
Overhauling SC atomics
in C11 and OpenCL

John Wickerson, Mark Batty, and Alastair F. Donaldson

Imperial Concurrency Workshop
July 2015

TL;DR
• The rules for sequentially-consistent atomic

operations and fences ("SC atomics") in C11 and
OpenCL are  
😕 too complex,  

😟 too weak, and  

😠 too strong.

• We suggest how to fix them 😌.

TL;DR
• The rules for sequentially-consistent atomic

operations and fences ("SC atomics") in C11 and
OpenCL are  
😕 too complex,  

😟 too weak, and  

😠 too strong.

• We suggest how to fix them 😌.

TL;DR
• The rules for sequentially-consistent atomic

operations and fences ("SC atomics") in C11 and
OpenCL are  
😕 too complex,  

😟 too weak, and  

😠 too strong.

• We suggest how to fix them 😌.

TL;DR
• The rules for sequentially-consistent atomic

operations and fences ("SC atomics") in C11 and
OpenCL are  
😕 too complex,  

😟 too weak, and  

😠 too strong.

• We suggest how to fix them 😌.

TL;DR
• The rules for sequentially-consistent atomic

operations and fences ("SC atomics") in C11 and
OpenCL are  
😕 too complex,  

😟 too weak, and  

😠 too strong.

• We suggest how to fix them 😌.

Outline

• Introduction to the C11 memory model

• Overhauling the rules for SC atomics in C11

• Introduction to the OpenCL memory model

• Overhauling the rules for SC atomics in OpenCL

C11 atomics

• A collection of indivisible operations for lock-free
programming, e.g.:  
 
atomic_store_explicit(x, 1,);memory_order_relaxed

C11 atomics

• A collection of indivisible operations for lock-free
programming, e.g.:  
 
atomic_store_explicit(x, 1,);memory_order_release

memory_order_relaxed

C11 atomics

• A collection of indivisible operations for lock-free
programming, e.g.:  
 
atomic_store_explicit(x, 1,);memory_order_acquire

memory_order_release
memory_order_relaxed

C11 atomics

• A collection of indivisible operations for lock-free
programming, e.g.:  
 
atomic_store_explicit(x, 1,);memory_order_rel_acq

memory_order_acquire
memory_order_release
memory_order_relaxed

C11 atomics

• A collection of indivisible operations for lock-free
programming, e.g.:  
 
atomic_store_explicit(x, 1,);memory_order_seq_cst

memory_order_rel_acq
memory_order_acquire
memory_order_release
memory_order_relaxed

C11 atomics

• A collection of indivisible operations for lock-free
programming, e.g.:  
 
atomic_store_explicit(x, 1,);memory_order_seq_cst

memory_order_rel_acq
memory_order_acquire
memory_order_release
memory_order_relaxed

The presence of these o
ther memory

orders makes the semantics of SC

atomics surprisingly complex

C11 memory model

• Trace-based semantics ("executions").

C11 memory model

• Trace-based semantics ("executions").

• First phase: generate an overapproximation, by
considering each thread in isolation.

C11 memory model

• Trace-based semantics ("executions").

• First phase: generate an overapproximation, by
considering each thread in isolation.

• Second phase: remove executions that are
inconsistent with the axioms of the memory model.

Example

*x = 42;  
atomic_store_explicit(y, 1,  
 memory_order_release);

if (atomic_load_explicit(y,  
 memory_order_acquire))  
 print(*x);

Example

*x = 42;  
atomic_store_explicit(y, 1,  
 memory_order_release);

if (atomic_load_explicit(y,  
 memory_order_acquire))  
 print(*x);

Example

*x = 42;  
atomic_store_explicit(y, 1,  
 memory_order_release);

if (atomic_load_explicit(y,  
 memory_order_acquire))  
 print(*x);

Wna(x,42)

W(y,1,REL)

Example

*x = 42;  
atomic_store_explicit(y, 1,  
 memory_order_release);

if (atomic_load_explicit(y,  
 memory_order_acquire))  
 print(*x);

Wna(x,42)

W(y,1,REL)

Example

*x = 42;  
atomic_store_explicit(y, 1,  
 memory_order_release);

if (atomic_load_explicit(y,  
 memory_order_acquire))  
 print(*x);

Wna(x,42)

W(y,1,REL)

R(y,0,ACQ)

Example

*x = 42;  
atomic_store_explicit(y, 1,  
 memory_order_release);

if (atomic_load_explicit(y,  
 memory_order_acquire))  
 print(*x);

Wna(x,42)

W(y,1,REL)

R(y,1,ACQ)

Rna(x,1)

Example

*x = 42;  
atomic_store_explicit(y, 1,  
 memory_order_release);

if (atomic_load_explicit(y,  
 memory_order_acquire))  
 print(*x);

Wna(x,42)

W(y,1,REL)

R(y,2,ACQ)

Rna(x,23)

Example

*x = 42;  
atomic_store_explicit(y, 1,  
 memory_order_release);

if (atomic_load_explicit(y,  
 memory_order_acquire))  
 print(*x);

Wna(x,42)

W(y,1,REL)

R(y,7,ACQ)

Rna(x,82)

Example

*x = 42;  
atomic_store_explicit(y, 1,  
 memory_order_release);

if (atomic_load_explicit(y,  
 memory_order_acquire))  
 print(*x);

Wna(x,42)

W(y,1,REL)

R(y,1,ACQ)

Rna(x,42)

Example
Wna(x,42)

W(y,1,REL)

R(y,1,ACQ)

Rna(x,42)

Wna(x,42)

W(y,1,REL)

R(y,0,ACQ)

Wna(x,42)

W(y,1,REL)

R(y,5,ACQ)

Rna(x, 2)

Wna(x,42)

W(y,1,REL)

R(y,1,ACQ)

Rna(x, 0)

Example
Wna(x,42)

W(y,1,REL)

R(y,1,ACQ)

Rna(x,42)

Wna(x,42)

W(y,1,REL)

R(y,0,ACQ)

Wna(x,42)

W(y,1,REL)

R(y,5,ACQ)

Rna(x, 2)

Wna(x,42)

W(y,1,REL)

R(y,1,ACQ)

Rna(x, 0)

✓

Example
Wna(x,42)

W(y,1,REL)

R(y,1,ACQ)

Rna(x,42)

Wna(x,42)

W(y,1,REL)

R(y,0,ACQ)

Wna(x,42)

W(y,1,REL)

R(y,5,ACQ)

Rna(x, 2)

Wna(x,42)

W(y,1,REL)

R(y,1,ACQ)

Rna(x, 0)

✓ ✓

Example
Wna(x,42)

W(y,1,REL)

R(y,1,ACQ)

Rna(x,42)

Wna(x,42)

W(y,1,REL)

R(y,0,ACQ)

Wna(x,42)

W(y,1,REL)

R(y,5,ACQ)

Rna(x, 2)

Wna(x,42)

W(y,1,REL)

R(y,1,ACQ)

Rna(x, 0)

❌

✓ ✓

Example
Wna(x,42)

W(y,1,REL)

R(y,1,ACQ)

Rna(x,42)

Wna(x,42)

W(y,1,REL)

R(y,0,ACQ)

Wna(x,42)

W(y,1,REL)

R(y,5,ACQ)

Rna(x, 2)

Wna(x,42)

W(y,1,REL)

R(y,1,ACQ)

Rna(x, 0)

❌

✓ ✓

❌

Consistent executions

Consistent executions

• Execution X is consistent iff  
 there exists rf, mo and S such that  
 (X,rf,mo,S) is well-formed and  
 satisfies all the consistency axioms.

Consistent executions

• Execution X is consistent iff  
 there exists rf, mo and S such that  
 (X,rf,mo,S) is well-formed and  
 satisfies all the consistency axioms.

• ⟦P⟧ = P's consistent executions*

Consistent executions

• Execution X is consistent iff  
 there exists rf, mo and S such that  
 (X,rf,mo,S) is well-formed and  
 satisfies all the consistency axioms.

• ⟦P⟧ = P's consistent executions*

*unless P also admits a faulty execution, then ⟦P⟧ = any execution

Consistent executions

• Execution X is consistent iff  
 there exists rf, mo and S such that  
 (X,rf,mo,S) is well-formed and  
 satisfies all the consistency axioms.

• ⟦P⟧ = P's consistent executions*

*unless P also admits a faulty execution, then ⟦P⟧ = any execution

Candidate executions

litmus test simulation; the construction is investigated formally in
ongoing work by Memarian et al.

Candidate executions. The second stage of the C11 semantics,
which is the focus of this paper, takes as input a program’s basic
execution set and returns the set of allowed executions. In order to
build the allowed executions, we employ an intermediate structure
called a candidate execution, which extends an execution with a
witness that comprises three additional relations, called rf (reads-
from), mo (modification order) and S (sequential consistency
order).

Definition 7 (Candidate executions). A candidate execution is
a pair (X ,w) where X = (E , I , lbl , thd , sb) is an execution,
and w = (rf ,mo,S) is a witness comprising three relations
rf ,mo,S ✓ E

2. A candidate execution is well-formed, written
wf (X ,w), if:

• every read event observes exactly one write event, and the
locations and values match; that is,

8e 2 R. 9!e 0 2 W . (e

0
, e) 2 rf

and rf ✓ =

loc

\=

val

�
(WfRf)

where 9! means ‘exists unique’;
• the modification order relates, in a strict total order, all and only

those events that write atomically to the same location; that is,

(mo [mo

�1

) = (=

loc

\W

2 \ A

2 \ id)
and acy(mo)

�
(WfMo)

where acy(r) means that r is acyclic; and
• the S relation relates, in a strict total order, all and only the SC

events in an execution; that is,

acy(S) and (S [S

�1

) = (SC

2 \ id) (WfS)

Example 3 (A C11 candidate execution). The diagram below
extends the execution in Example 2 with a witness. We elide the
thd edges (each column corresponds to one thread). The candidate
execution is well-formed, and consistent with the axioms of the
memory model (presented next).

a: W
na

(x, 0) b: W
na

(y, 0)

c: W(x, 1, RLX) d : R(x, 1, RLX)

e: R(x, 2, RLX)

f : W(x, 2, SC)

g : R(y, 0, SC)

h: W(y, 1, SC)

i : R(x, 1, SC)

sb sbsb

2.3 C11 axioms
A candidate execution is deemed consistent with the memory model
if it satisfies the 12 consistency axioms of Def. 11. We express these
axioms using the .cat language [2], which means that the axioms
are expressed in a concise language based on the propositional
fragment of Tarski’s relation calculus [28].

Definition 8 (The .cat language). The cat language supports
the definition of relations using the operators union, intersection,
difference, complement (¬), inverse (r�1), reflexive closure (r?),
transitive closure (r+), and relational composition (;), which is
defined such that (x , z) 2 r

1

; r

2

if (x , y) 2 r

1

and (y , z) 2 r

2

for some y . It also provides the syntax [s] = {(e, e) | e 2 s}
for the identity relation (id) restricted to the set s . Each axiom of
the memory model must be expressed in the form of an acyclicity
(acy r), irreflexivity (irr r), or emptiness (empty r) constraint on
some relation r constructed using these operators.

In order to define these axioms, we need first to introduce several
derived relations.

Remark 9. In the following, we justify our formal definitions
by referring to the C11 standard [15], using the notation §N :n
for section N , paragraph n . We refer to the C++11 standard [14],
whenever a clause was erroneously omitted from C11. (C11 inherits
its memory model from C++11). Similarly, we refer to the C++14
standard [16] in the case of an erroneous omission from C++11.
We include these omitted parts because doing so leads to a cleaner
model that we believe to be closer to the designers’ intent.

Definition 10 (Further derived sets and relations). In the context of
a candidate execution (E , I , lbl , thd , sb, rf ,mo,S), we define the
following subsets of E and relations over E :

acq

def

= (ACQ [AR [SC) \ (R [F)

rel

def

= (REL [AR [SC) \ (W [F)

rb

def

= (rf

�1

;mo) \ id
Fsb

def

= [F] ; sb

sbF

def

= sb ; [F]

rs

0 def

= thd [(E

2

; [R \W])

rs

def

= mo \ rs

0 \ ((mo \ rs 0) ;mo)

sw

def

= ([rel] ; Fsb

?

; [W \ A] ; rs

?

; rf ;

[R \ A] ; sbF

?

; [acq]) \ thd
hb

def

= (sb [(I ⇥ ¬I) [sw)

+

hbl

def

= hb \=

loc

vis

def

= (W ⇥ R) \ hbl \ (hbl ; [W] ; hb)

cnf

def

= ((W ⇥W) [(W ⇥ R) [(R ⇥W)) \=

loc

dr

def

= cnf \ hb \ hb�1 \ A2 \ thd

Commentary. The set acq (resp. rel) contains all events that behave
as an acquire (resp. a release).5 A read reads-before (rb) all those
writes that are mo-after the write the read observed.6

The relation rs captures the release sequence, using rs

0 as a
helper. The release sequence of e comprises those events that form
a maximal mo-chain, starting from e , of events that either are in e’s
thread or are RMWs.7

Release/acquire synchronisation is captured by the sw relation.
This relates an atomic write-release event to an atomic read-acquire
event in a different thread if the read obtains its value from the write
or its release sequence.8 If the acquire (resp. release) is a fence, the
synchronisation happens via an atomic read (resp. write) sequenced
before (resp. after) the fence.9

Happens-before (hb) is a transitive relation that includes
sequenced-before and synchronisation edges, and puts initial events
before all other events.10 A write is visible (vis) to a read if it is the
most recent write to that location in happens-before.11

Two events are in conflict (cnf) if they access the same location
and at least one is a write;12 these events go on to form a data
race (dr) if they are unrelated by happens-before, they are not both
atomic, and they are in different threads.13

We now use the derived relations of Def. 10 to formalise what it
means for an execution to be consistent.

Definition 11 (Consistency). A candidate execution (X ,w) =

(E , I , lbl , thd , sb, rf ,mo,S) is consistent, written consistent(X ,

5 [15 (§7.17.3:3–4)], [15 (§7.17.4.1:2)] 6 [31 (§5.3)]
7 [15 (§5.1.2.4:10)] 8 [15 (§5.1.2.4:11)] 9 [15 (§7.17.4:2–4)]
10 [15 (§5.1.2.4:18)], simplified in the absence of memory_order_consume
11 [15 (§5.1.2.4:19)] 12 [15 (§5.1.2.4:4)] 13 [15 (§5.1.2.4:25)]

4 2015/7/14

Candidate executions

litmus test simulation; the construction is investigated formally in
ongoing work by Memarian et al.

Candidate executions. The second stage of the C11 semantics,
which is the focus of this paper, takes as input a program’s basic
execution set and returns the set of allowed executions. In order to
build the allowed executions, we employ an intermediate structure
called a candidate execution, which extends an execution with a
witness that comprises three additional relations, called rf (reads-
from), mo (modification order) and S (sequential consistency
order).

Definition 7 (Candidate executions). A candidate execution is
a pair (X ,w) where X = (E , I , lbl , thd , sb) is an execution,
and w = (rf ,mo,S) is a witness comprising three relations
rf ,mo,S ✓ E

2. A candidate execution is well-formed, written
wf (X ,w), if:

• every read event observes exactly one write event, and the
locations and values match; that is,

8e 2 R. 9!e 0 2 W . (e

0
, e) 2 rf

and rf ✓ =

loc

\=

val

�
(WfRf)

where 9! means ‘exists unique’;
• the modification order relates, in a strict total order, all and only

those events that write atomically to the same location; that is,

(mo [mo

�1

) = (=

loc

\W

2 \ A

2 \ id)
and acy(mo)

�
(WfMo)

where acy(r) means that r is acyclic; and
• the S relation relates, in a strict total order, all and only the SC

events in an execution; that is,

acy(S) and (S [S

�1

) = (SC

2 \ id) (WfS)

Example 3 (A C11 candidate execution). The diagram below
extends the execution in Example 2 with a witness. We elide the
thd edges (each column corresponds to one thread). The candidate
execution is well-formed, and consistent with the axioms of the
memory model (presented next).

a: W
na

(x, 0) b: W
na

(y, 0)

c: W(x, 1, RLX) d : R(x, 1, RLX)

e: R(x, 2, RLX)

f : W(x, 2, SC)

g : R(y, 0, SC)

h: W(y, 1, SC)

i : R(x, 1, SC)

sb sbsb

S S

S

mo

mo

mo

rf

rf

rf

rf

2.3 C11 axioms
A candidate execution is deemed consistent with the memory model
if it satisfies the 12 consistency axioms of Def. 11. We express these
axioms using the .cat language [2], which means that the axioms
are expressed in a concise language based on the propositional
fragment of Tarski’s relation calculus [28].

Definition 8 (The .cat language). The cat language supports
the definition of relations using the operators union, intersection,
difference, complement (¬), inverse (r�1), reflexive closure (r?),
transitive closure (r+), and relational composition (;), which is
defined such that (x , z) 2 r

1

; r

2

if (x , y) 2 r

1

and (y , z) 2 r

2

for some y . It also provides the syntax [s] = {(e, e) | e 2 s}
for the identity relation (id) restricted to the set s . Each axiom of
the memory model must be expressed in the form of an acyclicity
(acy r), irreflexivity (irr r), or emptiness (empty r) constraint on
some relation r constructed using these operators.

In order to define these axioms, we need first to introduce several
derived relations.

Remark 9. In the following, we justify our formal definitions
by referring to the C11 standard [15], using the notation §N :n
for section N , paragraph n . We refer to the C++11 standard [14],
whenever a clause was erroneously omitted from C11. (C11 inherits
its memory model from C++11). Similarly, we refer to the C++14
standard [16] in the case of an erroneous omission from C++11.
We include these omitted parts because doing so leads to a cleaner
model that we believe to be closer to the designers’ intent.

