 = Fsb; rb (S5)
irr(.S ; r6) here r¢ = rb ; sbF (56)
irr(.S ; r7) here r7 = F'sb; rb; sbF (S7)

Derived relations

acq
rel
rb
F'sb
sbF

/
s

s

SW

hb
hbl

V1S

dﬁf
def

def

dﬁf
def

def

def

def

def

def
def

(ACQUARUSC) N (RU F)
(RELUARUSC) (WUF)
(rf ™~ mo)\zd

F] 5 s

sb ; [F]

thd U (E”;[RN W)
moNrs \ ((mo\ rs’); mo)
([rel] ; Fsb' ; [W N A];rs’;
(RN A]:sbF’ ; [acq]) \ thd
(sbU (I x =I) U sw)™

hd N =ioc

(W x R)Nhbl \ (hbl; [W]; hb)

Outline

Introduction to the C11 memory model
Overhauling the rules for SC atomics in C11
Introduction to the OpenCL memory model

Overhauling the rules for SC atomics in OpenCL

jd ©
=
=

pd ©
=
=

jud @
=
=

pd © jd ©
= =
= =
AN NSNS NN N N

jd ©
=
=

pd ©
H
=

N »nn »n

9 o

7~ N\

N o

383

9 o

33 3

N—"

SN— N

S\ (mo;5));74)

SN’ N NS

SC axioms

where 71 = hb (S1)
where 7o = Fsb' : mo ; sbF" (S2)
where r5 = rf ' ; SC| ; mo (S3)
where 74 = rf ~ " ; hbl; [W] (S4)
where r5s = Fsb ; rb (S5)
where r¢ = rb ; sbF’ (S6)
where r7 = F'sb ; rb ; sbF (S7)

N
=3
p—d

jd @
=
)—%

i
=
H

N W
@ o

i @ jd © ° i @
= = =
= = —

N U o

jd @
=
H

e
=
e
N7 NS NN N N N,
N e N N N N N

3335

o o

SC axioms

where r1 = hb

(S1)

where ro = Fsb’ ;: mo : sbF'* (S2)

where 73 = rf ' ; [SC] ; mo
where 74 = rf ~ " ; hbl ; [W]
where r5 = Fsb ; rb

where r¢ = b ; sbF
where 77 = Fsb ; rb ; sbF

(S3)
(54)
(S5)
(56)
(S7)

SC axioms

1rr

=3

where r; = hb
Fsb’ (S1)

1rT

where r 5

-

V)

S

£y

-~

P

N

N
| —

1rT

|
=
|
—

where 73

1T
1T
1T
1T

where r "

>

A~ ™~
. CQCQ/—\’
S -
v_/vl-;
~— e~
~

Robin Morisset

INRIA

Abstract thus 10 re { e-free ust ex nly sed
We show thal ory mode mtroduced py the 2011 consistel (that 1%, \eav'\.ﬂ iours e racy ¢

C and C+¥ stand oes not Pe mon SOuree to- defined & ha antics. T pprot- sually
source pro transf mation (¢ P gsion 1in arisatio as DR ata T4 om), P alin © ng’r‘
d“roach tel” reordernng d piler orm an cause under th thests share® (e ‘S.p“
hat are deemed OfY such 1t ot b cd to de tected bY cas about interleaVin®
fine the € atics of termed {anguag ilers, aS for access \s0 PP all co becz‘mse
nstance M aimed © consid ber of qsible 10 mise €O 1y P v trespects nronisat
cal fixes: ngthen s ng del. by Sevet how at 1t indeed h e that 10
evaluate the fixe Jdetermining ich prog! transfor DR o.de‘ ‘ mpi ,OP‘ L re COIT
mations 3 with resP each of h ols. We clude climination reordsrmgs - chrom
- C ¢ their €O ctness e cample accesses dd so-called roach 17 reordert”

ing @ ory after ock or b an un!
Tntuitive , the trer amou jarging @ critical

oo Lan ou obviously correc

\though the 1ded ised ign ppea\m
T {anonage design is no (raightfory

Consistent executions

 Execution Xis consistent iff
there exists rf, mo and S such that
(X rf, mo,S) is well-formed and
satisfies all the consistency axioms.

e [P] = P's consistent executions™

*unless P also admits a faulty execution, then [P] = any execution

SC axioms

acy(SC2 N(riUreUrsUraUrs UreUry) \ id) (Spartial)

SC axioms

ac:y(SC2 N(riUreUrsUraUrs UreUry) \ id) (Spartial)

SC axioms

aCy SC2
(||(7'1U7'2U7'3U7'4U7'5U7'6U7')\id) (S)
* 7 partial

This axiom IS faster to simulate!

