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Abstract
We present ribbon proofs, a diagrammatic proof system for separa-
tion logic. Inspired by an eponymous system due to Bean, ribbon
proofs emphasise the structure of a proof, so are intelligible and
hence useful pedagogically. Because they contain less redundancy
than proof outlines, and allow each proof step to be checked locally,
they are highly scalable (and we illustrate this with a ribbon proof
of the Version 7 Unix memory manager). Where proof outlines are
cumbersome to modify, ribbon proofs can be visually manoeuvred
to yield proofs of variant programs. This paper introduces the rib-
bon proof system, proves its soundness and completeness, and out-
lines a prototype tool for validating the diagrams in Isabelle.

1. Introduction
A program proof should not merely certify that a program is cor-
rect; it should explain why it is correct. A proof should be more than
‘true’: it should be informative, and it should be intelligible. This
paper does not contribute new methods for proving more properties
of more programs, but rather, a new way to present such proofs.
Building on work by Bean [2], we present a system that produces
program proofs that are readable, scalable, and easily modified.

A program proof in Hoare logic [14] is usually presented as a
proof outline, in which the program’s instructions are interspersed
with ‘enough’ assertions to allow the reader to reconstruct the
derivation tree. Since emerging circa 1971, the proof outline has
become the de facto standard in the literature on both Hoare logic
(e.g. [1, 15, 23, 27]) and its recent descendent, separation logic
(e.g. [3–10, 13, 16–18, 26, 30]). Its great triumph is what might
be called instruction locality: that one can verify each instruction
in isolation (by confirming that the assertions immediately above
and below it form a valid Hoare triple) and immediately deduce
that the entire proof is correct.

Yet proof outlines also suffer several shortcomings, some of
which are manifested in Fig. 1a. This proof outline concerns
a program that writes to three memory cells; separation logic’s
∗-operator specifies that these cells are distinct. First, there is much
repetition: ‘x 7→ 1’ appears three times. Second, it is difficult to in-
terpret the effect of each instruction because there is no distinction
between those parts of an assertion that are actively involved and
those that are merely in what separation logic calls the frame. For

[Copyright notice will appear here once ’preprint’ option is removed.]

1
{
x 7→ 0 ∗ y 7→ 0 ∗ z 7→ 0

}
2 [x]:=1;

3
{
x 7→ 1 ∗ y 7→ 0 ∗ z 7→ 0

}
4 [y]:=1;

5
{
x 7→ 1 ∗ y 7→ 1 ∗ z 7→ 0

}
6 [z]:=1;

7
{
x 7→ 1 ∗ y 7→ 1 ∗ z 7→ 1

}
(a) A proof outline

x 7→ 0 y 7→ 0 z 7→ 0

[x]:=1

x 7→ 1
[y]:=1

y 7→ 1
[z]:=1

z 7→ 1

(b) A ribbon proof

Figure 1. A simple example

instance, line 4 affects only the second conjunct of its preceding as-
sertion, but it is difficult to deduce the assignment’s effect because
two unchanged conjuncts are also present. These are only minor
problems in our toy example, but they quickly become devastating
when scaled to larger programs.

The crux of the problem is what might be called resource local-
ity. Separation logic [17, 26] specialises in this second dimension
of locality. One can use separation logic’s small axioms to reason
about each instruction as if it were executing in a state containing
only on the resources (i.e. memory cells) that it needs, and immedi-
ately deduce its effect on the entire state using the frame rule. The
proof outline below uses Bornat’s method [5] to depict this mecha-
nism for line 4 of Fig. 1a.

frame
x 7→ 1 ∗ z 7→ 0

-



{
x 7→ 1 ∗ y 7→ 0 ∗ z 7→ 0

}{
y 7→ 0

}
[y]:=1;{
y 7→ 1

}
- small axiom

for heap update{
x 7→ 1 ∗ y 7→ 1 ∗ z 7→ 0

}
Showing such detail throughout a proof outline clarifies the effect
of each instruction, but escalates the repetition. Cleverer use of the
frame rule can help, but only a little – see §7. Essentially, we need a
new proof representation to harness the new technology separation
logic provides, and we propose the ribbon proof.

Figure 1b gives an example. The repetition has disappeared,
and each instruction’s effect is now clear: it affects exactly those
assertions directly above and below it, while framed assertions
(which must not mention variables written by the instruction) pass
unobtrusively to the left or right. Technically, we still invoke the
frame rule at each instruction, but crucially in a ribbon proof, such
invocations are implicit and do not complicate the diagram.

