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Abstract—Many numerical optimisation problems rely on
fast algorithms for solving sparse triangular systems of linear
equations (STLs). To accelerate the solution of such equations,
two types of approaches have been used: on GPUs, concurrency
has been prioritised to the disadvantage of data locality, while
on multi-core CPUs, data locality has been prioritised to the
disadvantage of concurrency.

In this paper, we discuss the interaction between data locality
and concurrency in the solution of STLs on GPUs, and we present
a new algorithm that balances both. We demonstrate empirically
that, subject to there being enough concurrency available in the
input matrix, our algorithm outperforms Nvidia’s concurrency-
prioritising CUSPARSE algorithm for GPUs. Experimental re-
sults show a maximum speedup of 5.8-fold.

Our solution algorithm, which we have implemented in
OpenCL, requires a pre-processing phase that partitions the
graph associated with the input matrix into sub-graphs, whose
data can be stored in low-latency local memories. This prelim-
inary analysis phase is expensive, but because it depends only
on the input matrix, its cost can be amortised when solving for
many different right-hand sides.

I. INTRODUCTION

A sparse triangular system of linear equations (STL) is a
system of equations of the form

Lx = b, (1)

where x is the result vector and b is the right-hand side vector,
both in Rn, and L is a lower or upper triangular matrix in
Rn×n with a significant number of zeroes.

Many algorithms such as those used in managing smart
buildings [1] and those used in data mining for medical
research [2], demand fast solutions to STLs. Fast solving is
particularly important for iterative optimisation algorithms such
as the preconditioned gradient method [3], in which it may be
necessary to solve (1) several thousand times with different
values of b.

Sparse data structures have led to two opposing ways of
partitioning data to parallelise the solution of STLs: fine-grain
partitioning and coarse-grain partitioning.

An example of fine-grain partitioning is provided by Nvidia’s
CUSPARSE library [4], which solves STLs using the CUDA
programming language for GPUs. The approach assigns each
row of the matrix L to a work-item (also called a thread in
CUDA). By an analysis of the dependencies between rows,
CUSPARSE partitions the rows into several levels (using what
is called the level-set algorithm). It determines an execution

schedule that ensures that the levels are executed in a sequence
respecting the dependencies, but allows all of the rows in the
same level to execute in parallel. CUSPARSE performs its
partitioning without regard for the positions of the rows in
L, only their dependencies, and so levels may contain rows
that are far apart in L. As such, the CUSPARSE approach
maximises concurrency, but can exhibit poor data locality.

Coarse-grain partitioning approaches, such as Mayer’s algo-
rithms for multi-core CPUs [5], work by dividing L into large
blocks, with each block containing roughly the same number
of non-zero entries. A dependency analysis between the blocks
allows certain blocks to be processed in parallel by different
CPU cores, but within each individual block, matrix entries
are processed sequentially. Because each CPU core accesses
only the memory locations associated with one block at a time,
the accesses can be coalesced. As such, Mayer’s approach
exhibits good data locality but may not take full advantage of
the available concurrency.

In this paper, we show that, when solving STLs on GPUs, we
can obtain significantly better performance than CUSPARSE
by incorporating elements of coarse-grain partitioning. Our
approach matches the structure of the input matrix to the
structure of the GPU. This is achieved by partitioning the L
matrix in (1) into blocks that fit into the GPU’s local memory.

The partitioning is carried out during a preliminary analysis
phase. Then, to solve the STL, each sub-graph is associated
with a work-group and its data is stored in local memories
(also called shared memories in CUDA). The analysis phase
finds opportunities for both concurrency and data locality, and
partitions the graph in a way that balances the two. The analysis
phase is time-consuming, but its result is valid for any matrix
with the same sparsity pattern and for any right-hand side
vector, so if the solution phase is to be carried out many times,
its cost can be amortised.

We compare our algorithm against CUSPARSE, using both
artificial matrices with specific properties that we generated
automatically and non-artificial test cases from the Florida
matrix collection [6]. Our experimental results show that, our
algorithm, which is implemented in OpenCL, outperforms
CUSPARSE in 71% of non-artificial test cases and is up to
5.8 times faster than the same library, which is optimised and
provided by the GPU vendor.

In summary, we make the following contributions:
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(b) Graph associated with the input
matrix.

Figure 1: An example sparse lower triangular matrix with 10
rows and 10 columns and the graph associated with it. In the
representation of the sparsity pattern, the non-zero entries are
shown with dots.

• we propose an algorithm for balancing the data locality
and concurrent execution when solving STLs;

• we implement this balanced algorithm on GPUs, using
OpenCL;

• we evaluate our algorithm against the state-of-the-art
CUSPARSE algorithm [4].

II. BACKGROUND

The properties of sparse data structures have been studied
by associating the L matrix in (1) with a graph. In particular,
in this paper we discuss lower triangular matrices with all the
values on the diagonal equal to one, and b and x vectors stored
using dense data structures. Nonetheless, our approach can be
generalised to any triangular matrices. Within the framework of
graph theory, the operation of the algorithms to solve STLs can
be related to the traversal of the associated graph [7]. How this
graph traversal is best carried out depends on the properties of
the graph.

Given a lower triangular matrix L ∈ Rn×n, the graph G
associated with it is G := (V, E). The set of vertices V :=
{1, 2, . . . , n} has as many elements as the number of rows
and columns in the matrix L. A non-zero entry at row i and
column j 6= i in the matrix is represented by a directed edge
(j, i) from vertex j to vertex i in the graph.