Existing compilation schemes (x86 and

Power) remain valid.

N
=3
p—d

jd @
=
)—%

i
=
H

N W
@ o

i @ jd © ° i @
= = =
= = —

N U o

jd @
=
H

e
=
e
N7 NS NN N N N,
N e N N N N N

3335

o o

SC axioms

where r1 = hb

(S1)

where ro = Fsb’ ;: mo : sbF'* (S2)

where 73 = rf ' ; [SC] ; mo
where 74 = rf ~ " ; hbl ; [W]
where r5 = Fsb ; rb

where r¢ = b ; sbF
where 77 = Fsb ; rb ; sbF

(S3)
(54)
(S5)
(56)
(S7)

N
=3
p—d

jd @
=
)—%

i
=
H

N W
@ o

i @ jd © ° i @
= = =
= = —

N U o

jd @
=
H

e
=
e
N7 NS NN N N N,
N e N N N N N

3335

o o

SC axioms

where r1 = hb

(S1)

where ro = Fsb’ ;: mo : sbF'* (S2)

where r5 = rf ' ; mo
where 74 = rf ~ " ; hbl ; [W]
where r5 = Fsb ; rb

where r¢ = b ; sbF
where 77 = Fsb ; rb ; sbF

(S3)
(54)
(S5)
(56)
(S7)

SC axioms

acy(SC* N (Fsb? . (hb U b U mo) ; st?)). (Ssimp)

SC axioms

2 ?
acy(SC* N (Fsb™ ; (hb U rb U mo) ; sbF")). (Ssimp)
simp

pler for

This axiom is much sim
tand and to use

programmers to unders
Existing compilation schemes (x86 and
Power) remain valid.

Candidate executions

c: W(x,1,RLX) d:R(x,1,RLX) f:\W(x,2,SC) h: W(y, 1, SC)
T l Susb/ Slvsb
rf f

rf e: R(x,2,RLX) ¢: R(y,0,8C) i: R(x,1,SC)

a: Wha(x,0) b: Wha(y,0)
o e

Changing the standard

6.

10.

11.

There shall be a single total order S on all
memory_order_seq_cst operations, consistent with
the “happens before” order and modification orders for all
affected locations, such that each memory_order_seq_cst
operation B that loads a value from an atomic object M
observes one of the following values:

e the result of the last modification A of M that precedes B
in S, if it exists, or

o if A exists, the result of some modification of M in the
visible sequence of side effects with respect to B that is
not memory_order_seq_cst and that does not happen
before A, or

e if A does not exist, the result of some modification of M
in the visible sequence of side effects with respect to B
that is not memory_order_seq_cst.

N

. For an atomic operation B that reads the value of an

atomic object M, if there is a memory_order_seq_cst
fence X sequenced before B, then B observes either the
last memory_order_seq_cst modification of M preceding
X in the total order S or a later modification of M in its
modification order.

For atomic operations A and B on an atomic object M,
where A modifies M and B takes its value, if there is a
memory_order_seq_cst fence X such that A is sequenced
before X and B follows X in S, then B observes either the
effects of A or a later modification of M in its modification
order.

For atomic operations A and B on an atomic object M,
where A modifies M and B takes its value, if there are
memory_order_seq_cst fences X and Y such that A is
sequenced before X, Y is sequenced before B, and X
precedes Y in S, then B observes either the effects of A
or a later modification of M in its modification order.

[276 words; FK reading ease 41.2]

. A value computation A of an object M reads before a side

effect B on M if A and B are different operations and B
follows, in the modification order of M, the side effect that A
observes.

. If X reads before Y, or happens before Y, or precedes Y in

modification order, then X (as well as any fences sequenced
before X) is SC-before Y (as well as any fences sequenced
after Y).

. If A is SC-before B, and A and B are both memory_

order_seq_cst, then A is restricted-SC-before B.

. There must be no cycles in restricted-SC-before.