Definition 10 (Further derived sets and relations). In the context of
a candidate execution (E , I , lbl , thd , sb, rf ,mo,S), we define the
following subsets of E and relations over E :

acq

def

= (ACQ [AR [SC) \ (R [F)

rel

def

= (REL [AR [SC) \ (W [F)

rb

def

= (rf

�1

;mo) \ id
Fsb

def

= [F] ; sb

sbF

def

= sb ; [F]

rs

0 def

= thd [(E

2

; [R \W])

rs

def

= mo \ rs

0 \ ((mo \ rs 0) ;mo)

sw

def

= ([rel] ; Fsb

?

; [W \ A] ; rs

?

; rf ;

[R \ A] ; sbF

?

; [acq]) \ thd
hb

def

= (sb [(I ⇥ ¬I) [sw)

+

hbl

def

= hb \=

loc

vis

def

= (W ⇥ R) \ hbl \ (hbl ; [W] ; hb)

cnf

def

= ((W ⇥W) [(W ⇥ R) [(R ⇥W)) \=

loc

dr

def

= cnf \ hb \ hb�1 \ A2 \ thd

Commentary. The set acq (resp. rel) contains all events that behave
as an acquire (resp. a release).5 A read reads-before (rb) all those
writes that are mo-after the write the read observed.6

The relation rs captures the release sequence, using rs

0 as a
helper. The release sequence of e comprises those events that form
a maximal mo-chain, starting from e , of events that either are in e’s
thread or are RMWs.7

Release/acquire synchronisation is captured by the sw relation.
This relates an atomic write-release event to an atomic read-acquire
event in a different thread if the read obtains its value from the write
or its release sequence.8 If the acquire (resp. release) is a fence, the
synchronisation happens via an atomic read (resp. write) sequenced
before (resp. after) the fence.9

Happens-before (hb) is a transitive relation that includes
sequenced-before and synchronisation edges, and puts initial events
before all other events.10 A write is visible (vis) to a read if it is the
most recent write to that location in happens-before.11

Two events are in conflict (cnf) if they access the same location
and at least one is a write;12 these events go on to form a data
race (dr) if they are unrelated by happens-before, they are not both
atomic, and they are in different threads.13

We now use the derived relations of Def. 10 to formalise what it
means for an execution to be consistent.

Definition 11 (Consistency). A candidate execution (X ,w) =

(E , I , lbl , thd , sb, rf ,mo,S) is consistent, written consistent(X ,

5 [15 (§7.17.3:3–4)], [15 (§7.17.4.1:2)] 6 [31 (§5.3)]
7 [15 (§5.1.2.4:10)] 8 [15 (§5.1.2.4:11)] 9 [15 (§7.17.4:2–4)]
10 [15 (§5.1.2.4:18)], simplified in the absence of memory_order_consume
11 [15 (§5.1.2.4:19)] 12 [15 (§5.1.2.4:4)] 13 [15 (§5.1.2.4:25)]

4 2015/7/14

Some axioms

rf
rf

rf

momo mo

❌ ❌ ❌

Some axioms

rf
rf

rf

momo mo

❌ ❌ ❌
irreflexive(rf)

Some axioms

rf
rf

rf

momo mo

❌ ❌ ❌
irreflexive(rf) irreflexive(mo ; mo ; rf-1)

Some axioms

rf
rf

rf

momo mo

❌ ❌ ❌
irreflexive(rf) irreflexive(mo ; mo ; rf-1) irreflexive(mo ; rf)

All consistency axioms
w), if it is well-formed and it satisfies all of the following axioms:

irr(hb) (Hb)
irr((rf

�1

)

?

;mo ; rf

?

; hb) (Coh)
irr(rf ; hb) (Rf)
empty((rf ; [nal]) \ vis) (NaRf)
irr(rf [(mo ;mo ; rf

�1

) [(mo ; rf)) (Rmw)
irr(S ; r

1

) where r

1

= hb (S1)
irr(S ; r

2

) where r

2

= Fsb

?

;mo ; sbF

? (S2)
irr(S ; r

3

) where r

3

= rf

�1

; [SC] ;mo (S3)
irr((S \ (mo ; S)) ; r

4

) where r

4

= rf

�1

; hbl ; [W] (S4)
irr(S ; r

5

) where r

5

= Fsb ; rb (S5)
irr(S ; r

6

) where r

6

= rb ; sbF (S6)
irr(S ; r

7

) where r

7

= Fsb ; rb ; sbF (S7)

Commentary. These axioms are equivalent to the corresponding
definitions in Batty et al.’s Lem formalisation [6], the fidelity of
which has been endorsed by the C11 standards committee. Being
expressed in the .cat language, however, they are markedly more
concise. We now explain each in turn.

Happens-before must contain no cycles.14 Requiring irreflexivity
here is sufficient (Hb), since hb is transitive. Coherence (Coh)
governs the relationship between hb and mo: if the write e

1

is
mo-before the write e

2

, then e

2

(and any events that read from e

2

)
must not happen before e

1

(nor before any events that read from
e

1

).15 A read must not observe a write that happens after it (Rf),16

and a read of a non-atomic location must observe a visible write
(NaRf).11 An RMW must observe the immediately-preceding write
in mo (Rmw);17 that is, not itself (first disjunct), nor a too-early
write (second disjunct), nor a too-late write (third disjunct).

This leaves the SC axioms, which we present using where-
clauses for ease of reference later. Axiom S1 states that S must
be consistent with happens-before.18 Axiom S2 governs the relation-
ship between S and mo: if the write e

1

is mo-before the write e

2

,
then e

2

(and any fences sequenced after e
2

) must not come before
e

1

(nor before any fences sequenced before e

1

) in S .19

Axioms S3 and S4 constrain the values that an SC read e

1

of a
location l may observe. If there are any SC writes to l preceding e

1

in S , then e

1

must read either from the most recent of these in S –
call this e

2

– or from a non-SC write that does not happen before
e

2

.18 We encode this requirement as two irreflexivity constraints.
First, we wish to rule out reading from an SC write that is not the
most recent in S ; that is, we wish to forbid cycles of the shape
depicted below left, where S

loc

def

= S \=

loc

. Axiom S3 does this,
using the simplified form shown below right.

R W

W

S

S

loc

rf

simplifies
to

SC

mo

S

rf

Second, we require e

1

not to read from a write that happens before
e

2

; that is, we wish to forbid cycles of the shape depicted below left.
Axiom S4 does this, using the simplified form shown below right.

R W

W

hb

S

loc

\ (S ; [W] ; S

loc

)

rf

simpli-
fies to

W

hbl

S \ (mo ; S)

rf

Axioms S5, S6 and S7 govern SC fences. If a read e

1

of a
location l is sequenced after an SC fence, then e

1

must not read

14 [14 (§1.10:12)] 15 [15 (§5.1.2.4:7)], [15 (§5.1.2.4:22)],
[14 (§1.10:17–18)] 16 The specification uses the ‘visible sequence of
side effects’ to phrase this clause [15 (§5.1.2.4:22)], but Batty [4 (§5.3)]
has proved that ‘happens after’ suffices. 17 [15 (§7.17.3:12)]
18 [15 (§7.17.3:6)] 19 [15 (§7.17.3:6)], [14 (§29.3:7)], [16 (§29.3:7)]

from a write to l that is mo-earlier than the last write to l that
precedes the fence in S .20 In fact, ‘the last write’ here can be safely
generalised to ‘some write’, because being mo-earlier than some
write to l that precedes the fence in S implies being mo-earlier than
the last write, since mo is total (S5). If a write e

2

to location l is
sequenced before an SC fence, then any SC read of l that follows
the fence in S must not read from a write to l that is mo-earlier than
e

2

(S6).21 Finally, if a read e

1

of location l is sequenced after an
SC fence, and a write e

2

to l is sequenced before another SC fence
that precedes the first fence in S , then e

1

must not read from a write
mo-earlier than e

2

(S7).22

A final axiom formalises what it means for an execution to
exhibit a fault.

Definition 12 (Faultiness). A candidate execution (X ,w) is faulty,
written faulty(X ,w), if it is consistent and does not satisfy the
following axiom:

empty(dr). (Dr)

If any execution can be extended to a faulty candidate execution,
then the entire program’s behaviour is ‘undefined’ and any execution
is allowed. Otherwise, the allowed executions are those executions
that can be extended to a consistent candidate execution.

Definition 13 (Allowed executions). Given a set Xs of a program’s
executions, we obtain the program’s allowed executions as:

allowed(Xs)

def

= if 9X 2 Xs. 9w . faulty(X ,w) then X
else {X 2 Xs | 9w . consistent(X ,w)}

3. Overhauling the SC axioms in C11
The rules for SC axioms in C11, as demonstrated in the previous
section, are highly convoluted. In this section, we describe how
these rules can be improved in two fairly orthogonal ways. In §3.1,
we describe how the total order over SC operations can be replaced
with a partial order; this simplification will be demonstrated in §6.2
to dramatically improve the efficiency with which the model can
be simulated. In §3.2, we describe a slight strengthening of the
model that enables significant simplifications to be made. These
simplifications lead to a model that is easier to understand, and
should prove easier to work with in a formal setting.

3.1 Reducing S from a total to a partial order
We observe that all but one of the seven SC axioms (Def. 11) can
be written in the form irr(S ; r) for some relational expression r .
These r ’s can be seen as the constraints on the total order S . Axiom
S4 is not quite of this form. However, replacing its ‘S \ (mo ; S)’
with just ‘S ’, to obtain the axiom S4a given below, happens to
coincide exactly with an amendment to the model already proposed
by Vafeiadis et al. to lend the model more desirable mathematical
properties [31 (§4.2)].

irr(S ; r

4

) (S4a)

Where axiom S4 forbids an SC read to observe any write that
happens before the most recent SC write in S , axiom S4a forbids
it to observe any write that happens before any SC write in S .
Let us assume here that their uncontroversial amendment will be
accommodated by the C standards committee. We are now in a
position to replace the seven irreflexivity axioms with a single
acyclicity axiom.

Theorem 1. There exists a strict total order on SC events that
satisfies axioms S1, S2, S3, S4a, S5, S6, and S7, if and only if

20 [15 (§7.17.3:9)] 21 [15 (§7.17.3:10)] 22 [15 (§7.17.3:11)]

5 2015/7/14

Derived relations

litmus test simulation; the construction is investigated formally in
ongoing work by Memarian et al.

Candidate executions. The second stage of the C11 semantics,
which is the focus of this paper, takes as input a program’s basic
execution set and returns the set of allowed executions. In order to
build the allowed executions, we employ an intermediate structure
called a candidate execution, which extends an execution with a
witness that comprises three additional relations, called rf (reads-
from), mo (modification order) and S (sequential consistency
order).

Definition 7 (Candidate executions). A candidate execution is
a pair (X ,w) where X = (E , I , lbl , thd , sb) is an execution,
and w = (rf ,mo,S) is a witness comprising three relations
rf ,mo,S ✓ E

2. A candidate execution is well-formed, written
wf (X ,w), if:

• every read event observes exactly one write event, and the
locations and values match; that is,

8e 2 R. 9!e 0 2 W . (e

0
, e) 2 rf

and rf ✓ =

loc

\=

val

�
(WfRf)

where 9! means ‘exists unique’;
• the modification order relates, in a strict total order, all and only

those events that write atomically to the same location; that is,

(mo [mo

�1

) = (=

loc

\W

2 \ A

2 \ id)
and acy(mo)

�
(WfMo)

where acy(r) means that r is acyclic; and
• the S relation relates, in a strict total order, all and only the SC

events in an execution; that is,

acy(S) and (S [S

�1

) = (SC

2 \ id) (WfS)

Example 3 (A C11 candidate execution). The diagram below
extends the execution in Example 2 with a witness. We elide the
thd edges (each column corresponds to one thread). The candidate
execution is well-formed, and consistent with the axioms of the
memory model (presented next).

a: W
na

(x, 0) b: W
na

(y, 0)

c: W(x, 1, RLX) d : R(x, 1, RLX)

e: R(x, 2, RLX)

f : W(x, 2, SC)

g : R(y, 0, SC)

h: W(y, 1, SC)

i : R(x, 1, SC)

sb sbsb

2.3 C11 axioms
A candidate execution is deemed consistent with the memory model
if it satisfies the 12 consistency axioms of Def. 11. We express these
axioms using the .cat language [2], which means that the axioms
are expressed in a concise language based on the propositional
fragment of Tarski’s relation calculus [28].

Definition 8 (The .cat language). The cat language supports
the definition of relations using the operators union, intersection,
difference, complement (¬), inverse (r�1), reflexive closure (r?),
transitive closure (r+), and relational composition (;), which is
defined such that (x , z) 2 r

1

; r

2

if (x , y) 2 r

1

and (y , z) 2 r

2

for some y . It also provides the syntax [s] = {(e, e) | e 2 s}
for the identity relation (id) restricted to the set s . Each axiom of
the memory model must be expressed in the form of an acyclicity
(acy r), irreflexivity (irr r), or emptiness (empty r) constraint on
some relation r constructed using these operators.

In order to define these axioms, we need first to introduce several
derived relations.

Remark 9. In the following, we justify our formal definitions
by referring to the C11 standard [15], using the notation §N :n
for section N , paragraph n . We refer to the C++11 standard [14],
whenever a clause was erroneously omitted from C11. (C11 inherits
its memory model from C++11). Similarly, we refer to the C++14
standard [16] in the case of an erroneous omission from C++11.
We include these omitted parts because doing so leads to a cleaner
model that we believe to be closer to the designers’ intent.

Definition 10 (Further derived sets and relations). In the context of
a candidate execution (E , I , lbl , thd , sb, rf ,mo,S), we define the
following subsets of E and relations over E :

acq

def

= (ACQ [AR [SC) \ (R [F)

rel

def

= (REL [AR [SC) \ (W [F)

rb

def

= (rf

�1

;mo) \ id
Fsb

def

= [F] ; sb

sbF

def

= sb ; [F]

rs

0 def

= thd [(E

2

; [R \W])

rs

def

= mo \ rs

0 \ ((mo \ rs 0) ;mo)

sw

def

= ([rel] ; Fsb

?

; [W \ A] ; rs

?

; rf ;

[R \ A] ; sbF

?

; [acq]) \ thd
hb

def

= (sb [(I ⇥ ¬I) [sw)

+

hbl

def

= hb \=

loc

vis

def

= (W ⇥ R) \ hbl \ (hbl ; [W] ; hb)

cnf

def

= ((W ⇥W) [(W ⇥ R) [(R ⇥W)) \=

loc

dr

def

= cnf \ hb \ hb�1 \ A2 \ thd

Commentary. The set acq (resp. rel) contains all events that behave
as an acquire (resp. a release).5 A read reads-before (rb) all those
writes that are mo-after the write the read observed.6

The relation rs captures the release sequence, using rs

0 as a
helper. The release sequence of e comprises those events that form
a maximal mo-chain, starting from e , of events that either are in e’s
thread or are RMWs.7

Release/acquire synchronisation is captured by the sw relation.
This relates an atomic write-release event to an atomic read-acquire
event in a different thread if the read obtains its value from the write
or its release sequence.8 If the acquire (resp. release) is a fence, the
synchronisation happens via an atomic read (resp. write) sequenced
before (resp. after) the fence.9

Happens-before (hb) is a transitive relation that includes
sequenced-before and synchronisation edges, and puts initial events
before all other events.10 A write is visible (vis) to a read if it is the
most recent write to that location in happens-before.11

Two events are in conflict (cnf) if they access the same location
and at least one is a write;12 these events go on to form a data
race (dr) if they are unrelated by happens-before, they are not both
atomic, and they are in different threads.13

We now use the derived relations of Def. 10 to formalise what it
means for an execution to be consistent.

Definition 11 (Consistency). A candidate execution (X ,w) =

(E , I , lbl , thd , sb, rf ,mo,S) is consistent, written consistent(X ,

5 [15 (§7.17.3:3–4)], [15 (§7.17.4.1:2)] 6 [31 (§5.3)]
7 [15 (§5.1.2.4:10)] 8 [15 (§5.1.2.4:11)] 9 [15 (§7.17.4:2–4)]
10 [15 (§5.1.2.4:18)], simplified in the absence of memory_order_consume
11 [15 (§5.1.2.4:19)] 12 [15 (§5.1.2.4:4)] 13 [15 (§5.1.2.4:25)]

4 2015/7/14

Outline

• Introduction to the C11 memory model

• Overhauling the rules for SC atomics in C11

• Introduction to the OpenCL memory model

• Overhauling the rules for SC atomics in OpenCL

SC axioms

w), if it is well-formed and it satisfies all of the following axioms:
irr(hb) (Hb)
irr((rf

�1

)

?

;mo ; rf

?

; hb) (Coh)
irr(rf ; hb) (Rf)
empty((rf ; [nal]) \ vis) (NaRf)
irr(rf [(mo ;mo ; rf

�1

) [(mo ; rf)) (Rmw)
irr(S ; r

1

) where r

1

= hb (S1)
irr(S ; r

2

) where r

2

= Fsb

?