A bonus of this particular ribbon proof is that it emphasises
that the three assignments update different memory cells. They are
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thus independent, and amenable to reordering or parallelisation.
One can imagine obtaining a proof of the transformed program by
simply sliding the left-hand column downward and the right-hand
column upward. The corresponding proof outline neither suggests
nor supports such manoeuvres.

Where a proof outline essentially flattens a proof to a list of as-
sertions and instructions, our system produces geometric objects
that illuminate the proof structure, that can be navigated and mod-
ified by leveraging human visual intuition, and whose basic steps
correspond exactly to separation logic’s small axioms. The intuitive
nature of ribbon proofs can be exploited most effectively by apply-
ing them to one of the many recent extensions of separation logic
(e.g. [4, 7–10, 13, 16, 18, 21, 30]). These program logics are based
on increasingly complex reasoning principles, of which clear ex-
planations are increasingly vital. We propose ribbon proofs as the
ideal device for providing them.

Comparison with Bean’s system Bean [2] introduced ribbon
proofs as an extension of Fitch’s box proofs [11] to handle the
propositional fragment of bunched implications logic (BI) [22].
BI being the basis of the assertion language used in separation
logic [17], his system can be used to prove entailments between
propositional separation logic assertions. Our system expands
Bean’s into a full-blown program logic by adding support for com-
mands and existentially-quantified variables. Proof outlines focus
on Hoare triples {p} c {q}, and often neglect the details of entail-
ments between assertions, p ⇒ q, despite such entailments often
encoding important insights about the program being verified. Our
ribbon proofs treat both types of judgement equally, within the
same system. Our system is further distinguished by its treatment
of ribbon proofs as graphs, which gives our diagrams an appealing
degree of flexibility.

Contributions We describe a diagrammatic proof system that en-
ables a natural presentation of separation logic proofs. We prove it
sound and (trivially) complete with respect to separation logic.

We describe a prototype tool for mechanically checking ribbon
proofs in Isabelle (including several presented in this paper). Given
a small proof script for each basic step, our tool assembles a script
that verifies the entire diagram. Such tediums as the associativity
and commutativity of ∗ are handled in the graphical structure,
leaving the user to focus on the interesting parts of the proof.

Ribbon proofs are often bigger than their proof outline coun-
terparts, but because they contain much less redundancy, they are
actually a far more scalable proof representation. To illustrate the
ability of our diagrams to present readable proofs of more complex
programs, Appendix E presents a ribbon proof of the memory man-
ager from Version 7 Unix (an example previously studied in [32]).

Outline
§2 describes our ribbon proof system through two examples.
§3 formally defines the two-dimensional language of ribbon dia-

grams and provides proof rules. We prove completeness with
respect to separation logic. Soundness is non-trivial, and is at-
tained by making one of the two following compromises.

§4 proves that our proof rules are sound if we sacrifice some flexi-
bility of our diagrams by committing to a particular ordering of
instructions.

§5 proves that our proof rules are sound if, instead, we adopt the
variables-as-resource paradigm [24].

§6 describes our prototype tool for mechanically checking ribbon
proofs in Isabelle.

§7 discusses related and future work, including extensions to han-
dle concurrent separation logic [21] and possible applications to
parallelisation.

1
{
ls x 0 ∗ ls y 0

}
2 if (x==0) {
3

{
ls y 0

}
4 x:=y;
5

{
ls x 0

}
6 } else {
7

{
ls x x ∗ ls x 0 ∗ x ˙6= 0 ∗ ls y 0

}
8 t:=x;
9

{
∃U. ls x t ∗ t 7→ U ∗ ls U 0 ∗ ls y 0

}
10 u:=[t];
11 while

{
ls x t ∗ t 7→ u ∗ ls u 0 ∗ ls y 0

}
(u!=0) {

12
{
ls x u ∗ ls u 0 ∗ u ˙6= 0 ∗ ls y 0

}
13 t:=u;
14

{
∃U. ls x t ∗ t 7→ U ∗ ls U 0 ∗ ls y 0

}
15 u:=[t];
16

{
ls x t ∗ t 7→ u ∗ ls u 0 ∗ ls y 0

}
17 }
18

{
ls x t ∗ t 7→ 0 ∗ ls y 0

}
19 [t]:=y;
20

{
ls x 0

}
21 }
22

{
ls x 0

}
Figure 2. Proof outline for list append

2. Anatomy of a ribbon proof
We describe our ribbon proof system using two examples.

2.1 List append
Figure 2 presents a proof outline for an imperative program that
appends two lists (adapted from [3]). It comprises (rather weak)
pre- and postconditions, a loop invariant, and several intermediate
assertions to guide the reader through the proof. For a binary
relation r, we write x ṙ y for x r y ∧ emp, where emp describes
an empty heap. The ls predicate is the smallest satisfying:

ls x y ⇔ (x
.
= y ∨ x ˙6= y ∗ ∃x′. x 7→ x′ ∗ ls x′ y).

Despite the abundance of assertions, the proof outline obscures
several features of the proof. For instance, the assertion at the
entry to the else-branch (line 7) is potentially confusing because it
differs in multiple ways from its predecessor on line 1: ‘x ˙6= 0’
has appeared, and so has ‘ls x x’. Only the former results from
the failure of the test condition; the latter is from a lemma about
ls . Likewise, in lines 8 and 13 we perform assignments while
expanding the definition of ls , and in line 19 the heap update
coincides with the use of an entailment lemma. This common
practice of combining multiple proof steps avoids a proliferation
of assertions, but comes at the expense of readability. (Displaying
each step separately has problems too, as our next example shows.)

In contrast, the corresponding ribbon proof in Fig. 3 displays
each proof step individually without resorting to repetition. The
proof advances vertically, and the resources (memory cells) being
operated upon are distributed horizontally. The precondition ls x 0∗
ls y 0 is divided between two ribbons at the top of the diagram. That
those assertions are connected via separation logic’s ∗-operator
means that they describe disjoint resources, and this is reflected
in the diagram by the horizontal separation between the ribbons.
Because ∗ is commutative, we can cross one ribbon over another –
see Fig. 5b for an example of this ‘twist’ operation. Not only is the
resource distribution unordered, it is not uniform, so the width of a

2 2012/7/10



if (x==0) {

} else {

while (u!=0) {

}

}

ls x 0 ls y 0

x .
= 0

Unfold ls def x:=y

ls x 0

x ˙6= 0ls x 0 ls y 0
Fold ls def

ls x x

t:=x

ls x t t ˙6= 0ls t 0

Unfold ls def

∃U. t 7→ U ∗ ls U 0

u:=[t]

t 7→ u ls u 0

u ˙6= 0

Lemma: ls a b ∗ ls b c ∗ ls c 0
implies ls a c ∗ ls c 0

ls x u ls u 0

t:=u

t ˙6= 0ls x t ls t 0

Unfold ls def

∃U. t 7→ U ∗ ls U 0

u:=[t]

t 7→ u ls u 0

u .
= 0

Unfold ls def

t 7→ 0

[t]:=y

t 7→ y

Fold ls def

ls t 0

Lemma: ls a b ∗ ls b 0 implies ls a 0

ls x 0

ls x 0

Figure 3. Ribbon proof of list append

(a)

if (...) {

} else {

}

A

B

C

D

≈

A

B
C

D

(b)

while (...) {

}

A

B

C

≈
A

B

C

Figure 4. If-statements and while-loops, pictorially

ribbon is not proportional to the amount of resource it describes. In
particular, the assertion ‘x .

= 0’ obtained upon entering the then-
branch describes no memory cells at all; it is merely a fact about
variables. A gap in the diagram (e.g. above the ‘fold’ step at the
start of the else-branch) corresponds to the ‘emp’ assertion.

Just above ‘t:=u’ we stretch the ‘ls x u’ and ‘ls u 0’ ribbons so
they align with the corresponding ribbons below the assignment.
Such distortions are semantically meaningless but can aid readabil-
ity. Similarly, at the end of the then-branch we stretch the ‘ls x 0’
ribbon to mimic the ribbon at the end of the else-branch. The gen-
eral rule is that the collection of ribbons entering the then-branch of
an if-statement must match that entering the else-branch, as must
the collections at the two exits, so that the proof could be cut and
folded into the three-dimensional shape suggested in Fig. 4a.

The while-loop has a similar proof structure to the if-statement.
Inside the loop body we assume that the test succeeds (u ˙6= 0);
the complementary assumption appears after exiting the loop. The
loop invariant is the collection of ribbons entering the top of the
loop: ls x t, t 7→ u and ls u 0. This collection must be recreated at
the end of the loop body, so that one could roll the proof into the
shape drawn in Fig. 4b.