If a graph is composed of a number of parts that are not
connected to each other, those parts are called weakly connected
components, or disjoint components.

In the context of STLs, an edge (j, i) represents the direct
dependency of the variable xi on the variable xj . Let us
consider the STL in (1) and let G be the graph associated
with the matrix L. The system of equations can be solved by
forward substitution [7]. For example, in case L has a sparsity
pattern like that in Figure 1, we can write the following equation
for x6:

l6 6x6 = b6 − l6 3x3 − l6 5x5,

which shows that the variable x6 depends on the variables x3
and x5. For the graph in Figure 1, we can see that there are

in fact two edges incident to vertex 6, which start from vertex
3 and vertex 5 respectively.

III. RELATED WORK

The solution of STLs has been examined both in the context
of MIMD architectures, such as multi-core CPUs and HPC
clusters, and SIMD architectures, such as GPUs.

Mayer’s algorithms [5], which are specific for multi-core
CPUs, require the execution of the threads in compute units
to be synchronised. In particular, if rows and columns are
divided into sM parts, the execution of the threads is stopped
2sM−1 times. With this technique, the computation carried out
in a CPU core is independent from that in another CPU core.
Although this technique is little applicable to GPUs, because
it does not exploit the concurrency implicit in the structure of
the graph, the results show that by partitioning the matrix into
blocks one can make better use of cache memories.

In the context of GPUs, the level-set algorithm [4], which
is implemented in the Nvidia CUSPARSE library, is carried
out in two phases: a preliminary analysis phase and a solve
phase. The analysis phase associates vertices in the matrix
graph with levels. So, if rows and columns are divided into sC
parts, the execution of the threads is stopped at most sC times.
The number of levels and vertices per level is only determined
by the sparsity pattern of the matrix. For example, if the graph
is a chain of vertices, each connected to the next with an
edge, there will be only one vertex per level. To overcome
this limitation, a technique for transforming the matrix was
introduced [8]. This technique increases the number of vertices
per level and reduces the number of levels needed. However, it
is not guaranteed that the transformation can always increase
the amount of concurrency that can be extracted from the
matrix.

On GPUs, it was observed that the synchronisation of threads
by stopping their execution in all of the compute units is
extremely time-consuming [4], [8], [9], and that sparse linear
algebra algorithms on GPUs tend to be bandwidth-bound, so the
use of local memory to save bandwidth is necessary [9]. Also,
while the design aim of GPU architectures is to hide memory
latency with parallelism, not all applications are concurrent
enough to achieve this aim efficiently [10]. Moreover, in the
context of multi-core CPUs and cluster computers, it was shown
that matching the structure of the compute to that of the graph
improves the scalability of algorithms [11].

In this work, we propose a solution technique for STLs in
two phases: the analysis phase, which is illustrated in Section V,
and a solve phase, which is illustrated in Secion IV. During
the solve phase, numerical operations are carried out according
to the output of the analysis phase. The aim of the analysis
phase is to maximise the performance of the solve phase.

IV. THE SOLVE PHASE

The solve phase computes the solution to an STL by putting
into effect the information given by the analysis phase. In
Section IV-A we describe the inputs to our solution algorithm,
and the required properties of a partition of the G graph. Then,



in section IV-B we illustrate our solution algorithm, while in
Section IV-C we derive a performance model that characterises
the execution time of the solve phase.

A. Inputs to the solution algorithm
The analysis phase outputs a partition of the set of vertices

V into s disjoint subsets V1,V2, . . . ,Vs, such that

V = V0 ∪ V1 ∪ V2 ∪ · · · ∪ Vs,

where V0 is the sub-set of vertices in the G graph with no
entering or exiting edges. Given a partition of the input graph,
we say that an edge (j, i) is an internal edge if both vertex i
and vertex j are in the same set Vk with with k = 1, 2, . . . , s.
Otherwise, it is an external edge.

The idea behind the solution algorithm is to divide the
traversal of the graph into sub-graphs, each one associated
with one of the Vk sets. For each sub-graph, if memory accesses
are suitably organised, the traversal of an internal edge will
show better data locality than that of an external edge. However,
for the traversal to be carried out correctly, the partition must
be feasible according to the following definition.

Definition (Feasible partition). A partition of the G graph is
feasible if both following conditions are met.

1) If an edge goes from a vertex in Vk to a vertex in Vp,
then p ≥ k.

2) The number of vertices in the set Vk, nk, must not be
greater than a positive integer nmax.

In particular, Condition 1 implies that there is no cyclical
dependency between variables associated with vertices in
different Vk sets. Condition 2 implies that the number of
vertices in each sub-graph is bounded. If data is represented
in the single precision floating point format, the upper bound
of the number of vertices in Vk, is equal to

nmax :=

⌊
Mcap

4

⌋
, (2)

where Mcap is the capacity of the local memory of a compute
unit in bytes.

If the partition is feasible, it is possible to permute rows
and columns of the matrix so to have indices in the same set
Vk close together, while keeping a triangular structure. This
permutation Q ∈ Rn×n can be carried out by reordering the
vertices of the original graph by sub-graph index. For example,
the new indices of the rows and columns in the set V1 will be
smaller than those of the rows and columns in V2. A lookup
table can be used to keep track of the change in the indices.