;mo ; sbF

? (S2)
irr(S ; r

3

) where r

3

= rf

�1

; [SC] ;mo (S3)
irr((S \ (mo ; S)) ; r

4

) where r

4

= rf

�1

; hbl ; [W] (S4)
irr(S ; r

5

) where r

5

= Fsb ; rb (S5)
irr(S ; r

6

) where r

6

= rb ; sbF (S6)
irr(S ; r

7

) where r

7

= Fsb ; rb ; sbF (S7)

Commentary. These axioms are equivalent to the corresponding
definitions in Batty et al.’s Lem formalisation [6], the fidelity of
which has been endorsed by the C11 standards committee. Being
expressed in the .cat language, however, they are markedly more
concise. We now explain each in turn.

Happens-before must contain no cycles.14 Requiring irreflexivity
here is sufficient (Hb), since hb is transitive. Coherence (Coh)
governs the relationship between hb and mo: if the write e

1

is
mo-before the write e

2

, then e

2

(and any events that read from e

2

)
must not happen before e

1

(nor before any events that read from
e

1

).15 A read must not observe a write that happens after it (Rf),16

and a read of a non-atomic location must observe a visible write
(NaRf).11 An RMW must observe the immediately-preceding write
in mo (Rmw);17 that is, not itself (first disjunct), nor a too-early
write (second disjunct), nor a too-late write (third disjunct).

This leaves the SC axioms, which we present using where-
clauses for ease of reference later. Axiom S1 states that S must
be consistent with happens-before.18 Axiom S2 governs the relation-
ship between S and mo: if the write e

1

is mo-before the write e

2

,
then e

2

(and any fences sequenced after e
2

) must not come before
e

1

(nor before any fences sequenced before e

1

) in S .19

Axioms S3 and S4 constrain the values that an SC read e

1

of a
location l may observe. If there are any SC writes to l preceding e

1

in S , then e

1

must read either from the most recent of these in S –
call this e

2

– or from a non-SC write that does not happen before
e

2

.18 We encode this requirement as two irreflexivity constraints.
First, we wish to rule out reading from an SC write that is not the
most recent in S ; that is, we wish to forbid cycles of the shape
depicted below left, where S

loc

def

= S \=

loc

. Axiom S3 does this,
using the simplified form shown below right.

R W

W

S

S

loc

rf

simplifies
to

SC

mo

S

rf

Second, we require e

1

not to read from a write that happens before
e

2

; that is, we wish to forbid cycles of the shape depicted below left.
Axiom S4 does this, using the simplified form shown below right.

R W

W

hb

S

loc

\ (S ; [W] ; S

loc

)

rf

simpli-
fies to

W

hbl

S \ (mo ; S)

rf

Axioms S5, S6 and S7 govern SC fences. If a read e

1

of a
location l is sequenced after an SC fence, then e

1

must not read

14 [14 (§1.10:12)] 15 [15 (§5.1.2.4:7)], [15 (§5.1.2.4:22)],
[14 (§1.10:17–18)] 16 The specification uses the ‘visible sequence of
side effects’ to phrase this clause [15 (§5.1.2.4:22)], but Batty [4 (§5.3)]
has proved that ‘happens after’ suffices. 17 [15 (§7.17.3:12)]
18 [15 (§7.17.3:6)] 19 [15 (§7.17.3:6)], [14 (§29.3:7)], [16 (§29.3:7)]

from a write to l that is mo-earlier than the last write to l that
precedes the fence in S .20 In fact, ‘the last write’ here can be safely
generalised to ‘some write’, because being mo-earlier than some
write to l that precedes the fence in S implies being mo-earlier than
the last write, since mo is total (S5). If a write e

2

to location l is
sequenced before an SC fence, then any SC read of l that follows
the fence in S must not read from a write to l that is mo-earlier than
e

2

(S6).21 Finally, if a read e

1

of location l is sequenced after an
SC fence, and a write e

2

to l is sequenced before another SC fence
that precedes the first fence in S , then e

1

must not read from a write
mo-earlier than e

2

(S7).22

A final axiom formalises what it means for an execution to
exhibit a fault.

Definition 12 (Faultiness). A candidate execution (X ,w) is faulty,
written faulty(X ,w), if it is consistent and does not satisfy the
following axiom:

empty(dr). (Dr)

If any execution can be extended to a faulty candidate execution,
then the entire program’s behaviour is ‘undefined’ and any execution
is allowed. Otherwise, the allowed executions are those executions
that can be extended to a consistent candidate execution.

Definition 13 (Allowed executions). Given a set Xs of a program’s
executions, we obtain the program’s allowed executions as:

allowed(Xs)

def

= if 9X 2 Xs. 9w . faulty(X ,w) then X
else {X 2 Xs | 9w . consistent(X ,w)}

3. Overhauling the SC axioms in C11
The rules for SC axioms in C11, as demonstrated in the previous
section, are highly convoluted. In this section, we describe how
these rules can be improved in two fairly orthogonal ways. In §3.1,
we describe how the total order over SC operations can be replaced
with a partial order; this simplification will be demonstrated in §6.2
to dramatically improve the efficiency with which the model can
be simulated. In §3.2, we describe a slight strengthening of the
model that enables significant simplifications to be made. These
simplifications lead to a model that is easier to understand, and
should prove easier to work with in a formal setting.

3.1 Reducing S from a total to a partial order
We observe that all but one of the seven SC axioms (Def. 11) can
be written in the form irr(S ; r) for some relational expression r .
These r ’s can be seen as the constraints on the total order S . Axiom
S4 is not quite of this form. However, replacing its ‘S \ (mo ; S)’
with just ‘S ’, to obtain the axiom S4a given below, happens to
coincide exactly with an amendment to the model already proposed
by Vafeiadis et al. to lend the model more desirable mathematical
properties [31 (§4.2)].

irr(S ; r

4

) (S4a)

Where axiom S4 forbids an SC read to observe any write that
happens before the most recent SC write in S , axiom S4a forbids
it to observe any write that happens before any SC write in S .
Let us assume here that their uncontroversial amendment will be
accommodated by the C standards committee. We are now in a
position to replace the seven irreflexivity axioms with a single
acyclicity axiom.

Theorem 1. There exists a strict total order on SC events that
satisfies axioms S1, S2, S3, S4a, S5, S6, and S7, if and only if

20 [15 (§7.17.3:9)] 21 [15 (§7.17.3:10)] 22 [15 (§7.17.3:11)]

5 2015/7/14

SC axioms

w), if it is well-formed and it satisfies all of the following axioms:
irr(hb) (Hb)
irr((rf

�1

)

?

;mo ; rf

?

; hb) (Coh)
irr(rf ; hb) (Rf)
empty((rf ; [nal]) \ vis) (NaRf)
irr(rf [(mo ;mo ; rf

�1

) [(mo ; rf)) (Rmw)
irr(S ; r

1

) where r

1

= hb (S1)
irr(S ; r

2

) where r

2

= Fsb

?

;mo ; sbF

? (S2)
irr(S ; r

3

) where r

3

= rf

�1

; [SC] ;mo (S3)
irr(S ; r

4

) where r

4

= rf

�1

; hbl ; [W] (S4)
irr(S ; r

5

) where r

5

= Fsb ; rb (S5)
irr(S ; r

6

) where r

6

= rb ; sbF (S6)
irr(S ; r

7

) where r

7

= Fsb ; rb ; sbF (S7)

Commentary. These axioms are equivalent to the corresponding
definitions in Batty et al.’s Lem formalisation [6], the fidelity of
which has been endorsed by the C11 standards committee. Being
expressed in the .cat language, however, they are markedly more
concise. We now explain each in turn.

Happens-before must contain no cycles.14 Requiring irreflexivity
here is sufficient (Hb), since hb is transitive. Coherence (Coh)
governs the relationship between hb and mo: if the write e

1

is
mo-before the write e

2

, then e

2

(and any events that read from e

2

)
must not happen before e

1

(nor before any events that read from
e

1

).15 A read must not observe a write that happens after it (Rf),16

and a read of a non-atomic location must observe a visible write
(NaRf).11 An RMW must observe the immediately-preceding write
in mo (Rmw);17 that is, not itself (first disjunct), nor a too-early
write (second disjunct), nor a too-late write (third disjunct).

This leaves the SC axioms, which we present using where-
clauses for ease of reference later. Axiom S1 states that S must
be consistent with happens-before.18 Axiom S2 governs the relation-
ship between S and mo: if the write e

1

is mo-before the write e

2

,
then e

2

(and any fences sequenced after e
2

) must not come before
e

1

(nor before any fences sequenced before e

1

) in S .19

Axioms S3 and S4 constrain the values that an SC read e

1

of a
location l may observe. If there are any SC writes to l preceding e

1

in S , then e

1

must read either from the most recent of these in S –
call this e

2

– or from a non-SC write that does not happen before
e

2

.18 We encode this requirement as two irreflexivity constraints.
First, we wish to rule out reading from an SC write that is not the
most recent in S ; that is, we wish to forbid cycles of the shape
depicted below left, where S

loc

def

= S \=

loc

. Axiom S3 does this,
using the simplified form shown below right.

R W

W

S

S

loc

rf

simplifies
to

SC

mo

S

rf

Second, we require e

1

not to read from a write that happens before
e

2

; that is, we wish to forbid cycles of the shape depicted below left.
Axiom S4 does this, using the simplified form shown below right.

R W

W

hb

S

loc

\ (S ; [W] ; S

loc

)

rf

simpli-
fies to

W

hbl

S \ (mo ; S)

rf

Axioms S5, S6 and S7 govern SC fences. If a read e

1

of a
location l is sequenced after an SC fence, then e

1

must not read

14 [14 (§1.10:12)] 15 [15 (§5.1.2.4:7)], [15 (§5.1.2.4:22)],
[14 (§1.10:17–18)] 16 The specification uses the ‘visible sequence of
side effects’ to phrase this clause [15 (§5.1.2.4:22)], but Batty [4 (§5.3)]
has proved that ‘happens after’ suffices. 17 [15 (§7.17.3:12)]
18 [15 (§7.17.3:6)] 19 [15 (§7.17.3:6)], [14 (§29.3:7)], [16 (§29.3:7)]

from a write to l that is mo-earlier than the last write to l that
precedes the fence in S .20 In fact, ‘the last write’ here can be safely
generalised to ‘some write’, because being mo-earlier than some
write to l that precedes the fence in S implies being mo-earlier than
the last write, since mo is total (S5). If a write e

2

to location l is
sequenced before an SC fence, then any SC read of l that follows
the fence in S must not read from a write to l that is mo-earlier than
e

2

(S6).21 Finally, if a read e

1

of location l is sequenced after an
SC fence, and a write e

2

to l is sequenced before another SC fence
that precedes the first fence in S , then e

1

must not read from a write
mo-earlier than e

2

(S7).22

A final axiom formalises what it means for an execution to
exhibit a fault.

Definition 12 (Faultiness). A candidate execution (X ,w) is faulty,
written faulty(X ,w), if it is consistent and does not satisfy the
following axiom:

empty(dr). (Dr)

If any execution can be extended to a faulty candidate execution,
then the entire program’s behaviour is ‘undefined’ and any execution
is allowed. Otherwise, the allowed executions are those executions
that can be extended to a consistent candidate execution.

Definition 13 (Allowed executions). Given a set Xs of a program’s
executions, we obtain the program’s allowed executions as:

allowed(Xs)

def

= if 9X 2 Xs. 9w . faulty(X ,w) then X
else {X 2 Xs | 9w . consistent(X ,w)}

3. Overhauling the SC axioms in C11
The rules for SC axioms in C11, as demonstrated in the previous
section, are highly convoluted. In this section, we describe how
these rules can be improved in two fairly orthogonal ways. In §3.1,
we describe how the total order over SC operations can be replaced
with a partial order; this simplification will be demonstrated in §6.2
to dramatically improve the efficiency with which the model can
be simulated. In §3.2, we describe a slight strengthening of the
model that enables significant simplifications to be made. These
simplifications lead to a model that is easier to understand, and
should prove easier to work with in a formal setting.

3.1 Reducing S from a total to a partial order
We observe that all but one of the seven SC axioms (Def. 11) can
be written in the form irr(S ; r) for some relational expression r .
These r ’s can be seen as the constraints on the total order S . Axiom
S4 is not quite of this form. However, replacing its ‘S \ (mo ; S)’
with just ‘S ’, to obtain the axiom S4a given below, happens to
coincide exactly with an amendment to the model already proposed
by Vafeiadis et al. to lend the model more desirable mathematical
properties [31 (§4.2)].

irr(S ; r

4

) (S4a)

Where axiom S4 forbids an SC read to observe any write that
happens before the most recent SC write in S , axiom S4a forbids
it to observe any write that happens before any SC write in S .
Let us assume here that their uncontroversial amendment will be
accommodated by the C standards committee. We are now in a
position to replace the seven irreflexivity axioms with a single
acyclicity axiom.

Theorem 1. There exists a strict total order on SC events that
satisfies axioms S1, S2, S3, S4a, S5, S6, and S7, if and only if

20 [15 (§7.17.3:9)] 21 [15 (§7.17.3:10)] 22 [15 (§7.17.3:11)]

5 2015/7/14

SC axioms

w), if it is well-formed and it satisfies all of the following axioms:
irr(hb) (Hb)
irr((rf

�1

)

?

;mo ; rf

?

; hb) (Coh)
irr(rf ; hb) (Rf)
empty((rf ; [nal]) \ vis) (NaRf)
irr(rf [(mo ;mo ; rf

�1

) [(mo ; rf)) (Rmw)
irr(S ; r

1

) where r

1

= hb (S1)
irr(S ; r

2

) where r

2

= Fsb

?

;mo ; sbF

? (S2)
irr(S ; r

3

) where r

3

= rf

�1

; [SC] ;mo (S3)
irr(S ; r

4

) where r

4

= rf

�1

; hbl ; [W] (S4)
irr(S ; r

5

) where r

5

= Fsb ; rb (S5)
irr(S ; r

6

) where r

6

= rb ; sbF (S6)
irr(S ; r

7

) where r

7

= Fsb ; rb ; sbF (S7)

Commentary. These axioms are equivalent to the corresponding
definitions in Batty et al.’s Lem formalisation [6], the fidelity of
which has been endorsed by the C11 standards committee. Being
expressed in the .cat language, however, they are markedly more
concise. We now explain each in turn.

Happens-before must contain no cycles.14 Requiring irreflexivity
here is sufficient (Hb), since hb is transitive. Coherence (Coh)
governs the relationship between hb and mo: if the write e

1

is
mo-before the write e

2

, then e

2

(and any events that read from e

2

)
must not happen before e

1

(nor before any events that read from
e

1

).15 A read must not observe a write that happens after it (Rf),16

and a read of a non-atomic location must observe a visible write
(NaRf).11 An RMW must observe the immediately-preceding write
in mo (Rmw);17 that is, not itself (first disjunct), nor a too-early
write (second disjunct), nor a too-late write (third disjunct).

This leaves the SC axioms, which we present using where-
clauses for ease of reference later. Axiom S1 states that S must
be consistent with happens-before.18 Axiom S2 governs the relation-
ship between S and mo: if the write e

1

is mo-before the write e

2

,
then e

2

(and any fences sequenced after e
2

) must not come before
e

1

(nor before any fences sequenced before e

1

) in S .19

Axioms S3 and S4 constrain the values that an SC read e

1

of a
location l may observe. If there are any SC writes to l preceding e

1

in S , then e

1

must read either from the most recent of these in S –
call this e

2

– or from a non-SC write that does not happen before
e

2

.18 We encode this requirement as two irreflexivity constraints.
First, we wish to rule out reading from an SC write that is not the
most recent in S ; that is, we wish to forbid cycles of the shape
depicted below left, where S

loc

def

= S \=

loc

. Axiom S3 does this,
using the simplified form shown below right.

R W

W

S

S

loc

rf

simplifies
to

SC

mo

S

rf

Second, we require e

1

not to read from a write that happens before
e

2

; that is, we wish to forbid cycles of the shape depicted below left.
Axiom S4 does this, using the simplified form shown below right.

R W

W

hb

S

loc

\ (S ; [W] ; S

loc

)

rf

simpli-
fies to

W

hbl

S \ (mo ; S)

rf

Axioms S5, S6 and S7 govern SC fences. If a read e

1

of a
location l is sequenced after an SC fence, then e

1

must not read

14 [14 (§1.10:12)] 15 [15 (§5.1.2.4:7)], [15 (§5.1.2.4:22)],
[14 (§1.10:17–18)] 16 The specification uses the ‘visible sequence of
side effects’ to phrase this clause [15 (§5.1.2.4:22)], but Batty [4 (§5.3)]
has proved that ‘happens after’ suffices. 17 [15 (§7.17.3:12)]
18 [15 (§7.17.3:6)] 19 [15 (§7.17.3:6)], [14 (§29.3:7)], [16 (§29.3:7)]

from a write to l that is mo-earlier than the last write to l that
precedes the fence in S .20 In fact, ‘the last write’ here can be safely
generalised to ‘some write’, because being mo-earlier than some
write to l that precedes the fence in S implies being mo-earlier than
the last write, since mo is total (S5). If a write e

2

to location l is
sequenced before an SC fence, then any SC read of l that follows
the fence in S must not read from a write to l that is mo-earlier than
e

2

(S6).21 Finally, if a read e

1

of location l is sequenced after an
SC fence, and a write e

2

to l is sequenced before another SC fence
that precedes the first fence in S , then e

1

must not read from a write
mo-earlier than e

2

(S7).22

A final axiom formalises what it means for an execution to
exhibit a fault.

Definition 12 (Faultiness). A candidate execution (X ,w) is faulty,
written faulty(X ,w), if it is consistent and does not satisfy the
following axiom:

empty(dr). (Dr)

If any execution can be extended to a faulty candidate execution,
then the entire program’s behaviour is ‘undefined’ and any execution
is allowed. Otherwise, the allowed executions are those executions
that can be extended to a consistent candidate execution.