In the else-branch, the assertion ‘ls y 0’ is not needed until
nearly the end, when it is merged with ‘t 7→ y’. In a proof outline,
this assertion would either be temporarily removed via an explicit
application of the frame rule or, as is done in Fig. 2, redundantly
repeated at every intermediate point. In the ribbon proof, it slides
discreetly down the right-hand column. This indicates that the
assertion is inactive without suggesting that it has been removed.

2.2 List reverse
Our second example provides a side-by-side comparison of a proof
outline and a ribbon proof, and also explains how ribbon proofs
handle existentially-quantified logical variables.

Figure 5a gives a proof outline of a program (adapted from [26])
for in-place reversal of a list. We write · for sequence concatenation,
(−)† for sequence reversal and ε for the empty sequence, and we
define list as the smallest predicate satisfying

list αx ⇔ x
.
= 0 ∗ α .

= ε ∨
x ˙6= 0 ∗ ∃α′, i, x′. x 7→ i, x′ ∗ α .

= i · α′ ∗ list α′ x′.
In contrast to Fig. 2, this proof outline seeks to clarify the proof by
making minimal changes between successive assertions. The cost
of this is a large and highly redundant proof. And still the structure
of the proof is unclear.
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1
{
list δ x

}
2 y:=0;

3
{
list δ x ∗ list ε y

}
4 // Choose α := δ and β := ε

5 while
{
∃α, β. list α x ∗ list β y ∗ δ .

= β† · α
}

6 (x!=0) {

7
{
x ˙6= 0 ∗ (∃α, β. list α x ∗ list β y ∗ δ .

= β† · α)
}

8
{
∃α, β. x ˙6= 0 ∗ list α x ∗ list β y ∗ δ .

= β† · α
}

9 // Unfold list def

10

∃α, β. (∃α
′, i, Z. x 7→ i, Z ∗ list α′ z ∗ α .

= i · α′)
∗ list β y ∗ δ .

= β† · α


11 // Choose α := α′

12

∃α, β, i, Z. x 7→ i, Z ∗ list αZ ∗ δ .
= β† · (i · α)

∗ list β y


13 z:=[x+1];

14
{
∃α, β, i. list α z ∗ x 7→ i, z ∗ δ .

= β† · (i · α) ∗ list β y
}

15 // Reassociate i

16
{
∃α, β, i. list α z ∗ x 7→ i, z ∗ δ .

= (i · β)† · α ∗ list β y
}

17 [x+1]:=y;

18
{
∃α, β, i. list α z ∗ x 7→ i, y ∗ δ .

= (i · β)† · α ∗ list β y
}

19 // Fold list def

20
{
∃α, β, i. list α z ∗ list (i · β) x ∗ δ .

= (i · β)† · α
}

21 // Choose β := (i · β)

22
{
∃α, β. list α z ∗ list β x ∗ δ .

= β† · α
}

23 y:=x;

24
{
∃α, β. list α z ∗ list β y ∗ δ .

= β† · α
}

25 x:=z;

26
{
∃α, β. list α x ∗ list β y ∗ δ .

= β† · α
}

27 }

28
{
x .

= 0 ∗ (∃α, β. list α x ∗ list β y ∗ δ .
= β† · α)

}
29

{
∃α, β. x .

= 0 ∗ list α x ∗ list β y ∗ δ .
= β† · α

}
30 // Unfold list def

31
{
∃α, β. α .

= ε ∗ list β y ∗ δ .
= β† · α

}
32 // Concatenate empty sequence

33
{
∃β. list β y ∗ δ .

= β†
}

34 // Fold list def

35
{
list δ† y

}
(a) A proof outline

while (x!=0) {

}

list δ x
y:=0

list ε y

Choose α := δ and β := ε
∃α
∃β
list α x list β y δ

.
= β† · α

x ˙6= 0

Unfold list def

∃α′, i, Z. x 7→ i, Z
∗ list α′ Z ∗ α .