By applying the permutation Q to to (1), we obtain

I0
I1 0
E2 I2

0 E3 I3
...

. . .
Es Is


︸ ︷︷ ︸

L′



x′0
x′1
x′2
x′3
...
x′s


︸ ︷︷ ︸

x′

=



b′0
b′1
b′2
b′3
...
b′s


︸ ︷︷ ︸

b′

(3)
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(b) The block form corresponding to
the example graph.

Figure 2: An example graph, partitioned into three sub-graphs,
and the sparsity pattern of the corresponding matrix with
the block form in (3). In the representation of the sparsity
pattern, the non-zero entries are shown with dots, while in the
representation of the graph external edges are represented with
dashed lines.

where L′ := QTLQ, x′ := QTx, and b′ := QT b. In (3),
the blocks Ik and Ek are associated with Vk. As shown in
Figure 2, the elements in block Ek are associated with external
edges, while the elements below the diagonal in block Ik
are associated with internal edges. The vectors x′k and b′k are
defined in Rnk , where nk is the number of vertices in Vk. Also,
Ik is a nk-by-nk lower triangular real matrix, while matrix
Ek is a real matrix with nk rows and

∑k−1
p=1 np columns. By

construction, as required by Condition 2, nk is always smaller
or equal to nmax.

Equation (3) can be written in terms of x′k, which gives

Ek


x′1
x′2
...

x′k−1

+ Ikx
′
k = b′k for k = 1, 2, . . . , s , (4)

where E1 = 0.

B. Solution algorithm

Our solution algorithm computes the solution of s equations
of the form in (4). Each equation is associated with a set Vk and
is carried out on the GPU by a separate work-group. Although
one can solve the s equations in sequence, from k = 1 to
k = s, some of the equations may be independent since some
sub-graphs may not have external edges that connect them.
For example, in Figure 2, sub-graph G1 and sub-graph G3 are
not connected, so their traversal can be carried out in parallel.
In general, we can partition the set of sub-graphs into nlevels
sub-sets of independent sub-graphs

L1 ∪ L2 ∪ · · · ∪ Lnlevels ,

where the set Lp is called the sub-graph level of index p, for
p = 1, 2, . . . , nlevels.

Our solution technique for (4) is outlined in Algorithm 1. A
GPU kernel is executed nlevels times, each time for a different



Input: b′, L1, L2, . . . , Lnlevels , Tkq and T ′
kq ∀q, k = 1, 2, . . . , s

Output: x′

1: x′ ← b′

2: for p← 1, 2, . . . , nlevels
3: for all g ∈ Lp do in parallel
4: xloc ← x′

g

5: for q ← 1, 2, . . . , n′
slots,g

6: for all (j, i) ∈ T ′
gq do in parallel . SIMD

7: xloc,i ← xloc,i − lij xj
8: for q ← 1, 2, . . . , nslots,g
9: for all (j, i) ∈ Tgq do in parallel . SIMD

10: xloc,i ← xloc,i − lij xloc,j

11: x′
g ← xloc

Algorithm 1: Solution of a lower triangular sparse linear system.
The vector xloc is stored in local memory, and it is defined
in Rnk , where nk is the number of vertices in Vk. In the
pseudocode, Lp, with p = 1, 2, . . . , nlevels are the sub-graph
levels. Also, Tgq and T ′gq are the q-th time slot of internal and
external edges respectively, in sub-graph Gg .

sub-graph level, in sequence. At each kernel execution, a work-
group is associated with a sub-graph. In the algorithm, a vector
xloc ∈ Rnk is used, its data stored in local memory. The
values of xloc are initialised with b′k, then external and internal
edges of sub-graph Gk are processed. The computation in the
two cases is of the same type: a sequence of multiply-and-
add operations specified by the schedule obtained during the
analysis phase, which is organised in time slots. For sub-graph
Gk, numerical operations associated with external edges are
distributed over n′slots,k time slots, while numerical operations
associated with internal edges are distributed over nslots,k time
slots. In this paper, we represent the q-th time slot in sub-
graph Gk with Tkq when referring to internal edges, and T ′kq
when referring to external edges. The difference between the
two types of numerical operations is in the memory location
accessed. This is because, when processing internal edges,
most memory accesses are in local memory, which has a
lower latency compared to global memory. At the end of the
algorithm, xloc is copied to x′k. The worst-case computational
complexity of the algorithm is O(nedges), where nedges is the
number of edges in the graph.

C. Performance model

In this subsection, we derive a performance model for
Algorithm 1 that we use to work out a technique to partition
the G graph. The purpose of the performance model is not to
predict accurately the execution time, but to characterise the
execution time in terms of graph attributes.

In Algorithm 1, at each sub-graph level, some numerical
operations that are associated with either internal or external
edges are carried out. These numerical operations are shown
at line 7 and line 10 in Algorithm 1, where lij is the entry
of matrix L in row i and column j. The time to excute a
numerical operation depends on the location of each of the
operands. If (j, i) is an internal edge, then xi and xj are both
in local memory, their values can be accessed with relatively

low latency. On the other hand, if (j, i) is an external edge, xj
is in global memory, while xi is in local memory. The access
latency of the value xj depends on whether this value is in the
cache or not but, on average, this latency is greater than that
of data in local memory. Moreover, cache hits when accessing
the location of lij depend on how the matrix is stored.