Definition 13 (Allowed executions). Given a set Xs of a program’s
executions, we obtain the program’s allowed executions as:

allowed(Xs)

def

= if 9X 2 Xs. 9w . faulty(X ,w) then X
else {X 2 Xs | 9w . consistent(X ,w)}

3. Overhauling the SC axioms in C11
The rules for SC axioms in C11, as demonstrated in the previous
section, are highly convoluted. In this section, we describe how
these rules can be improved in two fairly orthogonal ways. In §3.1,
we describe how the total order over SC operations can be replaced
with a partial order; this simplification will be demonstrated in §6.2
to dramatically improve the efficiency with which the model can
be simulated. In §3.2, we describe a slight strengthening of the
model that enables significant simplifications to be made. These
simplifications lead to a model that is easier to understand, and
should prove easier to work with in a formal setting.

3.1 Reducing S from a total to a partial order
We observe that all but one of the seven SC axioms (Def. 11) can
be written in the form irr(S ; r) for some relational expression r .
These r ’s can be seen as the constraints on the total order S . Axiom
S4 is not quite of this form. However, replacing its ‘S \ (mo ; S)’
with just ‘S ’, to obtain the axiom S4a given below, happens to
coincide exactly with an amendment to the model already proposed
by Vafeiadis et al. to lend the model more desirable mathematical
properties [31 (§4.2)].

irr(S ; r

4

) (S4a)

Where axiom S4 forbids an SC read to observe any write that
happens before the most recent SC write in S , axiom S4a forbids
it to observe any write that happens before any SC write in S .
Let us assume here that their uncontroversial amendment will be
accommodated by the C standards committee. We are now in a
position to replace the seven irreflexivity axioms with a single
acyclicity axiom.

Theorem 1. There exists a strict total order on SC events that
satisfies axioms S1, S2, S3, S4a, S5, S6, and S7, if and only if

20 [15 (§7.17.3:9)] 21 [15 (§7.17.3:10)] 22 [15 (§7.17.3:11)]

5 2015/7/14

C
o
n
si
st
en

t *
Complete *

W
ented*Easyto

Re

us
e
*

valuated
*

PO
P
L
*
A

rtif
act

*

Common Compiler Optimisations are Invalid

in the C11 Memory Model and what we can do about it

Viktor Vafeiadis

MPI-SWS

Thibaut Balabonski

INRIA

Soham Chakraborty

MPI-SWS

Robin Morisset

INRIA

Francesco Zappa Nardelli

INRIA

Abstract

We show that the weak memory model introduced by the 2011

C and C++ standards does not permit many common source-to-

source program transformations (such as expression linearisation

and “roach motel” reorderings) that modern compilers perform and

that are deemed to be correct. As such it cannot be used to de-

fine the semantics of intermediate languages of compilers, as, for

instance, LLVM aimed to. We consider a number of possible lo-

cal fixes, some strengthening and some weakening the model. We

evaluate the proposed fixes by determining which program transfor-

mations are valid with respect to each of the patched models. We

provide formal Coq proofs of their correctness or counterexamples

as appropriate.

Categories and Subject Descriptors D.3.1 [Programming Lan-

guages]: Formal Definitions and Theory; D.3.3 [Programming

Languages]: Language Constructs and Features

Keywords Concurrency; Weak memory models; C/C++; Compil-

ers; Program transformations

1. Introduction

Programmers want to understand the code they write, compilers

(and hardware) try hard to optimise it. Alas, in concurrent systems

even simple compiler optimisations like constant propagation can

introduce unexpected behaviours! The memory models of program-

ming languages are designed to resolve this tension, by governing

which values can be returned when the system reads from shared

memory. However, designing memory models is hard: it requires

finding a compromise between providing an understandable and

portable execution model for concurrent programs to programmers,

while allowing common compiler optimisations.

It is well-known that only racy programs (that is, programs in

which two threads can access the same resource concurrently in

conflicting ways) can observe normal compiler and hardware op-

timisations. A common approach for a programming language is

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

POPL’15, January 15–17, 2015, Mumbai, India.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3300-9/15/01. . . $15.00.

http://dx.doi.org/10.1145/2676726.2676995

thus to require that race-free code must exhibit only sequentially-

consistent (that is, interleaving) behaviours, while racy code is un-

defined and has no semantics. This approach, usually referred to

as DRF (data race freedom), is appealing to the programmer be-

cause under the hypothesis that the shared state is properly pro-

tected by locks he has to reason only about interleaving of memory

accesses. It is also appealing to the compiler because it can opti-

mise code freely provided that it respects synchronisations. A study

by Ševčík [18] shows that it is indeed the case that in an idealised

DRF model common compiler optimisations are correct. These in-

clude elimination and reorderings of non-synchronising memory

accesses, and the so-called “roach motel” reorderings [10]: mov-

ing a memory access after a lock or before an unlock instruction.

Intuitively, the latter amounts to enlarging a critical section, which

should be obviously correct.

Although the idealised DRF design is appealing, integrating it

into a complete language design is not straightforward because ad-

ditional complexity has to be taken into account. For instance, Java

relies on unforgeability of pointers to enforce its security model,

and the Java memory model (JSR-133) [10] must impose additional

restrictions to ensure that all programs (including racy programs)

enjoy some basic memory safety guarantees. The resulting model

is intricate, and fails to allow some optimisations implemented in

the HotSpot reference compiler [17]. Despite ongoing efforts, no

satisfactory fix to JSR-133 has been proposed yet.

The recent memory model for the C and C++ languages [8, 7],

from now on referred to as C11, is also based on the DRF model.

Since these languages are not type safe, the Java restrictions are

unnecessary and both languages simply state that racy programs

have undefined behaviour. However, requiring all programs to be

well-synchronised via a locking mechanism is unacceptable when

it comes to writing low-level high-performance code, for which C

and C++ are often the languages of choice. An escape mechanism

called low-level atomics was built into the model. The idea is to

not consider conflicting atomic accesses as races, and to specify

their semantics by attributes annotated on each memory access.

These range from sequentially consistent (SC), which imposes a

total ordering semantics, to weaker ones as release (REL) and

acquire (ACQ), which can be used to efficiently implement message

passing, and relaxed (RLX), whose purpose is to allow performing

single hardware loads and stores without the overhead of memory

barrier instructions. As a result, RLX accesses do not synchronise

with one another and provide extremely weak ordering guarantees.

A common belief is that the C11 memory model enables all

common compiler optimisations, and indeed Morisset et al. [11]

proved that Ševčík’s correctness theorem for eliminations and re-

orderings of non-atomic accesses holds in the C11 memory model.

Consistent executions

• Execution X is consistent iff  
 there exists rf, mo and S such that  
 (X,rf,mo,S) is well-formed and  
 satisfies all the consistency axioms.

• ⟦P⟧ = P's consistent executions*

*unless P also admits a faulty execution, then ⟦P⟧ = any execution

SC axioms
the following S

partial

axiom (which states that the union of all the
constraints on S , when restricted to SC operations, is acyclic)
holds:

acy(SC

2 \ (r

1

[r

2

[r

3

[r

4

[r

5

[r

6

[r

7

) \ id) (S
partial

)

Proof. We are to prove

(9S.WfS ^ S1 ^ S2 ^ S3 ^ S4a ^ S5 ^ S6 ^ S7) = S
partial

.

In doing so, we make use of the order extension principle: that any
(strict) partial order can be extended to a (strict) total order.

9S .WfS ^ S1 ^ S2 ^ S3 ^ S4a ^ S5 ^ S6 ^ S7
= [basic properties of relations]

9S .WfS ^ irr(S ; (r

1

[· · · [r

7

))

= [since S is a strict total order on SC]
9S . (WfS ^ (SC

2 \ (r

1

[· · · [r

7

) \ id) ✓ S)

= [by the order extension principle]
S

partial

Having replaced axioms S1–S7 with the new S
partial

axiom, we
no longer require the S relation in execution witnesses. Memory
model simulators, such as HERD, typically work by enumerating all
executions of a program and then filtering out the consistent subset.
Removing the need to iterate through all possible total orders of
SC events – a computation that is exponential in the number of SC
events – allows simulation performance to be greatly improved, as
demonstrated in §6.2.

3.2 A stronger and simpler SC axiom
We now show that it is possible to strengthen the SC semantics
without requiring changes to the compilation schemes of any of the
C11 target architectures that have an established formal memory
model, that is: x86 and Power. The strengthening we propose
simplifies the S

partial

axiom significantly and provides stronger
guarantees to the programmer.

The proposal for this simplification arises from the observation
that the relations considered in the S

partial

axiom are nearly symmet-
ric in hb, mo and rb. In particular, both hb and mo constrain the
S order between any combination of SC fences and atomics. The
treatment of rb is different: for rb edges that begin or end at a fence,
the axioms S5, S6 and S7 ensure that the SC order is constrained to
match. When two SC atomics are related by an rb edge (S3 and S4),
ordering is only provided when the intermediate access that forms
the rb is itself an SC atomic (rule S3), or when the mo edge from
the intermediate access of the rb to its target is also covered by a hb
edge (rule S4a).

Our proposal is to strengthen the S
partial

axiom, to add these
missing constraints so that every rb edge between SC atomics
contributes to the S order. We achieve this in our model by removing
the [SC] restriction from S3, which results in the following axiom:

irr(S ; rb). (S3a)

This change permits a significant simplification to the SC rules that
we establish in the following theorem.

Theorem 2. If rule S3 is replaced by S3a (that is, if r
3

is replaced
with rb in the S

partial

axiom) then S
partial

becomes equivalent to:

acy(SC

2 \ (Fsb

?

; (hb [rb [mo) ; sbF

?

)). (S
simp

)

Proof. First note that

r

1

[r

2

[rb [r

4

[r

5

[r

6

[r

7

= [unfolding definitions and combining rb, r
5

, r
6

and r

7

]
hb [(Fsb

?

;mo ; sbF

?

) [(Fsb

?

; rb ; sbF

?

) [r

4

= [since r

4

✓ rb, by WfMo]
hb [(Fsb

?

;mo ; sbF

?

) [(Fsb

?

; rb ; sbF

?

)

= [since hb = (Fsb

?

; hb ; sbF

?

)]
Fsb

?

; (hb [rb [mo) ; sbF

?

.

This gives us the axiom acy(SC

2\(Fsb?;(hb[rb[mo);sbF

?

)\id),
which can be simplified to S

simp

because Fsb? ;(hb[rb[mo);sbF

?

is already irreflexive.

Programming impact. The change presented here does strengthen
the memory model; there are executions that were previously
allowed that are now forbidden. The simplest we found, which
is similar to one used by Vafeiadis et al. [31 (Fig. 6)], is presented in
Example 3. We believe Example 3 to be a counterintuitive execution,
because the read event i does not observe the most recent write to x
in S (namely, f), but c, which is mo-earlier than f . The execution
is forbidden by axiom S3a because of its f

S�! i

rb�! f cycle.
Although the current C11 model allows this execution, mapping this
example to the formalised targets of C11 (Power and x86) never
yields programs that exhibit it.

3.3 Soundness of existing C11 compilation schemes
There are two C11 targets with formal architectural memory models:
x86 and Power. In this subsection, we establish that for both of
these architectures, the strengthening does not require a stronger
compilation mapping. In both cases, we rely on an existing proof
of soundness from the literature. We need only establish that our
strengthened S

simp

axiom holds.
To establish the soundness of our strengthening for x86, we build

on the soundness proof of Batty et al. [5], which uses the axiomatic
model of x86 of Owens et al. [24]. To obtain soundness for Power,
we build on the soundness proof of Batty et al. [6], which uses the
operational Power model of Sarkar et al. [25].

Theorem 3. Let P be a C11 program that has has no faulty
executions. If we compile P to x86 according to the mapping
given by Batty et al. [5], then every valid x86 execution corre-
sponds to a C11 execution where S

simp

holds. If we compile P to
Power according to the mapping given by Batty et al. [6], then
every valid Power trace is observationally equivalent to a C11
execution where S

simp

holds. [Proof in §C]

In summary, this section has described how, having strengthened
the original set of axioms (S1 through S7) to use Vafeiadis et
al.’s S4a in place of S4, the behaviour of SC operations can be
captured by a single axiom (S

partial

) that allows the total order S to
be eliminated from the model. Moreover, if the axioms are further
strengthened to use our S3a in place of S3, then that axiom can be
greatly simplified (S

simp

), while still respecting current compilation
schemes. We include in §A.2 a suggestion for how the wording
of the standard could be changed to accommodate our proposal;
our rewording is considerably shorter without being stylistically
different from the original text.

4. Formalising the OpenCL memory model
A principal aim of the OpenCL initiative is to provide functional
portability across a plethora of heterogenous many-core devices.
The standard is implemented by CPU, GPU and FPGA vendors,

6 2015/7/14

SC axioms
the following S

partial

axiom (which states that the union of all the
constraints on S , when restricted to SC operations, is acyclic)
holds:

acy(SC

2 \ (r

1

[r

2

[r

3

[r

4

[r

5

[r

6

[r

7

) \ id) (S
partial

)

Proof. We are to prove

(9S.WfS ^ S1 ^ S2 ^ S3 ^ S4a ^ S5 ^ S6 ^ S7) = S
partial

.

In doing so, we make use of the order extension principle: that any
(strict) partial order can be extended to a (strict) total order.

9S .WfS ^ S1 ^ S2 ^ S3 ^ S4a ^ S5 ^ S6 ^ S7
= [basic properties of relations]

9S .WfS ^ irr(S ; (r

1

[· · · [r

7

))

= [since S is a strict total order on SC]
9S . (WfS ^ (SC

2 \ (r

1

[· · · [r

7

) \ id) ✓ S)

= [by the order extension principle]
S

partial

Having replaced axioms S1–S7 with the new S
partial

axiom, we
no longer require the S relation in execution witnesses. Memory
model simulators, such as HERD, typically work by enumerating all
executions of a program and then filtering out the consistent subset.
Removing the need to iterate through all possible total orders of
SC events – a computation that is exponential in the number of SC
events – allows simulation performance to be greatly improved, as
demonstrated in §6.2.

3.2 A stronger and simpler SC axiom
We now show that it is possible to strengthen the SC semantics
without requiring changes to the compilation schemes of any of the
C11 target architectures that have an established formal memory
model, that is: x86 and Power. The strengthening we propose
simplifies the S

partial

axiom significantly and provides stronger
guarantees to the programmer.

The proposal for this simplification arises from the observation
that the relations considered in the S

partial

axiom are nearly symmet-
ric in hb, mo and rb. In particular, both hb and mo constrain the
S order between any combination of SC fences and atomics. The
treatment of rb is different: for rb edges that begin or end at a fence,
the axioms S5, S6 and S7 ensure that the SC order is constrained to
match. When two SC atomics are related by an rb edge (S3 and S4),
ordering is only provided when the intermediate access that forms
the rb is itself an SC atomic (rule S3), or when the mo edge from
the intermediate access of the rb to its target is also covered by a hb
edge (rule S4a).

Our proposal is to strengthen the S
partial

axiom, to add these
missing constraints so that every rb edge between SC atomics
contributes to the S order. We achieve this in our model by removing
the [SC] restriction from S3, which results in the following axiom:

irr(S ; rb). (S3a)

This change permits a significant simplification to the SC rules that
we establish in the following theorem.

Theorem 2. If rule S3 is replaced by S3a (that is, if r
3

is replaced
with rb in the S

partial

axiom) then S
partial

becomes equivalent to:

acy(SC

2 \ (Fsb

?

; (hb [rb [mo) ; sbF

?

)). (S
simp

)

Proof. First note that

r

1

[r

2

[rb [r

4

[r

5

[r

6

[r

7

= [unfolding definitions and combining rb, r
5

, r
6

and r

7

]
hb [(Fsb

?

;mo ; sbF

?

) [(Fsb

?

; rb ; sbF

?

) [r

4

= [since r

4

✓ rb, by WfMo]
hb [(Fsb

?

;mo ; sbF

?

) [(Fsb

?

; rb ; sbF

?

)

= [since hb = (Fsb

?

; hb ; sbF

?

)]
Fsb

?

; (hb [rb [mo) ; sbF

?

.

This gives us the axiom acy(SC

2\(Fsb?;(hb[rb[mo);sbF

?

)\id),
which can be simplified to S

simp

because Fsb? ;(hb[rb[mo);sbF

?

is already irreflexive.

Programming impact. The change presented here does strengthen
the memory model; there are executions that were previously
allowed that are now forbidden. The simplest we found, which
is similar to one used by Vafeiadis et al. [31 (Fig. 6)], is presented in
Example 3. We believe Example 3 to be a counterintuitive execution,
because the read event i does not observe the most recent write to x
in S (namely, f), but c, which is mo-earlier than f . The execution
is forbidden by axiom S3a because of its f

S�! i

rb�! f cycle.
Although the current C11 model allows this execution, mapping this
example to the formalised targets of C11 (Power and x86) never
yields programs that exhibit it.

3.3 Soundness of existing C11 compilation schemes
There are two C11 targets with formal architectural memory models:
x86 and Power. In this subsection, we establish that for both of
these architectures, the strengthening does not require a stronger
compilation mapping. In both cases, we rely on an existing proof
of soundness from the literature. We need only establish that our
strengthened S

simp

axiom holds.
To establish the soundness of our strengthening for x86, we build

on the soundness proof of Batty et al. [5], which uses the axiomatic
model of x86 of Owens et al. [24]. To obtain soundness for Power,
we build on the soundness proof of Batty et al. [6], which uses the
operational Power model of Sarkar et al. [25].