= i · α′

Choose α := α′

∃α
∃i
∃Z. x 7→ i, Z ∗ list αZ δ

.
= β† · (i · α)

z:=[x+1]

list α z x 7→ i, z Reassociate i

δ
.
= (i · β)† · α[x+1]:=y

x 7→ i, y

Fold list def

list (i · β) x

Choose β := (i · β)
∃β

list β x δ
.
= β† · α

y:=x
x:=z list β y
list α x

x .
= 0

Unfold list def

α
.
= ε

Concatenate empty sequence

δ
.
= β†

Fold list def

list δ† y

(b) A ribbon proof

Figure 5. Two proofs of list reverse
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while (...) {

}

∃α
∃β

∃α

∃β

Figure 6. Vertical overlapping of existential boxes

In particular, the proof outline obscures the usage of the logical
variables α and β. For instance, the α in line 12 is not the same as
the α in line 5, though visually it seems to be. The witness for
β is constant through lines 5 to 20, after which it becomes the
previous β prepended with i. These subtle changes can only be
spotted through careful examination of the proof outline (or else,
as we have done, an explicit textual comment). The handling of
logical variables in the ribbon proof is far more satisfactory. The
scope of a logical variable is delimited by a thin existential box.
Boxes extend horizontally across several ribbons, but also vertically
to indicate the range of steps over which the same witness is
used. We are permitted to stretch boxes horizontally – for instance,
immediately below the loop in Fig. 5b. This corresponds to the
implication p ∗ ∃x. q ⇒ ∃x. p ∗ q (where x is not in p). Within
any single row projected from the proof, existential boxes must
be well-nested; this corresponds to the static scoping of existential
quantifiers in assertions. Vertically, however, boxes may overlap;
this corresponds to the implication ∃x.∃y. p⇒ ∃y.∃x. p. Figure 6
depicts how the boxes for α and β overlap in Fig. 5b. We thus
obtain an intriguing proof structure – present in neither the proof
outline nor the derivation tree – in which the scopes of logical
variables do not follow the program’s syntactic structure, but are
instead dynamically scoped. See §7 for further discussion.

We close this section by explaining a serious shortcoming in
the proof system as currently presented. One nicety of Fig. 5b is
that the ‘Reassociate i’ entailment is clearly independent of the
neighbouring proof steps, being horizontally separated from them,
and hence can be safely moved a little earlier or later. Close in-
spection is necessary to discover this from the proof outline. But
by the same reasoning, the assignments ‘y:=x’ and ‘x:=z’ can be
swapped, and this is unsound. This observation will cause difficul-
ties in our formalisation (§3), but we shall overcome them, either
by forbidding such manoeuvres altogether (§4) or by embedding
information about variable dependencies into the ribbons by using
the variables-as-resource paradigm (§5).

3. Formalisation
We now formalise the concepts introduced in the previous section.
We introduce in §3.1 a two-dimensional syntax for diagrams, and
explain how it can generate the pictures we have already seen. We
present the rules of our diagrammatic proof system in §3.2, plus
additional rules in §3.3 for composing diagrams in sequence and in
parallel. We relate ribbon proofs to separation logic in §3.4.

Notation. We tend to use letters in upper case or bold type to range
over sets. For sets X and Y , we write X 6∩ Y as shorthand for
X ∩ Y = ∅. Let X ] Y be defined when X 6∩ Y as X ∪ Y . We
sometimes treat a natural number k as the ordinal {0, . . . , k − 1}.
Let V be an infinite set of node-identifiers. Proofs performed by
hand are annotated with 2, while those mechanically verified in

`SL{p} c {q} wr(c) 6∩ rd(r)

`SL{p ∗ r} c {q ∗ r} `SL{p} skip {p}

`SL{p} c1 {q} `SL{q} c2 {r}
`SL{p} c1;c2 {r}

`SL{p} c {q}
`SL{∃x. p} c {∃x. q}

`SL{p} c1 {q} `SL{p} c2 {q}
`SL{p} c1 or c2 {q}

`SL{p} c {p}
`SL{p} loop c {p}

Figure 7. Proof rules for commands

Isabelle are annotated with Isabelle , and can be viewed online at:
http://www.cl.cam.ac.uk/~jpw48/ribbons.html

Definition 1 (Assertions). Let p range over a set of ordinary sep-
aration logic assertions, assumed to contain at least the following
constructions:

Assertion
def
= {p ::= emp | p ∗ p | ∃x. p | . . .}.

Definition 2 (Commands). Let c range over the commands of a
sequential programming language containing, at least, sequential
composition (which is associative), skip (the left and right unit of
sequential composition), and non-deterministic choice and looping:

Command
def
= {c ::= c ; c | skip | c or c | loop c | . . .}.