Let τ be the average time to carry out all numerical
operations in a time slot associated with internal edges. Also,
τ can be measured as the average time to execute an iteration
at line 8 in Algorithm 1. Similarly, let τ ′ be the average
time to carry out all numerical operations associated with
external edges. Moreover, let α be the average time needed to
synchronise the execution of the algorithm at the end of each
sub-graph level. Then, a performance model for Algorithm 1
is

tsolve ≈ nlevelsα+

nlevels∑
p=1

max
g∈Lp

{
τ ′n′slots,g + τnslots,g

}
, (5)

where nslots,g and n′slots,g are the number of external and internal
time slots respectively, and nlevels is the number of sub-graph
levels.

In this performance model, we approximated the execution
time of each iteration at lines 5 and 8 with τ ′ and τ respectively.
However, the actual execution time varies depending on sub-
graph and time-slot index. Also, we neglected the dependency
of tsolve on the number of compute units in the GPU. This
requires the number of sub-graphs in each sub-graph level to be
not much greater than the number of compute units. Although
this hypothesis does not hold in the general case, we observed
it to be reasonable in most practical cases. Furthermore, in (5)
we neglected the execution time of the data transfer from global
to local memory and vice versa, which is executed in lines 4
and 11. The hypothesis in this case is that there is enough
compute per sub-graph to amortise the overhead of the memory
copy.

V. THE ANALYSIS PHASE

The aim of the analysis phase is to find a partition of the G
graph that gives the smallest possible tsolve in (5). To achieve
this, the analysis first tries to minimise the number of sub-graph
levels nlevels while it guarantees feasibility according to the
definition in Section IV-A. The analysis phase pre-processes the
graph G associated with the matrix L in (1), it partitions G into
sub-graphs, and returns a schedule of numerical operations to be
executed during the solve phase. The analysis phase is divided
into two stages: the partitioning stage and the scheduling stage.

A. Partitioning stage

The partitioning stage partitions the G graph into s sub-
graphs. The value of s is defined as follows:

s :=

⌈
n

nmax

⌉
,

where n is the number of vertices in the G graph, and nmax is
that defined in (2). The aim of the partitioning is to obtain a
small value of nlevels in (5). Because the number of sub-graphs



s is fixed, the technique we use tries to put as many sub-graphs
as possible in the first set L1, and making sure that the partition
is feasible at the end, according to the definition in Section IV.
The partitioning stage is divided into three steps.

The first step of the partitioning stage is to partition the
G graph into into its ncomp disjoint components. This can
be done using Tarjan’s algorithm [12], which has complexity
O(n+ nedges), where n is the number of vertices and nedges is
the number of edges in the G graph.

The second step of the partitioning stage is to merge
together disjoint components with few vertices using a heuristic
algorithm. First, all disjoint components are sorted with respect
to their number of vertices, from the smallest to the largest.
Then, starting from the smallest, disjoint components are
merged together, such that the number of vertices of each
merged component is never greater than nmax. After this step,
the matrix L in (1) is permuted into a block diagonal form
similar to that in (3):

L′′ = PTLP =



L′′0
L′′1 0

L′′2
L′′3

0
. . .

L′′ncomp


(6)

where L′′k with k = 0, 1, . . . , ncomp are lower triangular matrix
blocks. Each block is associated with one of the resulting
components of the graph G. In particular, L′′0 is a diagonal
block, and it is associated with the vertices of the graph G
that have neither entering nor exiting edges. At the end of
the merging, all conditions for the feasibility of the partition
are met except possibly Condition 2, so further processing
of the components is needed. Because of the block diagonal
structure of L′′, the processing of each resulting component
is independent from the others, therefore the third step of the
partitioning stage can be carried out in parallel on a multi-core
CPU.

The third step of the partitioning stage is a heuristic that
partitions those disjoint components that have a number of
vertices greater than nmax into sub-graphs. If nc is the number
of vertices in the graph component C, this component is to be
split into

nsplit :=

⌈
nq
nmax

⌉
sub-graphs.

The basic operation of the partitioning heuristic is to
associate a given vertex with a sub-graph. This is done by
making sure that the partition is kept feasible. The procedure
is illustrated in Algorithm 2, where v is the index of the vertex,
and p a starting sub-graph index. First, it is checked that the
inequality np < nmax holds. If this is true, associating vertex v
with sub-graph Gp does not violate Condition 2, otherwise, the
sub-graph index is incremented and the condition is checked
again. If associating vertex v with any sub-graph violates
Condition 2, then the procedure terminates with an error.

1: function ASSOCIATE_SUBG(v, p)
2: k ← p
3: while nk ≥ nmax
4: if k < nsplit
5: k ← k + 1
6: else return error
7: Vk ← Vk ∪ {v}
8: return success

Algorithm 2: Function that associates a vertex v to a sub-graph.
The function looks for a sub-graph whose index is between p
and nsplit, and that contains less than nmax vertices. If there is
no such sub-graph, the function terminates with an error.

The partitioning heuristic is illustrated in Algorithm 3. The
heuristic uses two containers of vertices: Vnext and Vcur, on
which it is possible to execute three basic operations, which
are the addition of an element (put), the sorting according
to a criterion κ (sort), and counting the number of elements
(numel).

In line 3 of Algorithm 3, Vnext is initialised with the root
vertices of the component to partition, which are those vertices
that do not have any parent but do have children. Initially,
the root vertices are distributed across ninit initial sub-graphs,
where ninit is that computed in line 4. The root vertices are
associated with these initial sub-graphs according a sorting
criterion κ.