Theorem 3. Let P be a C11 program that has has no faulty
executions. If we compile P to x86 according to the mapping
given by Batty et al. [5], then every valid x86 execution corre-
sponds to a C11 execution where S

simp

holds. If we compile P to
Power according to the mapping given by Batty et al. [6], then
every valid Power trace is observationally equivalent to a C11
execution where S

simp

holds. [Proof in §C]

In summary, this section has described how, having strengthened
the original set of axioms (S1 through S7) to use Vafeiadis et
al.’s S4a in place of S4, the behaviour of SC operations can be
captured by a single axiom (S

partial

) that allows the total order S to
be eliminated from the model. Moreover, if the axioms are further
strengthened to use our S3a in place of S3, then that axiom can be
greatly simplified (S

simp

), while still respecting current compilation
schemes. We include in §A.2 a suggestion for how the wording
of the standard could be changed to accommodate our proposal;
our rewording is considerably shorter without being stylistically
different from the original text.

4. Formalising the OpenCL memory model
A principal aim of the OpenCL initiative is to provide functional
portability across a plethora of heterogenous many-core devices.
The standard is implemented by CPU, GPU and FPGA vendors,

6 2015/7/14

This axiom is faster to simulate!

SC axioms
the following S

partial

axiom (which states that the union of all the
constraints on S , when restricted to SC operations, is acyclic)
holds:

acy(SC

2 \ (r

1

[r

2

[r

3

[r

4

[r

5

[r

6

[r

7

) \ id) (S
partial

)

Proof. We are to prove

(9S.WfS ^ S1 ^ S2 ^ S3 ^ S4a ^ S5 ^ S6 ^ S7) = S
partial

.

In doing so, we make use of the order extension principle: that any
(strict) partial order can be extended to a (strict) total order.

9S .WfS ^ S1 ^ S2 ^ S3 ^ S4a ^ S5 ^ S6 ^ S7
= [basic properties of relations]

9S .WfS ^ irr(S ; (r

1

[· · · [r

7

))

= [since S is a strict total order on SC]
9S . (WfS ^ (SC

2 \ (r

1

[· · · [r

7

) \ id) ✓ S)

= [by the order extension principle]
S

partial

Having replaced axioms S1–S7 with the new S
partial

axiom, we
no longer require the S relation in execution witnesses. Memory
model simulators, such as HERD, typically work by enumerating all
executions of a program and then filtering out the consistent subset.
Removing the need to iterate through all possible total orders of
SC events – a computation that is exponential in the number of SC
events – allows simulation performance to be greatly improved, as
demonstrated in §6.2.

3.2 A stronger and simpler SC axiom
We now show that it is possible to strengthen the SC semantics
without requiring changes to the compilation schemes of any of the
C11 target architectures that have an established formal memory
model, that is: x86 and Power. The strengthening we propose
simplifies the S

partial

axiom significantly and provides stronger
guarantees to the programmer.

The proposal for this simplification arises from the observation
that the relations considered in the S

partial

axiom are nearly symmet-
ric in hb, mo and rb. In particular, both hb and mo constrain the
S order between any combination of SC fences and atomics. The
treatment of rb is different: for rb edges that begin or end at a fence,
the axioms S5, S6 and S7 ensure that the SC order is constrained to
match. When two SC atomics are related by an rb edge (S3 and S4),
ordering is only provided when the intermediate access that forms
the rb is itself an SC atomic (rule S3), or when the mo edge from
the intermediate access of the rb to its target is also covered by a hb
edge (rule S4a).

Our proposal is to strengthen the S
partial

axiom, to add these
missing constraints so that every rb edge between SC atomics
contributes to the S order. We achieve this in our model by removing
the [SC] restriction from S3, which results in the following axiom:

irr(S ; rb). (S3a)

This change permits a significant simplification to the SC rules that
we establish in the following theorem.

Theorem 2. If rule S3 is replaced by S3a (that is, if r
3

is replaced
with rb in the S

partial

axiom) then S
partial

becomes equivalent to:

acy(SC

2 \ (Fsb

?

; (hb [rb [mo) ; sbF

?

)). (S
simp

)

Proof. First note that

r

1

[r

2

[rb [r

4

[r

5

[r

6

[r

7

= [unfolding definitions and combining rb, r
5

, r
6

and r

7

]
hb [(Fsb

?

;mo ; sbF

?

) [(Fsb

?

; rb ; sbF

?

) [r

4

= [since r

4

✓ rb, by WfMo]
hb [(Fsb

?

;mo ; sbF

?

) [(Fsb

?

; rb ; sbF

?

)

= [since hb = (Fsb

?

; hb ; sbF

?

)]
Fsb

?

; (hb [rb [mo) ; sbF

?

.

This gives us the axiom acy(SC

2\(Fsb?;(hb[rb[mo);sbF

?

)\id),
which can be simplified to S

simp

because Fsb? ;(hb[rb[mo);sbF

?

is already irreflexive.

Programming impact. The change presented here does strengthen
the memory model; there are executions that were previously
allowed that are now forbidden. The simplest we found, which
is similar to one used by Vafeiadis et al. [31 (Fig. 6)], is presented in
Example 3. We believe Example 3 to be a counterintuitive execution,
because the read event i does not observe the most recent write to x
in S (namely, f), but c, which is mo-earlier than f . The execution
is forbidden by axiom S3a because of its f

S�! i

rb�! f cycle.
Although the current C11 model allows this execution, mapping this
example to the formalised targets of C11 (Power and x86) never
yields programs that exhibit it.

3.3 Soundness of existing C11 compilation schemes
There are two C11 targets with formal architectural memory models:
x86 and Power. In this subsection, we establish that for both of
these architectures, the strengthening does not require a stronger
compilation mapping. In both cases, we rely on an existing proof
of soundness from the literature. We need only establish that our
strengthened S

simp

axiom holds.
To establish the soundness of our strengthening for x86, we build

on the soundness proof of Batty et al. [5], which uses the axiomatic
model of x86 of Owens et al. [24]. To obtain soundness for Power,
we build on the soundness proof of Batty et al. [6], which uses the
operational Power model of Sarkar et al. [25].

Theorem 3. Let P be a C11 program that has has no faulty
executions. If we compile P to x86 according to the mapping
given by Batty et al. [5], then every valid x86 execution corre-
sponds to a C11 execution where S

simp

holds. If we compile P to
Power according to the mapping given by Batty et al. [6], then
every valid Power trace is observationally equivalent to a C11
execution where S

simp

holds. [Proof in §C]

In summary, this section has described how, having strengthened
the original set of axioms (S1 through S7) to use Vafeiadis et
al.’s S4a in place of S4, the behaviour of SC operations can be
captured by a single axiom (S

partial

) that allows the total order S to
be eliminated from the model. Moreover, if the axioms are further
strengthened to use our S3a in place of S3, then that axiom can be
greatly simplified (S

simp

), while still respecting current compilation
schemes. We include in §A.2 a suggestion for how the wording
of the standard could be changed to accommodate our proposal;
our rewording is considerably shorter without being stylistically
different from the original text.

4. Formalising the OpenCL memory model
A principal aim of the OpenCL initiative is to provide functional
portability across a plethora of heterogenous many-core devices.
The standard is implemented by CPU, GPU and FPGA vendors,

6 2015/7/14

This axiom is faster to simulate!

Existing compilation schemes (x86 and

Power) remain valid.

SC axioms

w), if it is well-formed and it satisfies all of the following axioms:
irr(hb) (Hb)
irr((rf

�1

)

?

;mo ; rf

?

; hb) (Coh)
irr(rf ; hb) (Rf)
empty((rf ; [nal]) \ vis) (NaRf)
irr(rf [(mo ;mo ; rf

�1

) [(mo ; rf)) (Rmw)
irr(S ; r

1

) where r

1

= hb (S1)
irr(S ; r

2

) where r

2

= Fsb

?

;mo ; sbF

? (S2)
irr(S ; r

3

) where r

3

= rf

�1

; [SC] ;mo (S3)
irr(S ; r

4

) where r

4

= rf

�1

; hbl ; [W] (S4)
irr(S ; r

5

) where r

5

= Fsb ; rb (S5)
irr(S ; r

6

) where r

6

= rb ; sbF (S6)
irr(S ; r

7

) where r

7

= Fsb ; rb ; sbF (S7)

Commentary. These axioms are equivalent to the corresponding
definitions in Batty et al.’s Lem formalisation [6], the fidelity of
which has been endorsed by the C11 standards committee. Being
expressed in the .cat language, however, they are markedly more
concise. We now explain each in turn.

Happens-before must contain no cycles.14 Requiring irreflexivity
here is sufficient (Hb), since hb is transitive. Coherence (Coh)
governs the relationship between hb and mo: if the write e

1

is
mo-before the write e

2

, then e

2

(and any events that read from e

2

)
must not happen before e

1

(nor before any events that read from
e

1

).15 A read must not observe a write that happens after it (Rf),16

and a read of a non-atomic location must observe a visible write
(NaRf).11 An RMW must observe the immediately-preceding write
in mo (Rmw);17 that is, not itself (first disjunct), nor a too-early
write (second disjunct), nor a too-late write (third disjunct).

This leaves the SC axioms, which we present using where-
clauses for ease of reference later. Axiom S1 states that S must
be consistent with happens-before.18 Axiom S2 governs the relation-
ship between S and mo: if the write e

1

is mo-before the write e

2

,
then e

2

(and any fences sequenced after e
2

) must not come before
e

1

(nor before any fences sequenced before e

1

) in S .19

Axioms S3 and S4 constrain the values that an SC read e

1

of a
location l may observe. If there are any SC writes to l preceding e

1

in S , then e

1

must read either from the most recent of these in S –
call this e

2

– or from a non-SC write that does not happen before
e

2

.18 We encode this requirement as two irreflexivity constraints.
First, we wish to rule out reading from an SC write that is not the
most recent in S ; that is, we wish to forbid cycles of the shape
depicted below left, where S

loc

def

= S \=

loc

. Axiom S3 does this,
using the simplified form shown below right.

R W

W

S

S

loc

rf

simplifies
to

SC

mo

S

rf

Second, we require e

1

not to read from a write that happens before
e

2

; that is, we wish to forbid cycles of the shape depicted below left.
Axiom S4 does this, using the simplified form shown below right.

R W

W

hb

S

loc

\ (S ; [W] ; S

loc

)

rf

simpli-
fies to

W

hbl

S \ (mo ; S)

rf

Axioms S5, S6 and S7 govern SC fences. If a read e

1

of a
location l is sequenced after an SC fence, then e

1

must not read

14 [14 (§1.10:12)] 15 [15 (§5.1.2.4:7)], [15 (§5.1.2.4:22)],
[14 (§1.10:17–18)] 16 The specification uses the ‘visible sequence of
side effects’ to phrase this clause [15 (§5.1.2.4:22)], but Batty [4 (§5.3)]
has proved that ‘happens after’ suffices. 17 [15 (§7.17.3:12)]
18 [15 (§7.17.3:6)] 19 [15 (§7.17.3:6)], [14 (§29.3:7)], [16 (§29.3:7)]

from a write to l that is mo-earlier than the last write to l that
precedes the fence in S .20 In fact, ‘the last write’ here can be safely
generalised to ‘some write’, because being mo-earlier than some
write to l that precedes the fence in S implies being mo-earlier than
the last write, since mo is total (S5). If a write e

2

to location l is
sequenced before an SC fence, then any SC read of l that follows
the fence in S must not read from a write to l that is mo-earlier than
e

2

(S6).21 Finally, if a read e

1

of location l is sequenced after an
SC fence, and a write e

2

to l is sequenced before another SC fence
that precedes the first fence in S , then e

1

must not read from a write
mo-earlier than e

2

(S7).22

A final axiom formalises what it means for an execution to
exhibit a fault.

Definition 12 (Faultiness). A candidate execution (X ,w) is faulty,
written faulty(X ,w), if it is consistent and does not satisfy the
following axiom:

empty(dr). (Dr)

If any execution can be extended to a faulty candidate execution,
then the entire program’s behaviour is ‘undefined’ and any execution
is allowed. Otherwise, the allowed executions are those executions
that can be extended to a consistent candidate execution.

Definition 13 (Allowed executions). Given a set Xs of a program’s
executions, we obtain the program’s allowed executions as:

allowed(Xs)

def

= if 9X 2 Xs. 9w . faulty(X ,w) then X
else {X 2 Xs | 9w . consistent(X ,w)}

3. Overhauling the SC axioms in C11
The rules for SC axioms in C11, as demonstrated in the previous
section, are highly convoluted. In this section, we describe how
these rules can be improved in two fairly orthogonal ways. In §3.1,
we describe how the total order over SC operations can be replaced
with a partial order; this simplification will be demonstrated in §6.2
to dramatically improve the efficiency with which the model can
be simulated. In §3.2, we describe a slight strengthening of the
model that enables significant simplifications to be made. These
simplifications lead to a model that is easier to understand, and
should prove easier to work with in a formal setting.

3.1 Reducing S from a total to a partial order
We observe that all but one of the seven SC axioms (Def. 11) can
be written in the form irr(S ; r) for some relational expression r .
These r ’s can be seen as the constraints on the total order S . Axiom
S4 is not quite of this form. However, replacing its ‘S \ (mo ; S)’
with just ‘S ’, to obtain the axiom S4a given below, happens to
coincide exactly with an amendment to the model already proposed
by Vafeiadis et al. to lend the model more desirable mathematical
properties [31 (§4.2)].

irr(S ; r

4

) (S4a)

Where axiom S4 forbids an SC read to observe any write that
happens before the most recent SC write in S , axiom S4a forbids
it to observe any write that happens before any SC write in S .
Let us assume here that their uncontroversial amendment will be
accommodated by the C standards committee. We are now in a
position to replace the seven irreflexivity axioms with a single
acyclicity axiom.

Theorem 1. There exists a strict total order on SC events that
satisfies axioms S1, S2, S3, S4a, S5, S6, and S7, if and only if

20 [15 (§7.17.3:9)] 21 [15 (§7.17.3:10)] 22 [15 (§7.17.3:11)]

5 2015/7/14

SC axioms

w), if it is well-formed and it satisfies all of the following axioms:
irr(hb) (Hb)
irr((rf

�1

)

?

;mo ; rf

?

; hb) (Coh)
irr(rf ; hb) (Rf)
empty((rf ; [nal]) \ vis) (NaRf)
irr(rf [(mo ;mo ; rf

�1

) [(mo ; rf)) (Rmw)
irr(S ; r

1

) where r

1

= hb (S1)
irr(S ; r

2

) where r

2

= Fsb

?

;mo ; sbF

? (S2)
irr(S ; r

3

) where r

3

= rf

�1

; [SC] ;mo (S3)
irr(S ; r

4

) where r

4

= rf

�1

; hbl ; [W] (S4)
irr(S ; r

5

) where r

5

= Fsb ; rb (S5)
irr(S ; r

6

) where r

6

= rb ; sbF (S6)
irr(S ; r

7

) where r

7

= Fsb ; rb ; sbF (S7)

Commentary. These axioms are equivalent to the corresponding
definitions in Batty et al.’s Lem formalisation [6], the fidelity of
which has been endorsed by the C11 standards committee. Being
expressed in the .cat language, however, they are markedly more
concise. We now explain each in turn.

Happens-before must contain no cycles.14 Requiring irreflexivity
here is sufficient (Hb), since hb is transitive. Coherence (Coh)
governs the relationship between hb and mo: if the write e

1

is
mo-before the write e

2

, then e

2

(and any events that read from e

2

)
must not happen before e

1

(nor before any events that read from
e

1

).15 A read must not observe a write that happens after it (Rf),16

and a read of a non-atomic location must observe a visible write
(NaRf).11 An RMW must observe the immediately-preceding write
in mo (Rmw);17 that is, not itself (first disjunct), nor a too-early
write (second disjunct), nor a too-late write (third disjunct).

This leaves the SC axioms, which we present using where-
clauses for ease of reference later. Axiom S1 states that S must
be consistent with happens-before.18 Axiom S2 governs the relation-
ship between S and mo: if the write e

1

is mo-before the write e

2

,
then e

2

(and any fences sequenced after e
2

) must not come before
e

1

(nor before any fences sequenced before e

1

) in S .19

Axioms S3 and S4 constrain the values that an SC read e

1

of a
location l may observe. If there are any SC writes to l preceding e

1

in S , then e

1

must read either from the most recent of these in S –
call this e

2

– or from a non-SC write that does not happen before
e

2

.18 We encode this requirement as two irreflexivity constraints.
First, we wish to rule out reading from an SC write that is not the
most recent in S ; that is, we wish to forbid cycles of the shape
depicted below left, where S

loc

def

= S \=

loc

. Axiom S3 does this,
using the simplified form shown below right.

R W

W

S

S

loc

rf

simplifies
to

SC

mo

S

rf

Second, we require e

1

not to read from a write that happens before
e

2

; that is, we wish to forbid cycles of the shape depicted below left.
Axiom S4 does this, using the simplified form shown below right.