If a primitive ‘assume b’ command is available (where b is a
pure assertion; that is, independent of the heap) then standard if-
statements and while-loops can be derived:

if(b, c1, c2)
def
= (assume b ; c1) or (assume¬b ; c2)

while(b, c)
def
= loop(assume b ; c) ; assume¬b.

We assume a separation logic over these commands and assertions,
containing at least those rules given in Fig. 7. The first of these
rules, the frame rule, employs the following definition.

Definition 3 (Reading and writing program variables). The rd and
wr functions extract the sets of program variables read and written.
They can be applied to a variety of objects, such as assertions
(which only read) and commands. We write X # Y when both
rd(X) 6∩ wr(Y ) and rd(Y ) 6∩ wr(X).

Placing such minimal constraints on the form of commands, asser-
tions and proof rules makes our formalisation applicable not just to
separation logic but to any program logic based thereon.

3.1 Syntax of ribbon diagrams
We present a syntax that, with minor adjustments to be discussed
shortly, can generate the pictures seen in the preceding section. The
syntax is designed to be independent from the particular sizings and
layout used in a picture. We begin with the concept of an interface,
which roughly corresponds to a single row of a ribbon diagram.

Definition 4 (Interfaces). An interface is either a single ribbon
labelled with an assertion, an empty interface (shown as white-
space in pictures), two interfaces side by side, or an existential box
wrapped around an interface:

Interface
def
= {P ::= p | ε | P P | ∃xP }.

Interfaces are identified up to (P Q)R = P (QR), P ε = ε P =
P and P Q = QP . Where clarity demands it, we shall write P⊗Q
instead of P Q, and hence ⊗i∈IPi for iterated composition. There
exists a straightforward mapping asn : Interface → Assertion,
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AsnGadget = {A ::= p | G∃x }

ComGadget = {C ::= c |
G

or
G

| loop
G

}

Diagram = {G | VG ⊆fin V , ΛG ∈ VG → AsnGadget,
EG ⊆ P(VG)× ComGadget× P(VG),
acyclic(G), and linear(G),
where G = (VG,ΛG, EG)}

Figure 8. Syntax of ribbon diagrams

given by:

asn p = p
asn ε = emp

asn (P Q) = asn P ∗ asn Q
asn ∃xP = ∃x. asn P.

Next, we define a diagram, which can be thought of as a mapping
between two interfaces.

Definition 5 (Diagrams, assertion-gadgets and command-gadgets).
The equations in Fig. 8 define a language of diagrams, assertion-
gadgets and command-gadgets. The definitions are mutually recur-
sive, and are well-formed because the definienda (left-hand sides)
appear only positively in the definientia (right-hand sides).1 The
first of these equations defines an assertion-gadgetA ∈ AsnGadget
to be either a ribbon or an existential box. (Note that the latter con-
tains a nested diagram because our pictures allow commands to
reside within existential boxes.) The second defines a command-
gadget C ∈ ComGadget to be either a basic step, a choice di-
agram, or a loop diagram. The third equation defines a diagram
G ∈ Diagram to be a triple (VG,ΛG, EG) that comprises:

• a finite set VG ⊆fin V of node identifiers;
• a labelling ΛG : VG → AsnGadget that associates each node

identifier with an assertion-gadget; and
• a set EG ⊆ P(VG) × ComGadget × P(VG) of hyperedges

(v, C,w), each of which comprises a set v of tail identifiers, a
command-gadget C, and a set w of head identifiers,

and which satisfies the following two properties.

ACYCLICITY: Let us write v −I w if v ∈ v and w ∈ w for some
(v, C,w) ∈ EG. Then acyclic(G) iff v −I

i v implies i = 0.
LINEARITY: Define linear(G) to hold iff the hyperedges in EG

have no common heads and no common tails.

Linearity models the fact that ribbons cannot be duplicated, which
in turn is a result of p⇒ p ∗ p being invalid in separation logic.

Remark 6. The diagrams that we present above are nested, di-
rected, acyclic graphs; that is, dags whose nodes and edges may be
labelled with further dags. They might typically be presented as a
single graph, with dedicated ‘parent’ edges to simulate the nesting
hierarchy. However, as Wu et al. observe, “reasoning about graphs
[. . . ] can be a real hassle in HOL-based theorem provers” [33].
Hence, with our Isabelle formalisation in mind, we prefer to use a
(mutally) inductive datatype to depict the hierarchy (although each
level of the hierarchy must remain non-inductive).