We execute the partitioning heuristic with different criteria
κ until a feasible partition is found. Initially, the criterion is
descending order of out-degree, whose aim is to have vertices
with a high out-degree in the same sub-graph of their children
whenever possible. However, If a feasible partition is not found
immediately, it is because the execution of the associate_subg
routine was terminated with an error, which can occur either
in line 10 or line 21. When an error occurs, ninit is halved and
the execution of the heuristic is started from the beginning,
but if ninit becomes equal to zero, then the whole heuristic
terminates with an error. Whenever this happens, we repeat the
execution of the heuristic and change κ: from descending order
of out-degree to ascending order of out-degree, and then to
ascending order of vertex index. The worst-case computational
complexity of each iteration of the partitioning algorithm is
O(n+ nedges), where n is the total number of vertices in the
graph and nedges is the number of edges.

At each iteration of the partitioning heuristic, in line 19, a
vertex k is taken from the container Vcur, and it is associated
with the sub-graph with the highest possible index. This is
described in line 21. If the associate_subg routine is succesful,
the children of the vertex k are considered, and those whose
parents are all assigned to sub-graphs are put in the container
Vnext. When all the vertices in Vcur have been processed, the
container Vnext is sorted and its content are moved to Vcur.
Then, as shown in line 18, Vnext is emptied before the following
iteration.

At the end of the partitioning stage, the permutation Q is
obtained, so that the L matrix can be permuted in the block
form illustrated in (3). A number of vertices smaller or equal to



Input: C, nsplit, nmax, κ
Output: V1, V2, . . . , Vnsplit

1: Vk ← ∅ ∀k = 1, 2, . . . , nsplit
2: Vnext ←6 V
3: Vnext ← put(r, Vnext) ∀r ∈ W | @(j, r) ∈ Y, j ∈ W
4: ninit ← min{nsplit, numel(Vnext)}
5: if ninit > 0
6: Vnext ← sort(Vnext, κ)
7: p← 0
8: for all k ∈ Vnext
9: if p > ninit then p← 1, else p← p+ 1

10: e← ASSOCIATE_SUBG(k, p)
11: if e = error
12: ninit ← bninit/2c and go to line 5
13: else for all v ∈ W | ∃(k, v) ∈ Y
14: if @(j, v) ∈ Y | j 6∈Vk ∀k = 1, 2, . . . , nsplit
15: Vnext ← put(v, Vnext)

16: while numel(Vnext) 6= 0
17: Vcur ← sort(Vnext, κ)
18: Vnext ←6 V
19: for all k ∈ Vcur
20: p← max{q ∈ N | ∃(j, k) ∈ Y, j ∈ Wq}
21: e← ASSOCIATE_SUBG(k, p)
22: if e = error
23: ninit ← bninit/2c and go to line 5
24: else for all v ∈ W | ∃(k, v) ∈ Y
25: if @(j, v) ∈ Y | j 6∈Vk ∀k = 1, 2, . . . , nsplit
26: Vnext ← put(v, Vnext)

27: if ∃v ∈ W | v 6∈Vk ∀k = 1, 2, . . . , nsplit
28: ninit ← bninit/2c and go to line 5
29: else terminate with success
30: else terminate with error

Algorithm 3: Heuristic algorithm that partitions a graph
component C := (W,Y), into nsplit sub-graphs G1, G2, . . . ,
Gnsplit . Each sub-graph has at most nmax vertices. The algorithm
uses the containers of vertices Vcur and Vnext, on which the put,
sort and numel operations are defined. In the pseudocode, 6 V
represents the empty container and κ is the sorting criterion.

nmax is associated with each sub-graph. Also, the sequence of
the equations in (4) is known, together with the sub-graph levels
Lp. In fact, one can build a graph where a vertex represents a
sub-graph and an edge represents one or more external edges
in the graph G following the partitioning, as shown in Figure 3.
In this example, the edge between sub-graph G1 and sub-graph
G3 shows that there is at least one edge between vertices
associated with sub-graph G1 and vertices associated with sub-
graph G3. Also, sub-graphs 1, 2, 4 and 6 belong to the set L1

because they do not depend on any other sub-graph. Similarly,
sub-graphs 3 and 5 belong to the set L2 because they are
connected to sub-graphs in the set L2 and they do not depend
on each other, therefore in this example nlevels = 2. Since
Condition 1 for feasibility is always satisfied if the partitioning
is successful, this type of graph is always a directed acyclic
graph.

The partitioning stage gives the sequence of the equations
in (4) and coarse-grained information about data locality.
However, it does not give any indication about the order within
which the numerical operations required for each equation

Sub-graph Sub-graph

Sub-graph

Sub-graph

Sub-graph

Sub-graph

Figure 3: Example graph representing the relationship between
sub-graphs. Each vertex in this graph represents a sub-graph
and each edge represents an external edge in the original G
graph after the partitioning. Sub-graphs are into two sets: L1

and L2. There is no path between sub-graphs in each of the
sets, because this type of graph is always a directed acyclic
graph if the partition is feasible.
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Figure 4: Examples of the two edge patterns in a sub-graph.
On one hand, if two or more edges are directed towards a
vertex, the numerical operations associated with them are in
read-write conflict. On the other hand, if two or more edges
are exiting a vertex, the numerical operations associated with
them can be carried out in parallel with the SIMD paradigm.

are to be carried out. That information, which in Algorithm 1
is represented by the sets Tgq and T ′gq, is obtained by the
scheduling stage.