R W

W

hb

S

loc

\ (S ; [W] ; S

loc

)

rf

simpli-
fies to

W

hbl

S \ (mo ; S)

rf

Axioms S5, S6 and S7 govern SC fences. If a read e

1

of a
location l is sequenced after an SC fence, then e

1

must not read

14 [14 (§1.10:12)] 15 [15 (§5.1.2.4:7)], [15 (§5.1.2.4:22)],
[14 (§1.10:17–18)] 16 The specification uses the ‘visible sequence of
side effects’ to phrase this clause [15 (§5.1.2.4:22)], but Batty [4 (§5.3)]
has proved that ‘happens after’ suffices. 17 [15 (§7.17.3:12)]
18 [15 (§7.17.3:6)] 19 [15 (§7.17.3:6)], [14 (§29.3:7)], [16 (§29.3:7)]

from a write to l that is mo-earlier than the last write to l that
precedes the fence in S .20 In fact, ‘the last write’ here can be safely
generalised to ‘some write’, because being mo-earlier than some
write to l that precedes the fence in S implies being mo-earlier than
the last write, since mo is total (S5). If a write e

2

to location l is
sequenced before an SC fence, then any SC read of l that follows
the fence in S must not read from a write to l that is mo-earlier than
e

2

(S6).21 Finally, if a read e

1

of location l is sequenced after an
SC fence, and a write e

2

to l is sequenced before another SC fence
that precedes the first fence in S , then e

1

must not read from a write
mo-earlier than e

2

(S7).22

A final axiom formalises what it means for an execution to
exhibit a fault.

Definition 12 (Faultiness). A candidate execution (X ,w) is faulty,
written faulty(X ,w), if it is consistent and does not satisfy the
following axiom:

empty(dr). (Dr)

If any execution can be extended to a faulty candidate execution,
then the entire program’s behaviour is ‘undefined’ and any execution
is allowed. Otherwise, the allowed executions are those executions
that can be extended to a consistent candidate execution.

Definition 13 (Allowed executions). Given a set Xs of a program’s
executions, we obtain the program’s allowed executions as:

allowed(Xs)

def

= if 9X 2 Xs. 9w . faulty(X ,w) then X
else {X 2 Xs | 9w . consistent(X ,w)}

3. Overhauling the SC axioms in C11
The rules for SC axioms in C11, as demonstrated in the previous
section, are highly convoluted. In this section, we describe how
these rules can be improved in two fairly orthogonal ways. In §3.1,
we describe how the total order over SC operations can be replaced
with a partial order; this simplification will be demonstrated in §6.2
to dramatically improve the efficiency with which the model can
be simulated. In §3.2, we describe a slight strengthening of the
model that enables significant simplifications to be made. These
simplifications lead to a model that is easier to understand, and
should prove easier to work with in a formal setting.

3.1 Reducing S from a total to a partial order
We observe that all but one of the seven SC axioms (Def. 11) can
be written in the form irr(S ; r) for some relational expression r .
These r ’s can be seen as the constraints on the total order S . Axiom
S4 is not quite of this form. However, replacing its ‘S \ (mo ; S)’
with just ‘S ’, to obtain the axiom S4a given below, happens to
coincide exactly with an amendment to the model already proposed
by Vafeiadis et al. to lend the model more desirable mathematical
properties [31 (§4.2)].

irr(S ; r

4

) (S4a)

Where axiom S4 forbids an SC read to observe any write that
happens before the most recent SC write in S , axiom S4a forbids
it to observe any write that happens before any SC write in S .
Let us assume here that their uncontroversial amendment will be
accommodated by the C standards committee. We are now in a
position to replace the seven irreflexivity axioms with a single
acyclicity axiom.

Theorem 1. There exists a strict total order on SC events that
satisfies axioms S1, S2, S3, S4a, S5, S6, and S7, if and only if

20 [15 (§7.17.3:9)] 21 [15 (§7.17.3:10)] 22 [15 (§7.17.3:11)]

5 2015/7/14

SC axioms

the following S
partial

axiom (which states that the union of all the
constraints on S , when restricted to SC operations, is acyclic)
holds:

acy(SC

2 \ (r

1

[r

2

[r

3

[r

4

[r

5

[r

6

[r

7

) \ id) (S
partial

)

Proof. We are to prove

(9S.WfS ^ S1 ^ S2 ^ S3 ^ S4a ^ S5 ^ S6 ^ S7) = S
partial

.

In doing so, we make use of the order extension principle: that any
(strict) partial order can be extended to a (strict) total order.

9S .WfS ^ S1 ^ S2 ^ S3 ^ S4a ^ S5 ^ S6 ^ S7
= [basic properties of relations]

9S .WfS ^ irr(S ; (r

1

[· · · [r

7

))

= [since S is a strict total order on SC]
9S . (WfS ^ (SC

2 \ (r

1

[· · · [r

7

) \ id) ✓ S)

= [by the order extension principle]
S

partial

Having replaced axioms S1–S7 with the new S
partial

axiom, we
no longer require the S relation in execution witnesses. Memory
model simulators, such as HERD, typically work by enumerating all
executions of a program and then filtering out the consistent subset.
Removing the need to iterate through all possible total orders of
SC events – a computation that is exponential in the number of SC
events – allows simulation performance to be greatly improved, as
demonstrated in §6.2.

3.2 A stronger and simpler SC axiom
We now show that it is possible to strengthen the SC semantics
without requiring changes to the compilation schemes of any of the
C11 target architectures that have an established formal memory
model, that is: x86 and Power. The strengthening we propose
simplifies the S

partial

axiom significantly and provides stronger
guarantees to the programmer.

The proposal for this simplification arises from the observation
that the relations considered in the S

partial

axiom are nearly symmet-
ric in hb, mo and rb. In particular, both hb and mo constrain the
S order between any combination of SC fences and atomics. The
treatment of rb is different: for rb edges that begin or end at a fence,
the axioms S5, S6 and S7 ensure that the SC order is constrained to
match. When two SC atomics are related by an rb edge (S3 and S4),
ordering is only provided when the intermediate access that forms
the rb is itself an SC atomic (rule S3), or when the mo edge from
the intermediate access of the rb to its target is also covered by a hb
edge (rule S4a).

Our proposal is to strengthen the S
partial

axiom, to add these
missing constraints so that every rb edge between SC atomics
contributes to the S order. We achieve this in our model by removing
the [SC] restriction from S3, which results in the following axiom:

irr(S ; rb). (S3a)

This change permits a significant simplification to the SC rules that
we establish in the following theorem.

Theorem 2. If rule S3 is replaced by S3a (that is, if r
3

is replaced
with rb in the S

partial

axiom) then S
partial

becomes equivalent to:

acy(SC

2 \ (Fsb

?

; (hb [rb [mo) ; sbF

?

)). (S
simp

)

Proof. First note that

r

1

[r

2

[rb [r

4

[r

5

[r

6

[r

7

= [unfolding definitions and combining rb, r
5

, r
6

and r

7

]
hb [(Fsb

?

;mo ; sbF

?

) [(Fsb

?

; rb ; sbF

?

) [r

4

= [since r

4

✓ rb, by WfMo]
hb [(Fsb

?

;mo ; sbF

?

) [(Fsb

?

; rb ; sbF

?

)

= [since hb = (Fsb

?

; hb ; sbF

?

)]
Fsb

?

; (hb [rb [mo) ; sbF

?

.

This gives us the axiom acy(SC

2\(Fsb?;(hb[rb[mo);sbF

?

)\id),
which can be simplified to S

simp

because Fsb? ;(hb[rb[mo);sbF

?

is already irreflexive.

Programming impact. The change presented here does strengthen
the memory model; there are executions that were previously
allowed that are now forbidden. The simplest we found, which
is similar to one used by Vafeiadis et al. [31 (Fig. 6)], is presented in
Example 3. We believe Example 3 to be a counterintuitive execution,
because the read event i does not observe the most recent write to x
in S (namely, f), but c, which is mo-earlier than f . The execution
is forbidden by axiom S3a because of its f

S�! i

rb�! f cycle.
Although the current C11 model allows this execution, mapping this
example to the formalised targets of C11 (Power and x86) never
yields programs that exhibit it.

3.3 Soundness of existing C11 compilation schemes
There are two C11 targets with formal architectural memory models:
x86 and Power. In this subsection, we establish that for both of
these architectures, the strengthening does not require a stronger
compilation mapping. In both cases, we rely on an existing proof
of soundness from the literature. We need only establish that our
strengthened S

simp

axiom holds.
To establish the soundness of our strengthening for x86, we build

on the soundness proof of Batty et al. [5], which uses the axiomatic
model of x86 of Owens et al. [24]. To obtain soundness for Power,
we build on the soundness proof of Batty et al. [6], which uses the
operational Power model of Sarkar et al. [25].

Theorem 3. Let P be a C11 program that has has no faulty
executions. If we compile P to x86 according to the mapping
given by Batty et al. [5], then every valid x86 execution corre-
sponds to a C11 execution where S

simp

holds. If we compile P to
Power according to the mapping given by Batty et al. [6], then
every valid Power trace is observationally equivalent to a C11
execution where S

simp

holds. [Proof in §C]

In summary, this section has described how, having strengthened
the original set of axioms (S1 through S7) to use Vafeiadis et
al.’s S4a in place of S4, the behaviour of SC operations can be
captured by a single axiom (S

partial

) that allows the total order S to
be eliminated from the model. Moreover, if the axioms are further
strengthened to use our S3a in place of S3, then that axiom can be
greatly simplified (S

simp

), while still respecting current compilation
schemes. We include in §A.2 a suggestion for how the wording
of the standard could be changed to accommodate our proposal;
our rewording is considerably shorter without being stylistically
different from the original text.

4. Formalising the OpenCL memory model
A principal aim of the OpenCL initiative is to provide functional
portability across a plethora of heterogenous many-core devices.
The standard is implemented by CPU, GPU and FPGA vendors,

6 2015/7/14

SC axioms

This axiom is much simpler for

programmers to understand and to
 use

Existing compilation schemes (x86 and

Power) remain valid.

the following S
partial

axiom (which states that the union of all the
constraints on S , when restricted to SC operations, is acyclic)
holds:

acy(SC

2 \ (r

1

[r

2

[r

3

[r

4

[r

5

[r

6

[r

7

) \ id) (S
partial

)

Proof. We are to prove

(9S.WfS ^ S1 ^ S2 ^ S3 ^ S4a ^ S5 ^ S6 ^ S7) = S
partial

.

In doing so, we make use of the order extension principle: that any
(strict) partial order can be extended to a (strict) total order.

9S .WfS ^ S1 ^ S2 ^ S3 ^ S4a ^ S5 ^ S6 ^ S7
= [basic properties of relations]

9S .WfS ^ irr(S ; (r

1

[· · · [r

7

))

= [since S is a strict total order on SC]
9S . (WfS ^ (SC

2 \ (r

1

[· · · [r

7

) \ id) ✓ S)

= [by the order extension principle]
S

partial

Having replaced axioms S1–S7 with the new S
partial

axiom, we
no longer require the S relation in execution witnesses. Memory
model simulators, such as HERD, typically work by enumerating all
executions of a program and then filtering out the consistent subset.
Removing the need to iterate through all possible total orders of
SC events – a computation that is exponential in the number of SC
events – allows simulation performance to be greatly improved, as
demonstrated in §6.2.

3.2 A stronger and simpler SC axiom
We now show that it is possible to strengthen the SC semantics
without requiring changes to the compilation schemes of any of the
C11 target architectures that have an established formal memory
model, that is: x86 and Power. The strengthening we propose
simplifies the S

partial

axiom significantly and provides stronger
guarantees to the programmer.

The proposal for this simplification arises from the observation
that the relations considered in the S

partial

axiom are nearly symmet-
ric in hb, mo and rb. In particular, both hb and mo constrain the
S order between any combination of SC fences and atomics. The
treatment of rb is different: for rb edges that begin or end at a fence,
the axioms S5, S6 and S7 ensure that the SC order is constrained to
match. When two SC atomics are related by an rb edge (S3 and S4),
ordering is only provided when the intermediate access that forms
the rb is itself an SC atomic (rule S3), or when the mo edge from
the intermediate access of the rb to its target is also covered by a hb
edge (rule S4a).

Our proposal is to strengthen the S
partial

axiom, to add these
missing constraints so that every rb edge between SC atomics
contributes to the S order. We achieve this in our model by removing
the [SC] restriction from S3, which results in the following axiom:

irr(S ; rb). (S3a)

This change permits a significant simplification to the SC rules that
we establish in the following theorem.

Theorem 2. If rule S3 is replaced by S3a (that is, if r
3

is replaced
with rb in the S

partial

axiom) then S
partial

becomes equivalent to:

acy(SC

2 \ (Fsb

?

; (hb [rb [mo) ; sbF

?

)). (S
simp

)

Proof. First note that

r

1

[r

2

[rb [r

4

[r

5

[r

6

[r

7

= [unfolding definitions and combining rb, r
5

, r
6

and r

7

]
hb [(Fsb

?

;mo ; sbF

?

) [(Fsb

?

; rb ; sbF

?

) [r

4

= [since r

4

✓ rb, by WfMo]
hb [(Fsb

?

;mo ; sbF

?

) [(Fsb

?

; rb ; sbF

?

)

= [since hb = (Fsb

?

; hb ; sbF

?

)]
Fsb

?

; (hb [rb [mo) ; sbF

?

.

This gives us the axiom acy(SC

2\(Fsb?;(hb[rb[mo);sbF

?

)\id),
which can be simplified to S

simp

because Fsb? ;(hb[rb[mo);sbF

?

is already irreflexive.

Programming impact. The change presented here does strengthen
the memory model; there are executions that were previously
allowed that are now forbidden. The simplest we found, which
is similar to one used by Vafeiadis et al. [31 (Fig. 6)], is presented in
Example 3. We believe Example 3 to be a counterintuitive execution,
because the read event i does not observe the most recent write to x
in S (namely, f), but c, which is mo-earlier than f . The execution
is forbidden by axiom S3a because of its f

S�! i

rb�! f cycle.
Although the current C11 model allows this execution, mapping this
example to the formalised targets of C11 (Power and x86) never
yields programs that exhibit it.

3.3 Soundness of existing C11 compilation schemes
There are two C11 targets with formal architectural memory models:
x86 and Power. In this subsection, we establish that for both of
these architectures, the strengthening does not require a stronger
compilation mapping. In both cases, we rely on an existing proof
of soundness from the literature. We need only establish that our
strengthened S

simp

axiom holds.
To establish the soundness of our strengthening for x86, we build

on the soundness proof of Batty et al. [5], which uses the axiomatic
model of x86 of Owens et al. [24]. To obtain soundness for Power,
we build on the soundness proof of Batty et al. [6], which uses the
operational Power model of Sarkar et al. [25].

Theorem 3. Let P be a C11 program that has has no faulty
executions. If we compile P to x86 according to the mapping
given by Batty et al. [5], then every valid x86 execution corre-
sponds to a C11 execution where S

simp

holds. If we compile P to
Power according to the mapping given by Batty et al. [6], then
every valid Power trace is observationally equivalent to a C11
execution where S

simp

holds. [Proof in §C]

In summary, this section has described how, having strengthened
the original set of axioms (S1 through S7) to use Vafeiadis et
al.’s S4a in place of S4, the behaviour of SC operations can be
captured by a single axiom (S

partial

) that allows the total order S to
be eliminated from the model. Moreover, if the axioms are further
strengthened to use our S3a in place of S3, then that axiom can be
greatly simplified (S

simp

), while still respecting current compilation
schemes. We include in §A.2 a suggestion for how the wording
of the standard could be changed to accommodate our proposal;
our rewording is considerably shorter without being stylistically
different from the original text.

4. Formalising the OpenCL memory model
A principal aim of the OpenCL initiative is to provide functional
portability across a plethora of heterogenous many-core devices.
The standard is implemented by CPU, GPU and FPGA vendors,

6 2015/7/14

Candidate executions

litmus test simulation; the construction is investigated formally in
ongoing work by Memarian et al.

Candidate executions. The second stage of the C11 semantics,
which is the focus of this paper, takes as input a program’s basic
execution set and returns the set of allowed executions. In order to
build the allowed executions, we employ an intermediate structure
called a candidate execution, which extends an execution with a
witness that comprises three additional relations, called rf (reads-
from), mo (modification order) and S (sequential consistency
order).

Definition 7 (Candidate executions). A candidate execution is
a pair (X ,w) where X = (E , I , lbl , thd , sb) is an execution,
and w = (rf ,mo,S) is a witness comprising three relations
rf ,mo,S ✓ E

2. A candidate execution is well-formed, written
wf (X ,w), if:

• every read event observes exactly one write event, and the
locations and values match; that is,

8e 2 R. 9!e 0 2 W . (e

0
, e) 2 rf

and rf ✓ =

loc

\=

val

�
(WfRf)

where 9! means ‘exists unique’;
• the modification order relates, in a strict total order, all and only

those events that write atomically to the same location; that is,

(mo [mo

�1

) = (=

loc

\W

2 \ A

2 \ id)
and acy(mo)

�
(WfMo)

where acy(r) means that r is acyclic; and
• the S relation relates, in a strict total order, all and only the SC

events in an execution; that is,

acy(S) and (S [S

�1

) = (SC

2 \ id) (WfS)

Example 3 (A C11 candidate execution). The diagram below
extends the execution in Example 2 with a witness. We elide the
thd edges (each column corresponds to one thread). The candidate
execution is well-formed, and consistent with the axioms of the
memory model (presented next).

a: W
na

(x, 0) b: W
na

(y, 0)

c: W(x, 1, RLX) d : R(x, 1, RLX)

e: R(x, 2, RLX)

f : W(x, 2, SC)

g : R(y, 0, SC)

h: W(y, 1, SC)

i : R(x, 1, SC)

sb sbsb

S S

S

mo

mo

mo

rf

rf

rf

rf

2.3 C11 axioms
A candidate execution is deemed consistent with the memory model
if it satisfies the 12 consistency axioms of Def. 11. We express these
axioms using the .cat language [2], which means that the axioms
are expressed in a concise language based on the propositional
fragment of Tarski’s relation calculus [28].