[93 words; FK reading ease 73.1]

Outline

Introduction to the C11 memory model
Overhauling the rules for SC atomics in C11
Introduction to the OpenCL memory model

Overhauling the rules for SC atomics in OpenCL

OpenCL

e Execution hierarchy:

OpenCL

e Execution hierarchy:

 Many threads form a work-group

OpenCL

e Execution hierarchy:
 Many threads form a work-group

« Many work-groups execute on a device

OpenCL

e Execution hierarchy:
 Many threads form a work-group
« Many work-groups execute on a device

e Several devices form a heterogeneous system

OpenCL

e Execution hierarchy:
 Many threads form a work-group
« Many work-groups execute on a device
e Several devices form a heterogeneous system

« Memory hierarchy:

OpenCL

e Execution hierarchy:

 Many threads form a work-group

« Many work-groups execute on a device

e Several devices form a heterogeneous system
« Memory hierarchy:

 private (accessible to one thread)

OpenCL

e Execution hierarchy:

 Many threads form a work-group

« Many work-groups execute on a device

e Several devices form a heterogeneous system
« Memory hierarchy:

 private (accessible to one thread)

* local (accessible to one work-group)

OpenCL

e Execution hierarchy:

 Many threads form a work-group

« Many work-groups execute on a device

e Several devices form a heterogeneous system
« Memory hierarchy:

 private (accessible to one thread)

* local (accessible to one work-group)

 global (accessible to all devices)

OpenCL

e Execution hierarchy:

 Many threads form a work-group

« Many work-groups execute on a device

e Several devices form a heterogeneous system
« Memory hierarchy:

 private (accessible to one thread)

* local (accessible to one work-group)

 global (accessible to all devices)

e global fga (accessible to all devices, allows inter-device
communication)

OpenCL memory regions

OpenCL memory regions

OpenCL memory regions

OpenCL memory regions

work-group

OpenCL memory regions

work-group

local

OpenCL memory regions

work-group

local

OpenCL memory regions

device

work-group

local

OpenCL memory regions

device

work-group

local

OpenCL memory regions

device

work-group

local

global

OpenCL memory regions

device

work-group

local

global global_fga

OpenCL memory regions

device

work-group

global global_fga

OpenCL memory regions

device

work-group

global global_fga

OpenCL memory regions

device

work-group

global global_fga

OpenCL memory regions

device

work-group

global | global_fga |

OpenCL memory regions

device

work-group

local

global global_fga

OpenCL memory scopes

* Memory consistency can be localised to one
subtree of the execution hierarchy.

atomic store explicit(x, 1,
memory order..., memory scope work group);

OpenCL memory scopes

* Memory consistency can be localised to one
subtree of the execution hierarchy.

atomic store explicit(x, 1,
memory order..., memory scope device) ;

memory scope work group

OpenCL memory scopes

* Memory consistency can be localised to one
subtree of the execution hierarchy.

atomic store explicit(x, 1,
memory order..., memory scope all svm devices);
memory scope device

memory scope WwWOrk group

*xX = 42; if (atomic load explicit(y,

atomic store explicit(y, 1, memory order acquilre,
memory order release, memory scope work group))
memory scope work group); print (x);

v/

*X = if (atomic load explicit(y,

atomic store explicit(y, 1, memory order acquilre,
memory order release, memory scope work group))
memory scope work group); print (x);

X

*xX = if (atomic load explicit(y,

atomic store explicit(y, 1, memory order acquilre,
memory order release, memory scope device))
memory scope device); print(x);

v/

*x = 42;
atomic store explicit(y,
memory order release,
memory scope device);

1,

if (atomic load explicit(y,
memory order acquire,
memory scope device))
print(x);

v/

*x = 42;
atomic store explicit(y,
memory order release,
memory scope device);

1,

if (atomic load explicit(y,
memory order acquire,

memory scope_work group))

print(x);

X

Scope inclusion

e (e1,e2) e incliff:
e1s scope Is wide enough to reach €2, and
eZ's scope Is wide enough to reach e7.

Outline

Introduction to the C11 memory model
Overhauling the rules for SC atomics in C11
Introduction to the OpenCL memory model

Overhauling the rules for SC atomics in OpenCL

SC axioms in OpenCL

SC axioms in OpenCL

 There is a total order Sover |[...]

SC axioms in OpenCL

 There is a total order Sover |[...]