B. Scheduling stage

During the scheduling stage, each edge in the sub-graphs
G1, G2, . . . , Gs is mapped to a time slot. Edges with the same
time slot represent multiply-and-add operations that can be
executed at the same time, with the SIMD paradigm. However,
the computation represented by each sub-graph requires further
analysis in order to minimize conflicting memory accesses. For
example, consider the situation represented in the left half of
Figure 4. The variable x6 is obtained by the execution of two
operations in any order, but if the two numerical operations
are carried out at the same time, a read-write access conflict
occurs. This is because each operation reads the value of the
variable x6 and overwrites it with a new value. In general, this
issue occurs whenever two or more edges are directed towards
the same vertex.

Our solution to this problem consists of delaying one or
more of the operations and assigning the edges to different time
slots. This is carried out with the routine shown in Algorithm 4.
There is no read-write access conflict in the situation shown in
the right half of Figure 4: in this case, the operations overwrite
the value of two different variables. Since the two operations
can be done at the same time, this is also an opportunity for
data-level parallelism.



1: function FIX_CONFLICTS(v)
2: for all (j, v) ∈ E | j ∈ Vk
3: if ∃(q, v) ∈ E | (q, v) ∈ Tkp, (j, v) ∈ Tkp
4: t← min{h ∈ N | h > p, @(u, v) ∈ Tkh ∀u ∈ Vk}
5: Tkt ← Tkt ∪ {(j, v)}
6: for all (j, v) ∈ E | j 6∈ Vk
7: if ∃(q, v) ∈ E | (q, v) ∈ T ′

kp, (j, v) ∈ T ′
kp

8: t← min{h ∈ N | h > p, @(u, v) ∈ T ′
kh ∀u 6∈ Vk}

9: T ′
kt ← T ′

kt ∪ {(j, v)}
10: return success

Algorithm 4: Function that checks and fixes possible read-
write conflicts in numerical operations. In the pseudocode, v
is a vertex in sub-graph Gk, so v ∈ Vk. The function always
terminates with success.

The scheduling algorithm we propose, which is illustrated in
Algorithm 5, assigns edges to time slots while taking advantage
of any opportunity for data-level parallelism. Also, it avoids any
read-write access conflict by delaying operations if necessary
by using the routine in Algorithm 4. Because it associates edges
with time slots rather than vertices with levels, this scheduling
algorithm is different from the level-set algorithm [4]. Also,
since each vertex is associated with only one sub-graph during
the partitioning stage, sub-graphs can be processed in parallel.
The worst-case computational complexity of the scheduling
algorithm is O(n+ 2nedges), where n is the total number of
vertices in the graph and nedges is the number of edges.

Similarly to the partitioning heuristic, Algorithm 5 uses two
containers of vertices: Vnext and Vcur. In line 2, Vnext is initialised
with those vertices that belong to sub-graph Gk and do not
have any parent vertex that belongs to the same sub-graph. The
input and output edges of these vertices are associated with the
first time slots T ′k1 and Tk1 respectively, then, at each iteration
of the algorithm, a vertex v is taken from the container Vcur,
and the fix_conflicts routine is executed on it. In line 18, the
input edges of v are checked to find the latest time slot, and
next the children vertices of v are then added to Vnext if all of
their input edges have been associated with time slots. When
all the vertices in Vcur have been processed, the elements of
Vnext are put in Vcur and Vnext is emptied in preparation for
a new iteration. The scheduling algorithm always terminates
with success if the partition of the G graph is feasible.

At the end of the scheduling stage, all information is
available to carry out the execution of the solve phase. Each
vertex of the graph is associated with a sub-graph, which
is processed by a compute unit during the solve phase, and
each edge is associated with a time slot, so the sequence of
numerical operations to carry out is also specified. Compared
to CUSPARSE’s level-set algorithm [4], our analysis phase can
results in fewer external edges. For example, in Figure 5, our
analysis phase resulted in five internal edges and five external
edges, while the level-set algorithm resulted in ten external
edges. Since numerical operations associated with internal
edges require fewer accesses to global memory, we argue that
our approach improves data locality compared to CUSPARSE’s
level-set algorithm. However, with our algorithm, the maximum

Input: Gk

Output: Tk1, Tk2, . . . , Tknslots,k , T ′
k1, T ′

k2, . . . , T ′
kn′

slots,k
1: Vcur ←6 V
2: Vcur ← put(r, Vnext) ∀r ∈ Vk | @(j, r) ∈ E , j ∈ Vk
3: Tkp ← ∅ ∀p
4: T ′

kp ← ∅ ∀p
5: for all v ∈ Vcur
6: for all (j, v) ∈ E | j 6∈ Vk
7: T ′

k1 ← T ′
k1 ∪ {(j, v)}

8: FIX_CONFLICTS(v)
9: for all (v, i) ∈ E | i ∈ Vk

10: Tk1 ← Tk1 ∪ {(v, i)}
11: if @(j, i) ∈ E | (j, i) 6∈ Tkp, (j, i) 6∈ T ′

kp ∀p
12: Vnext ← put(i, Vnext)

13: while numel(Vnext) 6= 0
14: Vcur ← Vnext
15: Vnext ←6 V
16: for all v ∈ Vcur
17: FIX_CONFLICTS(v)
18: t← 1 + max{q ∈ N | ∃(j, v) ∈ Tkq}
19: for all (v, i) ∈ E | i ∈ Vk
20: Tkt ← Tkt ∪ {(v, i)}
21: if @(j, i) ∈ E | (j, i) 6∈ Tkp, (j, i) 6∈ T ′

kp ∀p
22: Vnext ← put(i, Vnext)

23: terminate with success

Algorithm 5: Algorithm that assigns the edges of a sub-graph
Gp to time slots while making sure no read-write conflict
occurs. The algorithm uses the containers of vertices Vcur and
Vnext, on which the put and numel operations are defined. In
the pseudocode, 6 V represents the empty container, while Tkp
and T ′kp are the p-th time slot of internal and external edges
respectively, for sub-graph Gk.

number of operations that can be carried out in one time slot
is nmax, which is usually less than the number of vertices in
the G graph, n. Instead, with CUSPARSE’s algorithm, the
maximum number of operations that can be carried out in one
time slot it n. For this reason, we argue that our approach
reduces concurrency compared to the level-set algorithm.