Definition 8 (The .cat language). The cat language supports
the definition of relations using the operators union, intersection,
difference, complement (¬), inverse (r�1), reflexive closure (r?),
transitive closure (r+), and relational composition (;), which is
defined such that (x , z) 2 r

1

; r

2

if (x , y) 2 r

1

and (y , z) 2 r

2

for some y . It also provides the syntax [s] = {(e, e) | e 2 s}
for the identity relation (id) restricted to the set s . Each axiom of
the memory model must be expressed in the form of an acyclicity
(acy r), irreflexivity (irr r), or emptiness (empty r) constraint on
some relation r constructed using these operators.

In order to define these axioms, we need first to introduce several
derived relations.

Remark 9. In the following, we justify our formal definitions
by referring to the C11 standard [15], using the notation §N :n
for section N , paragraph n . We refer to the C++11 standard [14],
whenever a clause was erroneously omitted from C11. (C11 inherits
its memory model from C++11). Similarly, we refer to the C++14
standard [16] in the case of an erroneous omission from C++11.
We include these omitted parts because doing so leads to a cleaner
model that we believe to be closer to the designers’ intent.

Definition 10 (Further derived sets and relations). In the context of
a candidate execution (E , I , lbl , thd , sb, rf ,mo,S), we define the
following subsets of E and relations over E :

acq

def

= (ACQ [AR [SC) \ (R [F)

rel

def

= (REL [AR [SC) \ (W [F)

rb

def

= (rf

�1

;mo) \ id
Fsb

def

= [F] ; sb

sbF

def

= sb ; [F]

rs

0 def

= thd [(E

2

; [R \W])

rs

def

= mo \ rs

0 \ ((mo \ rs 0) ;mo)

sw

def

= ([rel] ; Fsb

?

; [W \ A] ; rs

?

; rf ;

[R \ A] ; sbF

?

; [acq]) \ thd
hb

def

= (sb [(I ⇥ ¬I) [sw)

+

hbl

def

= hb \=

loc

vis

def

= (W ⇥ R) \ hbl \ (hbl ; [W] ; hb)

cnf

def

= ((W ⇥W) [(W ⇥ R) [(R ⇥W)) \=

loc

dr

def

= cnf \ hb \ hb�1 \ A2 \ thd

Commentary. The set acq (resp. rel) contains all events that behave
as an acquire (resp. a release).5 A read reads-before (rb) all those
writes that are mo-after the write the read observed.6

The relation rs captures the release sequence, using rs

0 as a
helper. The release sequence of e comprises those events that form
a maximal mo-chain, starting from e , of events that either are in e’s
thread or are RMWs.7

Release/acquire synchronisation is captured by the sw relation.
This relates an atomic write-release event to an atomic read-acquire
event in a different thread if the read obtains its value from the write
or its release sequence.8 If the acquire (resp. release) is a fence, the
synchronisation happens via an atomic read (resp. write) sequenced
before (resp. after) the fence.9

Happens-before (hb) is a transitive relation that includes
sequenced-before and synchronisation edges, and puts initial events
before all other events.10 A write is visible (vis) to a read if it is the
most recent write to that location in happens-before.11

Two events are in conflict (cnf) if they access the same location
and at least one is a write;12 these events go on to form a data
race (dr) if they are unrelated by happens-before, they are not both
atomic, and they are in different threads.13

We now use the derived relations of Def. 10 to formalise what it
means for an execution to be consistent.

Definition 11 (Consistency). A candidate execution (X ,w) =

(E , I , lbl , thd , sb, rf ,mo,S) is consistent, written consistent(X ,

5 [15 (§7.17.3:3–4)], [15 (§7.17.4.1:2)] 6 [31 (§5.3)]
7 [15 (§5.1.2.4:10)] 8 [15 (§5.1.2.4:11)] 9 [15 (§7.17.4:2–4)]
10 [15 (§5.1.2.4:18)], simplified in the absence of memory_order_consume
11 [15 (§5.1.2.4:19)] 12 [15 (§5.1.2.4:4)] 13 [15 (§5.1.2.4:25)]

4 2015/7/14

Changing the standardA. Rules for SC atomics in C11
A.1 Original
The following text is reproduced verbatim from the C11 stan-
dard [15 (§7.17.3, paragraphs 6 and 9–11)].

6. There shall be a single total order S on all
memory_order_seq_cst operations, consistent with
the “happens before” order and modification orders for all
affected locations, such that each memory_order_seq_cst
operation B that loads a value from an atomic object M
observes one of the following values:
• the result of the last modification A of M that precedes B

in S , if it exists, or
• if A exists, the result of some modification of M in the

visible sequence of side effects with respect to B that is
not memory_order_seq_cst and that does not happen
before A, or

• if A does not exist, the result of some modification of M
in the visible sequence of side effects with respect to B

that is not memory_order_seq_cst.

[. . .]

9. For an atomic operation B that reads the value of an
atomic object M , if there is a memory_order_seq_cst
fence X sequenced before B , then B observes either the
last memory_order_seq_cst modification of M preceding
X in the total order S or a later modification of M in its
modification order.

10. For atomic operations A and B on an atomic object M ,
where A modifies M and B takes its value, if there is a
memory_order_seq_cst fence X such that A is sequenced
before X and B follows X in S , then B observes either the
effects of A or a later modification of M in its modification
order.

11. For atomic operations A and B on an atomic object M ,
where A modifies M and B takes its value, if there are
memory_order_seq_cst fences X and Y such that A is
sequenced before X , Y is sequenced before B , and X

precedes Y in S , then B observes either the effects of A

or a later modification of M in its modification order.
[276 words; FK reading ease 41.2]

For reference, we include with this passage its Flesch–Kincaid
(FK) reading ease score.43 A higher score indicates easier readability.
Scores usually range between 0 and 100.

43
http://www.readability-score.com

A.2 Our proposal
Section 3.2 presented our proposal for simplifying the sequential
consistency axioms in the C11 model. We give here our suggestion
for how the specification document can be rephrased to accommo-
date our proposal, while maintaining the prose style used throughout
the rest of the document.

Specifically, the paragraphs quoted above can be removed and
replaced with the following three:

1. A value computation A of an object M reads before a side
effect B on M if A and B are different operations and B

follows, in the modification order of M , the side effect that A
observes.

2. If X reads before Y , or happens before Y , or precedes Y in
modification order, then X (as well as any fences sequenced
before X) is SC-before Y (as well as any fences sequenced
after Y).

3. If A is SC-before B , and A and B are both memory_
order_seq_cst, then A is restricted-SC-before B .

4. There must be no cycles in restricted-SC-before.

[93 words; FK reading ease 73.1]

14 2015/7/14

A. Rules for SC atomics in C11
A.1 Original
The following text is reproduced verbatim from the C11 stan-
dard [15 (§7.17.3, paragraphs 6 and 9–11)].

6. There shall be a single total order S on all
memory_order_seq_cst operations, consistent with
the “happens before” order and modification orders for all
affected locations, such that each memory_order_seq_cst
operation B that loads a value from an atomic object M
observes one of the following values:
• the result of the last modification A of M that precedes B

in S , if it exists, or
• if A exists, the result of some modification of M in the

visible sequence of side effects with respect to B that is
not memory_order_seq_cst and that does not happen
before A, or

• if A does not exist, the result of some modification of M
in the visible sequence of side effects with respect to B

that is not memory_order_seq_cst.

[. . .]

9. For an atomic operation B that reads the value of an
atomic object M , if there is a memory_order_seq_cst
fence X sequenced before B , then B observes either the
last memory_order_seq_cst modification of M preceding
X in the total order S or a later modification of M in its
modification order.

10. For atomic operations A and B on an atomic object M ,
where A modifies M and B takes its value, if there is a
memory_order_seq_cst fence X such that A is sequenced
before X and B follows X in S , then B observes either the
effects of A or a later modification of M in its modification
order.

11. For atomic operations A and B on an atomic object M ,
where A modifies M and B takes its value, if there are
memory_order_seq_cst fences X and Y such that A is
sequenced before X , Y is sequenced before B , and X

precedes Y in S , then B observes either the effects of A

or a later modification of M in its modification order.
[276 words; FK reading ease 41.2]

For reference, we include with this passage its Flesch–Kincaid
(FK) reading ease score.43 A higher score indicates easier readability.
Scores usually range between 0 and 100.

43
http://www.readability-score.com

A.2 Our proposal
Section 3.2 presented our proposal for simplifying the sequential
consistency axioms in the C11 model. We give here our suggestion
for how the specification document can be rephrased to accommo-
date our proposal, while maintaining the prose style used throughout
the rest of the document.

Specifically, the paragraphs quoted above can be removed and
replaced with the following three:

1. A value computation A of an object M reads before a side
effect B on M if A and B are different operations and B

follows, in the modification order of M , the side effect that A
observes.

2. If X reads before Y , or happens before Y , or precedes Y in
modification order, then X (as well as any fences sequenced
before X) is SC-before Y (as well as any fences sequenced
after Y).

3. If A is SC-before B , and A and B are both memory_
order_seq_cst, then A is restricted-SC-before B .

4. There must be no cycles in restricted-SC-before.

[93 words; FK reading ease 73.1]

14 2015/7/14

Outline

• Introduction to the C11 memory model

• Overhauling the rules for SC atomics in C11

• Introduction to the OpenCL memory model

• Overhauling the rules for SC atomics in OpenCL

OpenCL
• Execution hierarchy:

OpenCL
• Execution hierarchy:

• Many threads form a work-group

OpenCL
• Execution hierarchy:

• Many threads form a work-group
• Many work-groups execute on a device

OpenCL
• Execution hierarchy:

• Many threads form a work-group
• Many work-groups execute on a device
• Several devices form a heterogeneous system

OpenCL
• Execution hierarchy:

• Many threads form a work-group
• Many work-groups execute on a device
• Several devices form a heterogeneous system

• Memory hierarchy:

OpenCL
• Execution hierarchy:

• Many threads form a work-group
• Many work-groups execute on a device
• Several devices form a heterogeneous system

• Memory hierarchy:
• private (accessible to one thread)

OpenCL
• Execution hierarchy:

• Many threads form a work-group
• Many work-groups execute on a device
• Several devices form a heterogeneous system

• Memory hierarchy:
• private (accessible to one thread)

• local (accessible to one work-group)

OpenCL
• Execution hierarchy:

• Many threads form a work-group
• Many work-groups execute on a device
• Several devices form a heterogeneous system

• Memory hierarchy:
• private (accessible to one thread)

• local (accessible to one work-group)

• global (accessible to all devices)

OpenCL
• Execution hierarchy:

• Many threads form a work-group
• Many work-groups execute on a device
• Several devices form a heterogeneous system

• Memory hierarchy:
• private (accessible to one thread)

• local (accessible to one work-group)

• global (accessible to all devices)

• global_fga (accessible to all devices, allows inter-device
communication)

OpenCL memory regions

T0

OpenCL memory regions

T0 T1

OpenCL memory regions

T0 T1

priv priv

OpenCL memory regions

T0 T1

priv priv

work-group

OpenCL memory regions

T0 T1

priv priv

local

work-group

OpenCL memory regions

T0 T1 T2

priv priv

local

work-group

OpenCL memory regions

T0 T1 T2

priv priv

local

work-group

device

OpenCL memory regions

T0 T1 T2 T3

priv priv

local

work-group

device

OpenCL memory regions

T0 T1 T2 T3

priv priv

local

global

work-group

device

OpenCL memory regions

T0 T1 T2 T3

priv priv

local

global global_fga

work-group

device

OpenCL memory regions

T0 T1 T2 T3

priv priv

local

global global_fga

work-group

device

OpenCL memory regions

T0 T1 T2 T3

priv priv

local

global global_fga

work-group

device

OpenCL memory regions

T0 T1 T2 T3

priv priv

local

global global_fga

work-group

device

OpenCL memory regions

T0 T1 T2 T3

priv priv

local

global global_fga

work-group

device

OpenCL memory regions

T0 T1 T2 T3

priv priv

local

global global_fga

work-group

device

OpenCL memory scopes

• Memory consistency can be localised to one
subtree of the execution hierarchy.  
 
 
 
 
 
 

memory_scope_work_group
atomic_store_explicit(x, 1,  
 memory_order...,);

OpenCL memory scopes

• Memory consistency can be localised to one
subtree of the execution hierarchy.  
 
 
 
 
 
 

memory_scope_device
memory_scope_work_group

atomic_store_explicit(x, 1,  
 memory_order...,);

OpenCL memory scopes

• Memory consistency can be localised to one
subtree of the execution hierarchy.  
 
 
 
 
 
 

atomic_store_explicit(x, 1,  
 memory_order..., memory_scope_all_svm_devices

memory_scope_device
memory_scope_work_group

);

Example

*x = 42;  
atomic_store_explicit(y, 1,  
 memory_order_release,  
 memory_scope_work_group);

if (atomic_load_explicit(y,  
 memory_order_acquire,  
 memory_scope_work_group))  
 print(x);

Threads in the same work-group

✓

Example

*x = 42;  
atomic_store_explicit(y, 1,  
 memory_order_release,  
 memory_scope_work_group);

if (atomic_load_explicit(y,  
 memory_order_acquire,  
 memory_scope_work_group))  
 print(x);

Threads in
 different

work-groups
,

but same device

❌

Example

*x = 42;  
atomic_store_explicit(y, 1,  
 memory_order_release,  
 memory_scope_device);

if (atomic_load_explicit(y,  
 memory_order_acquire,  
 memory_scope_device))  
 print(x);

Threads in
 different

work-groups
,

but same device

✓

Example

*x = 42;  
atomic_store_explicit(y, 1,  
 memory_order_release,  
 memory_scope_device);

if (atomic_load_explicit(y,  
 memory_order_acquire,  
 memory_scope_device))  
 print(x);

✓

Threads in the same work-group

Example

*x = 42;  
atomic_store_explicit(y, 1,  
 memory_order_release,  
 memory_scope_device);

if (atomic_load_explicit(y,  
 memory_order_acquire,  
 memory_scope_work_group))  
 print(x);

Threads in the same work-group

❌

Scope inclusion

• (e1,e2) ∈ incl iff: 
e1's scope is wide enough to reach e2, and  
e2's scope is wide enough to reach e1.

Outline

• Introduction to the C11 memory model

• Overhauling the rules for SC atomics in C11

• Introduction to the OpenCL memory model

• Overhauling the rules for SC atomics in OpenCL

SC axioms in OpenCL

SC axioms in OpenCL
• There is a total order S over [...]

SC axioms in OpenCL
• There is a total order S over [...]

• PROVIDING every SC operation  
has memory_scope_all_svm_devices and  
accesses global_fga memory

SC axioms in OpenCL
• There is a total order S over [...]

• PROVIDING every SC operation  
has memory_scope_all_svm_devices and  
accesses global_fga memory

• OR every SC operation  
has memory_scope_device and  
does not access global_fga memory

Problems

Problems
😟 Can't always tell whether a location is global or

global_fga!

Problems
😟 Can't always tell whether a location is global or

global_fga!

😟 The default, which is memory_scope_device,
is not always enough!

Problems
😟 Can't always tell whether a location is global or

global_fga!

😟 The default, which is memory_scope_device,
is not always enough!

😟 Non-compositional!

Problems
😟 Can't always tell whether a location is global or

global_fga!

😟 The default, which is memory_scope_device,
is not always enough!

😟 Non-compositional!

😟 Unnecessarily restrictive!

Problems
😟 Can't always tell whether a location is global or

global_fga!

😟 The default, which is memory_scope_device,
is not always enough!

😟 Non-compositional!

😟 Unnecessarily restrictive!

😟 And too weak anyway!

SC axioms in OpenCL

be invisible to the programmer, if they can see only the kernel code:
the assignment of locations to SVM buffers occurs only on the host
side, and such locations are only marked in a kernel as global.

The SC axioms are too strong. Following discussion with mem-
bers of the Khronos OpenCL working group, we understand that the
purpose of condition sc-dv is to enable efficient implementations of
DV-scoped SC atomics. The intention of the condition is that if no
SC atomic accesses memory shared between devices, they can be
implemented without expensive inter-device synchronisation. It was
thought not to matter that the specification requires implementations
to establish a total order between SC events on different devices,
because it is not possible to observe this order without creating an
inter-device data race.

In fact, this is not the case. We present in Example 10 a program
that satisfies condition sc-dv , and yet is still able to observe the
order between SC events in different devices – even though these
events are DV-scoped and access no memory shared between devices.

Example 10. Consider the following program, which comprises
two devices, both executing two threads (stacked vertically). It can
be thought of as a ‘twisted’ version of the store-buffering test.

global atomic_int *x, *y;
global_fgb atomic_int *z1, *z2;

store(x,1,SC,DV);
store(z1,1,REL,ALL);
r1 = load(z2,ACQ,ALL)?

load(x,SC,DV) : 1;

store(y,1,SC,DV);
store(z2,1,REL,ALL);
r2 = load(z1,ACQ,ALL)?

load(y,SC,DV) : 1;

Two threads in different devices write, using DV scope, to distinct
global locations x and y, and then write to global_fgb flags,
using ALL scope, to signal that they are done. Meanwhile, two
partner threads try to acquire these signals from the opposite device,
and if they are successful, they read the location their partner (in
the same device as they) wrote to. We are interested in whether
these reads can both obtain 0; that is, whether the final state
{r1 = r2 = 0} is allowed. This final state could only be obtained
via the following execution:

a: W(x, 1, SC, DV)

b: W(z1, 1, REL, ALL)

c: R(z2, 1, ACQ, ALL)

d : R(x, 0, SC, DV)

e: W(y, 1, SC, DV)

f : W(z2, 1, REL, ALL)

g : R(z1, 1, ACQ, ALL)

h: R(y, 0, SC, DV)

sb

sb

sb

sb

rf rf

rb

rb

where the outer dotted rectangles delimit dv equivalence classes and
the inner ones delimit thd equivalence classes.