« PROVIDING every SC operation

has memory scope all svm devices and
accesses global fga memory

SC axioms in OpenCL

 There is a total order Sover |[...]

« PROVIDING every SC operation

has memory scope all svm devices and
accesses global fga memory

* OR every SC operation
has memory scope device and
does not access global fga memory

Problems

Problems

= Can't always tell whether a location is global or
global fgal

Problems

2 Can't always tell whether a location is global or
global fgal!

) The default. which is memory scope device,
IS not always enough!

Problems

2 Can't always tell whether a location is global or
global fgal!

) The default. which is memory scope device,
IS not always enough!

~ ~

=~ Non-compositional!

Problems

2 Can't always tell whether a location is global or
global fgal!

) The default. which is memory scope device,
IS not always enough!

=~ Non-compositional!

=~ Unnecessarily restrictive!

Problems

2 Can't always tell whether a location is global or
global fgal!

) The default. which is memory scope device,
IS not always enough!

=~ Non-compositional!
=~ Unnecessarily restrictive!

2 And too weak anyway!

SC axioms in OpenCL

acy(SC° N (Fsb™ ; (ghb U lhb U rb U mo) ; sbF") N incl)
(O'Sscoped)

SC axioms in OpenCL

acy(SC” .
y(SC* N (Fsb™ ; (ghb U lhb U rb U mo) ; sbF") N incl)
(O'Sscoped)

Existing compilation scheme
(for AMD GPUs) remains valid.

Changing the standard

If one of the following two conditions holds:

e All memory_order_seq_cst operations have the scope
memory_scope_all_svm_devices and all affected memory
locations are contained in system allocations or fine grain
SVM buffers with atomics support

e All memory_order_seq_cst operations have the scope
memory_scope_device and all affected memory locations
are not located in system allocated regions or fine-grain SVM
buffers with atomics support

then there shall exist a single total order S for all
memory_order_seq_cst operations that is consistent with the
modification orders for all affected locations, as well as the appro-
priate global-happens-before and local-happens-before orders for
those locations, such that each memory_order_seq_cst opera-
tion B that loads a value from an atomic object M in global or
local memory observes one of the following values:

e the result of the last modification A of M that precedes B in
S, if it exists, or

e if A exists, the result of some modification of M in the
visible sequence of side effects with respect to B that is not
memory_order_seq_cst and that does not happen before A,
or

e if A does not exist, the result of some modification of M in
the visible sequence of side effects with respect to B that is
not memory_order_seq_cst.

[...]
If the total order S exists, the following rules hold:

e For an atomic operation B that reads the value of an
atomic object M, if there is a memory_order_seq_cst
fence X sequenced-before B, then B observes either the
last memory_order_seq_cst modification of M preceding
X in the total order S or a later modification of M in its
modification order.

e For atomic operations A and B on an atomic object M,
where A modifies M and B takes its value, if there is a
memory_order_seq_cst fence X such that A is sequenced-
before X and B follows X in S, then B observes either the
effects of A or a later modification of M in its modification
order.

e For atomic operations A and B on an atomic object M,
where A modifies M and B takes its value, if there are
memory_order_seq_cst fences X and Y such that A is
sequenced- before X, Y is sequenced-before B, and X
precedes Y in S, then B observes either the effects of A
or a later modification of M in its modification order.

e For atomic operations A and B on an atomic object M, if
there are memory_order_seq_cst fences X and Y such
that A is sequenced-before X, Y is sequenced-before B,
and X precedes Y in S, then B occurs later than A in the
modification order of M.

[391 words; FK reading ease -22.0]

. A value computation A of an object M reads before a side

effect B on M if A and B are different operations and B
follows, in the modification order of M, the side effect that A
observes.

. If X reads before Y, or global happens before Y, or local

happens before Y, or precedes Y in modification order, then
X (as well as any fences sequenced before X) is SC-before
Y (as well as any fences sequenced after V).

.If A is SC-before B, and A and B are both memory_

order_seq_cst, and A and B have inclusive scopes, then A
is restricted-SC-before B.

. There must be no cycles in restricted-SC-before.

[106 words; FK reading ease 71.0]

TL;DR

* [he rules for sequentially-consistent atomic

operations and fences ('SC atomics") in C11 and
OpenCL are

~ too complex,
~ too weak, and

“’ too strong.

* We suggest how to fix them = .