VI. EXPERIMENTAL RESULTS

To study how the performance of the solver changes with
the sparsity pattern of L, we carried out five experiments which
we divided into two categories: experiments with automatically
generated test cases and experiments with test cases from the
Florida matrix collection [6].

The solve phase was run 100 times per matrix in every
experiment, each time with a different, randomly generated
right hand side, and the mean of the results was taken. We
included the data transfer from the host memory to the device
memory in the measurement. The single-precision floating
point format was used for matrix entries in both cases.

A. Automatically generated test cases

Automatically generated test cases are matrices we generated
that have specific properties, with the aim of studying the
performance of our algorithms in function of specific graph
attributes. For each of these matrices, we executed the software
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Figure 5: Comparison between the result of the analysis phase
on an example graph, with nmax = 4, and the analysis phase
as carried out by the level-set algorithm [4]. Time slots are
shown between parentheses, and external edges are shown with
dashed lines. Our analysis resulted in five external edges and
five internal edges, while CUSPARSE’s analysis results only
in external edges.

100·10-6

  1·10-3

10·10-3

100·10-3

0 10000 20000 30000 40000 50000 60000

E
xe

cu
ti
on

 t
im

e

of
 t

h
e 

so
lv

e 
p
h
as

e 
(s

)

Component size

This paper (Nvidia K4000)

CUSPARSE (Nvidia K4000)

Figure 6: Execution time of the solve phase with randomly
generated block-diagonal matrices, each having 16 disjoint
components.

on an Nvidia Quadro K4000 GPU [13]. We measured the
execution time of our solve phase, which was carried out with
an OpenCL kernel, and we compared it to the execution time
of the corresponding CUSPARSE library function [4] on the
same GPU. On these automatically generated cases, we carried
out three experiments.

The objective of the first experiment was to measure how
the execution time of our algorithm scales with the number
of vertices in the disjoint components of a graph. To achieve
this, we generated matrices with 16 disjoint components, but
with component size that ranged from 250 to 55000. We
used awk to generate block-diagonal lower triangular matrices,
with an arbitrarily chosen density of non-zero elements in
the blocks of 0.1%. Figure 6 summarises the results of the
experiment. The OpenCL kernel outperformed CUSPARSE, the
performance difference increasing as component size increased.
The maximum speedup achieved was 2.5 fold.

In the same experiment, we also measured the execution
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Figure 7: Execution time of the analysis phase with randomly
generated block-diagonal matrices, each having 16 disjoint
components.
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Figure 8: Number of times the solve phase should be repeated
before the execution time of the analysis phase is amortised,
and the total execution time is less than CUSPARSE’s. Each
of the test cases has 16 disjoint components of the given size.

time of the analysis phase, which was carried out only once
per data point on an Intel Xeon X5650 CPU. Our algorithms
for the analysis were implemented in C++. Figure 7 shows
that the execution times of both CUSPARSE’s analysis and
our algorithms for the analysis grow linearly with the number
of non-zero elements in the matrix. However, we observed that
the slope was 166 times steeper with our algorithms. Because
of this, we see that the solve phase has to be repeated a
number of times before the execution time of the analysis
phase is amortised. This number increases with the size of the
components, as is illustrated in Figure 8, but is below the tens
of thousands required in large scale optimization problems [14].

The objective of the second experiment was to measure how
the execution time of our algorithm scales with the number of
disjoint components in a graph. We generated block-diagonal
matrices with disjoint components of size 6000, that is below
nmax for the Nvidia Quadro K4000 GPU. The number of
disjoint components ranged from 8 to 512, while the density
of non-zero elements in the block was 1% and was chosen
arbitrarily. Figure 9 show that our OpenCL kernel outperformed
CUSPARSE’s function in all cases. Also, the execution time
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Figure 9: Execution time of the solve phase with randomly
generated block-diagonal matrices, each having components
of size 6000.

Table I: Value range of Features of the test cases from the
Florida Matrix Collection [6] and range of their values.

Matrix feature min max

Number of rows/columns 10261 525824
Number of non-zero elements 760 4356551
Number of disjoint components 1 5000
Size of disjoint components 2 20360

of the OpenCL kernel was linear with respect to the number
of disjoint components. The maximum speedup achieved was
2 fold.

B. Test cases from the Florida matrix collection

The Florida matrix collecton [6] is a standard benchmark set
for sparse linear algebra algorithms that contains non-artificial
test cases. For each of the matrices, the zero-fill-in incomplete
LU decomposition was computed [3], so that the resulting
triangular factors had the same sparsity patterns as the lower
half of the input matrix. Then, both analysis and solve phases
were executed on the lower triangular factor. We considered
the first 200 matrices, starting from that with the fewest rows
and columns, such that the execution time of the solve phase
was known with a confidence interval smaller than 1%. Table I
summarises the features of the lower triangular factors that
were used. We considered matrices whose graph is composed
of a single, large component as well as matrices whose graph
is composed of many, small disjoint components.