The execution is inconsistent, and therefore must be forbidden
by a compiler. To see this, observe that each rf edge induces a
synchronisation (gsw) edge, and hence global happens-before. Since
sb edges also contribute to global happens-before, we obtain the
cycle a

ghb��! b

ghb��! g

ghb��! h

rb�! e

ghb��! f

ghb��! c

ghb��! d

rb�! a .
This makes the execution fall foul of O-S

simp

, which is non-vacuous
here because the condition sc-dv is satisfied.

That the execution in the example above is not allowed implies
that OpenCL implementations must make the order of SC write
operations visible to all devices, even when those writes are only
performed with DV scope. In other words, the current phrasing of the
OpenCL memory model demands too much from the compiler-
writer to permit an efficient implementation of DV-scoped SC
atomics, while in other respects offering too little to the programmer,

OpenCL atomic operation Assembly instructions
∂ r = load(x , SC, WG) LD r x
∑ r = load(x , SC, DV) INV

L1

; LD r x ; INV
L1

∏ store(x , r , SC, WG) ST r x
π store(x , r , SC, DV) FLU

L1

; ST r x ; FLU
L1

∫ r = fetch_inc(x , SC, WG) INC
L1

r x

ª r = fetch_inc(x , SC, DV) FLU
L1

; INC
L2

r x ; INV
L1

Table 1. Compiling the revised OpenCL memory model

by guaranteeing SC semantics only when an onerous condition
holds.

To summarise: the intent of the Khronos working group was
to enable efficient implementation of DV-scoped SC atomics by
compilers, at the expense of programmer inconvenience. Instead,
our formalisation shows that we have the worst of both worlds: the
programmer is inconvenienced, and yet a correct compiler is obliged
to enforce inter-device orderings on DV-scoped SC atomics.

5. Overhauling the SC axioms in OpenCL
We describe how the handling of SC atomics in OpenCL can be
changed to address the shortcomings identified in §4.5.

Building on an informal suggestion by Gaster et al. [12 (§7.2)],
we propose to eradicate the stringent conditions on the existence
of the SC order by simply intersecting the constraints on the SC
order with the scope-inclusion relation. This essentially means that
the orderings imposed between events by the SC axioms only take
effect if those events have inclusive scopes. Under this proposal,
which recalls the way C11’s synchronisation relation (sw , Def. 10) is
intersected with scope-inclusion when producing OpenCL’s version
(rsw , Def. 22), we do not need to restrict the programmer’s usage
of SC atomics to certain scopes; instead, the guarantees provided by
those SC atomics degrade gracefully as their scopes narrow.

Definition 25 (Proposed SC axiom for OpenCL). The following
axiom for SC atomics in OpenCL is obtained from O-S

simp

by
removing the sc-all and sc-dv conditions and instead intersecting
with incl :

acy(SC

2 \ (Fsb

?

; (ghb [lhb [rb [mo) ; sbF

?

) \ incl)

(O-S
scoped

)

We include in §B.2 a suggestion for changing the wording of the
OpenCL specification to accommodate our proposal.

5.1 Implementability of the new SC axiom
The new O-S

scoped

axiom is stronger than the original O-S
simp

axiom, so we must confirm that our proposal does not place undue
demands on compilers that implement the memory model.

The only published compilation scheme of the OpenCL 2.0 mem-
ory model of which we are aware is that published by AMD [23] and
later formalised by Wickerson et al. [33]. The scheme compiles the
release/acquire fragment of OpenCL atomics, and its soundness has
been verified against an operational model of an AMD GPU [33].
In this subsection we describe how the scheme can be extended to
support SC atomics, and we demonstrate via a series of examples
that the extended scheme meets the requirements of our revised SC
axiom. The original compilation scheme does not cater for multiple
devices, and does not include fences, and we do not attempt here to
extend the scheme to cover these features. As such, this scheme does
not engage directly with the problems of inter-device SC atomics
that we noted in the previous section; however, it does illustrate how
WG- and DV-scoped SC atomics can co-exist.

The AMD compilation scheme. The operational model is quite
simple. Each work-group has its own L1 cache, and each device has

10 2015/7/14

SC axioms in OpenCL

be invisible to the programmer, if they can see only the kernel code:
the assignment of locations to SVM buffers occurs only on the host
side, and such locations are only marked in a kernel as global.

The SC axioms are too strong. Following discussion with mem-
bers of the Khronos OpenCL working group, we understand that the
purpose of condition sc-dv is to enable efficient implementations of
DV-scoped SC atomics. The intention of the condition is that if no
SC atomic accesses memory shared between devices, they can be
implemented without expensive inter-device synchronisation. It was
thought not to matter that the specification requires implementations
to establish a total order between SC events on different devices,
because it is not possible to observe this order without creating an
inter-device data race.

In fact, this is not the case. We present in Example 10 a program
that satisfies condition sc-dv , and yet is still able to observe the
order between SC events in different devices – even though these
events are DV-scoped and access no memory shared between devices.

Example 10. Consider the following program, which comprises
two devices, both executing two threads (stacked vertically). It can
be thought of as a ‘twisted’ version of the store-buffering test.

global atomic_int *x, *y;
global_fgb atomic_int *z1, *z2;

store(x,1,SC,DV);
store(z1,1,REL,ALL);
r1 = load(z2,ACQ,ALL)?

load(x,SC,DV) : 1;

store(y,1,SC,DV);
store(z2,1,REL,ALL);
r2 = load(z1,ACQ,ALL)?

load(y,SC,DV) : 1;

Two threads in different devices write, using DV scope, to distinct
global locations x and y, and then write to global_fgb flags,
using ALL scope, to signal that they are done. Meanwhile, two
partner threads try to acquire these signals from the opposite device,
and if they are successful, they read the location their partner (in
the same device as they) wrote to. We are interested in whether
these reads can both obtain 0; that is, whether the final state
{r1 = r2 = 0} is allowed. This final state could only be obtained
via the following execution:

a: W(x, 1, SC, DV)

b: W(z1, 1, REL, ALL)

c: R(z2, 1, ACQ, ALL)

d : R(x, 0, SC, DV)

e: W(y, 1, SC, DV)

f : W(z2, 1, REL, ALL)

g : R(z1, 1, ACQ, ALL)

h: R(y, 0, SC, DV)

sb

sb

sb

sb

rf rf

rb

rb

where the outer dotted rectangles delimit dv equivalence classes and
the inner ones delimit thd equivalence classes.

The execution is inconsistent, and therefore must be forbidden
by a compiler. To see this, observe that each rf edge induces a
synchronisation (gsw) edge, and hence global happens-before. Since
sb edges also contribute to global happens-before, we obtain the
cycle a

ghb��! b

ghb��! g

ghb��! h

rb�! e

ghb��! f

ghb��! c

ghb��! d

rb�! a .
This makes the execution fall foul of O-S

simp

, which is non-vacuous
here because the condition sc-dv is satisfied.

That the execution in the example above is not allowed implies
that OpenCL implementations must make the order of SC write
operations visible to all devices, even when those writes are only
performed with DV scope. In other words, the current phrasing of the
OpenCL memory model demands too much from the compiler-
writer to permit an efficient implementation of DV-scoped SC
atomics, while in other respects offering too little to the programmer,

OpenCL atomic operation Assembly instructions
∂ r = load(x , SC, WG) LD r x
∑ r = load(x , SC, DV) INV

L1

; LD r x ; INV
L1

∏ store(x , r , SC, WG) ST r x
π store(x , r , SC, DV) FLU

L1

; ST r x ; FLU
L1

∫ r = fetch_inc(x , SC, WG) INC
L1

r x

ª r = fetch_inc(x , SC, DV) FLU
L1

; INC
L2

r x ; INV
L1

Table 1. Compiling the revised OpenCL memory model

by guaranteeing SC semantics only when an onerous condition
holds.

To summarise: the intent of the Khronos working group was
to enable efficient implementation of DV-scoped SC atomics by
compilers, at the expense of programmer inconvenience. Instead,
our formalisation shows that we have the worst of both worlds: the
programmer is inconvenienced, and yet a correct compiler is obliged
to enforce inter-device orderings on DV-scoped SC atomics.

5. Overhauling the SC axioms in OpenCL
We describe how the handling of SC atomics in OpenCL can be
changed to address the shortcomings identified in §4.5.

Building on an informal suggestion by Gaster et al. [12 (§7.2)],
we propose to eradicate the stringent conditions on the existence
of the SC order by simply intersecting the constraints on the SC
order with the scope-inclusion relation. This essentially means that
the orderings imposed between events by the SC axioms only take
effect if those events have inclusive scopes. Under this proposal,
which recalls the way C11’s synchronisation relation (sw , Def. 10) is
intersected with scope-inclusion when producing OpenCL’s version
(rsw , Def. 22), we do not need to restrict the programmer’s usage
of SC atomics to certain scopes; instead, the guarantees provided by
those SC atomics degrade gracefully as their scopes narrow.

Definition 25 (Proposed SC axiom for OpenCL). The following
axiom for SC atomics in OpenCL is obtained from O-S

simp

by
removing the sc-all and sc-dv conditions and instead intersecting
with incl :

acy(SC

2 \ (Fsb

?

; (ghb [lhb [rb [mo) ; sbF

?

) \ incl)

(O-S
scoped

)

We include in §B.2 a suggestion for changing the wording of the
OpenCL specification to accommodate our proposal.

5.1 Implementability of the new SC axiom
The new O-S

scoped

axiom is stronger than the original O-S
simp

axiom, so we must confirm that our proposal does not place undue
demands on compilers that implement the memory model.

The only published compilation scheme of the OpenCL 2.0 mem-
ory model of which we are aware is that published by AMD [23] and
later formalised by Wickerson et al. [33]. The scheme compiles the
release/acquire fragment of OpenCL atomics, and its soundness has
been verified against an operational model of an AMD GPU [33].
In this subsection we describe how the scheme can be extended to
support SC atomics, and we demonstrate via a series of examples
that the extended scheme meets the requirements of our revised SC
axiom. The original compilation scheme does not cater for multiple
devices, and does not include fences, and we do not attempt here to
extend the scheme to cover these features. As such, this scheme does
not engage directly with the problems of inter-device SC atomics
that we noted in the previous section; however, it does illustrate how
WG- and DV-scoped SC atomics can co-exist.

The AMD compilation scheme. The operational model is quite
simple. Each work-group has its own L1 cache, and each device has

10 2015/7/14

Existing compilation scheme

(for AMD GPUs) remains valid.

Changing the standardB. Rules for SC atomics in OpenCL
B.1 Original
The following text is reproduced verbatim from the OpenCL 2.1
standard [17 (51/14–52/13)]. We exclude the citations to the C11
standard.

If one of the following two conditions holds:
• All memory_order_seq_cst operations have the scope
memory_scope_all_svm_devices and all affected memory
locations are contained in system allocations or fine grain
SVM buffers with atomics support

• All memory_order_seq_cst operations have the scope
memory_scope_device and all affected memory locations
are not located in system allocated regions or fine-grain SVM
buffers with atomics support

then there shall exist a single total order S for all
memory_order_seq_cst operations that is consistent with the
modification orders for all affected locations, as well as the appro-
priate global-happens-before and local-happens-before orders for
those locations, such that each memory_order_seq_cst opera-
tion B that loads a value from an atomic object M in global or
local memory observes one of the following values:
• the result of the last modification A of M that precedes B in
S , if it exists, or

• if A exists, the result of some modification of M in the
visible sequence of side effects with respect to B that is not
memory_order_seq_cst and that does not happen before A,
or

• if A does not exist, the result of some modification of M in
the visible sequence of side effects with respect to B that is
not memory_order_seq_cst.

[. . .]
If the total order S exists, the following rules hold:
• For an atomic operation B that reads the value of an

atomic object M , if there is a memory_order_seq_cst
fence X sequenced-before B , then B observes either the
last memory_order_seq_cst modification of M preceding
X in the total order S or a later modification of M in its
modification order.

• For atomic operations A and B on an atomic object M ,
where A modifies M and B takes its value, if there is a
memory_order_seq_cst fence X such that A is sequenced-
before X and B follows X in S , then B observes either the
effects of A or a later modification of M in its modification
order.

• For atomic operations A and B on an atomic object M ,
where A modifies M and B takes its value, if there are
memory_order_seq_cst fences X and Y such that A is
sequenced- before X , Y is sequenced-before B , and X

precedes Y in S , then B observes either the effects of A

or a later modification of M in its modification order.
• For atomic operations A and B on an atomic object M , if

there are memory_order_seq_cst fences X and Y such
that A is sequenced-before X , Y is sequenced-before B ,
and X precedes Y in S , then B occurs later than A in the
modification order of M .

[391 words; FK reading ease -22.0]

B.2 Our proposal
Section 5 presented our proposal for simplifying the sequential con-
sistency axioms in the OpenCL model. We give here our suggestion
for how the specification document can be rephrased to accommo-
date our proposal, while maintaining the prose style used throughout
the rest of the document.

Specifically, the paragraphs quoted above can be removed and
replaced with the following three.

1. A value computation A of an object M reads before a side
effect B on M if A and B are different operations and B

follows, in the modification order of M , the side effect that A
observes.

2. If X reads before Y , or global happens before Y , or local
happens before Y , or precedes Y in modification order, then
X (as well as any fences sequenced before X) is SC-before
Y (as well as any fences sequenced after Y).

3. If A is SC-before B , and A and B are both memory_
order_seq_cst, and A and B have inclusive scopes, then A

is restricted-SC-before B .
4. There must be no cycles in restricted-SC-before.

[106 words; FK reading ease 71.0]

The only departures from our proposal for the C11 memory
model (Sec. A.2) are the requirement of inclusive scopes, and the
splitting of happens-before into its global and local versions.

15 2015/7/14

B. Rules for SC atomics in OpenCL
B.1 Original
The following text is reproduced verbatim from the OpenCL 2.1
standard [17 (51/14–52/13)]. We exclude the citations to the C11
standard.

If one of the following two conditions holds:
• All memory_order_seq_cst operations have the scope
memory_scope_all_svm_devices and all affected memory
locations are contained in system allocations or fine grain
SVM buffers with atomics support

• All memory_order_seq_cst operations have the scope
memory_scope_device and all affected memory locations
are not located in system allocated regions or fine-grain SVM
buffers with atomics support

then there shall exist a single total order S for all
memory_order_seq_cst operations that is consistent with the
modification orders for all affected locations, as well as the appro-
priate global-happens-before and local-happens-before orders for
those locations, such that each memory_order_seq_cst opera-
tion B that loads a value from an atomic object M in global or
local memory observes one of the following values:
• the result of the last modification A of M that precedes B in
S , if it exists, or

• if A exists, the result of some modification of M in the
visible sequence of side effects with respect to B that is not
memory_order_seq_cst and that does not happen before A,
or

• if A does not exist, the result of some modification of M in
the visible sequence of side effects with respect to B that is
not memory_order_seq_cst.

[. . .]
If the total order S exists, the following rules hold:
• For an atomic operation B that reads the value of an

atomic object M , if there is a memory_order_seq_cst
fence X sequenced-before B , then B observes either the
last memory_order_seq_cst modification of M preceding
X in the total order S or a later modification of M in its
modification order.

• For atomic operations A and B on an atomic object M ,
where A modifies M and B takes its value, if there is a
memory_order_seq_cst fence X such that A is sequenced-
before X and B follows X in S , then B observes either the
effects of A or a later modification of M in its modification
order.

• For atomic operations A and B on an atomic object M ,
where A modifies M and B takes its value, if there are
memory_order_seq_cst fences X and Y such that A is
sequenced- before X , Y is sequenced-before B , and X

precedes Y in S , then B observes either the effects of A

or a later modification of M in its modification order.
• For atomic operations A and B on an atomic object M , if

there are memory_order_seq_cst fences X and Y such
that A is sequenced-before X , Y is sequenced-before B ,
and X precedes Y in S , then B occurs later than A in the
modification order of M .

[391 words; FK reading ease -22.0]

B.2 Our proposal
Section 5 presented our proposal for simplifying the sequential con-
sistency axioms in the OpenCL model. We give here our suggestion
for how the specification document can be rephrased to accommo-
date our proposal, while maintaining the prose style used throughout
the rest of the document.

Specifically, the paragraphs quoted above can be removed and
replaced with the following three.

1. A value computation A of an object M reads before a side
effect B on M if A and B are different operations and B

follows, in the modification order of M , the side effect that A
observes.

2. If X reads before Y , or global happens before Y , or local
happens before Y , or precedes Y in modification order, then
X (as well as any fences sequenced before X) is SC-before
Y (as well as any fences sequenced after Y).

3. If A is SC-before B , and A and B are both memory_
order_seq_cst, and A and B have inclusive scopes, then A

is restricted-SC-before B .
4. There must be no cycles in restricted-SC-before.

[106 words; FK reading ease 71.0]

The only departures from our proposal for the C11 memory
model (Sec. A.2) are the requirement of inclusive scopes, and the
splitting of happens-before into its global and local versions.

15 2015/7/14

TL;DR
• The rules for sequentially-consistent atomic

operations and fences ("SC atomics") in C11 and
OpenCL are  
😕 too complex,  

😟 too weak, and  

😠 too strong.

• We suggest how to fix them 😌.