On the Nvidia Quadro K4000 GPU, the average execution
time of the OpenCL kernel was compared to the execution time
of CUSPARSE’s function, as shown in Figure 10, where each
point corresponds to a test case. Points above the diagonal
line correspond to test cases in which the OpenCL kernel
outperformed CUSPARSE’s function, while points below the
diagonal line correspond to test cases in which the OpenCL
kernel was outperformed. In 71% of all test cases, the execution
time of the OpenCL kernel was less than that of CUSPARSE’s
function. In particular, the worst speedup was achieved on a
test case named circuit_3. In this test case, the matrix was
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Figure 10: Comparison between the execution time of the
OpenCL kernel and the execution time of CUSPARSE’s func-
tion [4] on 200 test cases from the Florida matrix collection [6].
The points above the diagonal, which are 71 % of the total,
represent test cases in which the OpenCL kernel outperforms
CUSPARSE’s function. The software was executed on the
Nvidia Quadro GPU.

not partitioned because the vertices that did not belong to the
set V0 were fewer than nmax, and also the fraction of non-
zero elements was 0.019%, which meant the G graph had few
edges. Because there was not enough compute, the data transfer
from global to local memory could not be amortised and
the OpenCL kernel was 5.9 times slower than CUSPARSE’s
algorithm. Instead, the best speedup achieved was 5.8-fold, on
a test case named human_gene2. For this test case, our analysis
phase partitioned the graph into three sub-graphs, of which
two belonged to the first sub-graph level. With our algorithm,
only 26% of the edges in the graph were external, compared
to CUSPARSE’s algorithm.

In the last experiment, we investigated how the architectural
attributes of the GPU impact on the performance of our
algorithm. For this, we used to two different GPUs: an Nvidia
Quadro K4000 and an AMD Firepro W5000. The two GPUs
chosen have about the same peak performance, which is
1.26TFLOPS for the Nvidia GPU and 1.27TFLOPS for
the AMD GPU [15], [13]. However, while the AMD Firepro
has a local memory capacity of 32 kB, the Nvidia Quadro
has a local memory capacity of 48 kB. Also, as specifications
of the two GPUs in Table II show, the compute units of the
Nvidia Quadro GPU contain more than double the processing
elements of the AMD GPU. On the other hand, the AMD
Firepro GPU contains three times as many compute units as
the Nvidia Quadro GPU.

Figure 11 illustrates the results of the experiment, where
points above the diagonal line correspond to test cases in which
the Nvidia GPU outperforms the AMD one, while points below
the diagonal line correspond to test cases in which the Nvidia
GPU is outperformed. In 74% of all test cases, the execution
time on the Nvidia GPU is less than that of the AMD GPU.

In particular, the maximum speedup achieved with the Nvidia



Table II: Specifications of the GPUs used to carry out the
experiments. CU stands for compute units, PE for processing
elements, and LM for local memory capacity.

Platform Clockrate CU PE/CU LM

Nvidia Quadro K4000 0.82GHz 4 192 48 kB
AMD Firepro W5000 0.83GHz 12 64 32 kB
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Figure 11: Comparison between the execution time of the
OpenCL kernel on the Nvidia Quadro K4000 and the AMD
Firepro W5000 GPUs on 200 test cases from the Florida matrix
collection [6]. The points above the diagonal, which are 74 %
of the total, represent test cases in which the Nvidia GPU
outperforms the AMD GPU.

GPU against the AMD GPU was 4-fold, on a test case named
fd15. For this test case, because of the more capacious local
memory, the Nvidia GPU was able to carry out all numerical
operations using a single compute unit without partitioning
the graph. Hence, all edges in the graph were internal edges
on the Nvidia GPU. Instead, for the AMD GPU, the graph
was partitioned, and the computation was carried out on two
sub-graph levels. The maximum speedup achieved with the
AMD GPU with respect to the Nvidia GPU was 3-fold, on a
test case named mc2depi. For both GPUs, the graph associated
with mc2depi was composed of 47 sub-graphs, all on the same
sub-graph level. Because of the AMD GPU has three times
as many compute units as the Nvidia GPU, the AMD GPU
carried out all computations three times faster.

VII. CONCLUSION

When solving STLs, the structure of the input matrix has
a significant impact on performance. Like our experimental
results show, the same algorithm carried out on the same data
with two GPUs of comparable peak performance can have
significantly different execution times.

Our experimental results show that reducing concurrency to
the advantage of data locality can lead to better performance
when solving STLs using GPUs. Our approach is different from
that of the level-set algorithm [4], which aims to maximise
concurrency, as well as that used in multi-core CPUs [5],
which aims to balance the workload across the CPU cores by

maximising data locality. Instead, our algorithm partitions the
graph associated with the STL by taking into consideration the
capacity of the local memories inside the GPU, with the aim
of balancing data locality and concurrency. The partitioning
is done by a pre-processing algorithm, or analysis phase,
which is carried out once per a given sub-graph. Although
the analysis phase is more time consuming than that of the
level-set algorithm, its result can be re-used for many STL
solves.

Our future work focuses on how to reduce the impact of
the analysis time on the overall execution of calling software
through mapping incremental changes to the matrix structure
to incremental changes to the partioning.
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