Remark 7. We usually work with abstract diagrams. These dia-
grams are identified up to graph isomorphism; that is, the particu-
lar choice of node-identifiers is unimportant. In particular, the di-
agrams that appear within assertion-gadgets or command-gadgets

1 This is true even for the occurrence of ComGadget in the definiens of
Diagram, because the set in which it appears is finite.

are treated abstractly. However, some definitions and proofs work
with concrete diagrams where the node-identifiers are exposed.

Having presented the syntax of ribbon diagrams, we now show
how it corresponds to the pictures presented in the previous section.
Figure 9 presents the term of Diagram that corresponds to Fig. 5b.
The discrepancies that remain are the result of our pictures using
the following pieces of ‘syntactic sugar’:

• entailments are performed using basic steps whose command
is skip – rather than write ‘skip’, we label the step with a
justification of the entailment;

• the ribbons and existential boxes at the top and bottom of a
diagram are left visually ‘open’ to suggest the potential for
connections to other diagrams;

• repeated labels on ribbons or existential boxes are removed; and
• for existential boxes, the operations of extending, contracting

and commuting are really the entailments depicted informally
in Fig. 10. When such entailments appear in Fig. 9, they are
displayed like so: . Having to show these entailments explic-
itly makes Fig. 9 significantly more repetitive than Fig. 5b. See
§7 for further discussion of this issue.

3.2 Proof rules for ribbon diagrams
There are two pertinent questions to be asked of a given ribbon
diagram. The first question is: is it a valid proof? This subsection
develops a provability judgement to answer this. The second ques-
tion – if this ribbon diagram is deemed valid, what does it prove? –
is addressed in the next subsection.

Definition 8 (Initial and terminal nodes). We shall be interested in
those nodes of a diagram G that have no outgoing or no incoming
edges:

initials(G) = VG \
⋃{v | (_, _,v) ∈ EG}

terminals(G) = VG \
⋃{v | (v, _, _) ∈ EG}.

Definition 9 (Top and bottom interfaces). These constructions are
used to extract interfaces from diagrams. For a diagram G:

top(G) = ⊗v∈initials G top(ΛG v)

bot(G) = ⊗v∈terminals G bot(ΛG v)

and for assertion-gadgets:

top p = p

bot p = p

top G∃x = ∃xtopG

bot G∃x = ∃xbot G .

Figure 11 defines proof rules for diagrams, command-gadgets and
assertion-gadgets. The judgement `diaSL G : P → Q means that
the diagram G, precondition P , and postcondition Q form a valid
proof. The interfaces P and Q are always equal to top(G) and
bot(G) respectively, so we sometimes omit them. The judgements
for command-gadgets and assertion-gadgets are similar, the latter
without interfaces.

The MAIN rule embodies the ‘locally checkable’ nature of rib-
bon proofs. It says that in order to check an entire proof, one
need only check each assertion-gadget (first antecedant) and each
command-gadget (second antecedant) in isolation, recursing inside
those gadgets as required.

The BASIC rule corresponds to an ordinary separation logic
judgement `SL {p} c {q}. Note that this judgement may be arbi-
trarily complex, and hence that a ribbon diagram may be no easier
to check than a traditional proof outline. This is intentional. Our
formalisation allows p and q to be minimised, by framing common
fragments away, but does not demand this. The command c can be
reduced to skip or some primitive command, but there are certain
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list � x
list ✏ y

list ↵ x list � y�
.
= �† · ↵

Choose ↵ := �, � := ✏

y:=0

assume (x!=0)

Unfold list def

Choose ↵ := ↵0

z:=[x+1]

[x+1]:=y

Reassociate i

Fold list def

Choose � := i · �

x:=z

y:=x

assume (x=0)

Unfold list def

Concatenate empty sequence

list ↵ x

list � y �
.
= �† · ↵

9↵0, i, Z. x 7! i, Z ⇤ list ↵0 Z ⇤ ↵ .
= i · ↵0

x ˙6= 0

9Z. x 7! i, Z ⇤ list ↵Z �
.
= �† · (i · ↵)

x 7! i, z

x 7! i, y

list ↵ z list (i · �) x �
.
= (i · �)

† · ↵

list � x

x
.
= 0

↵
.
= ✏

�
.
= �†

list �† y

x ˙6= 0
list � y

list ↵ x

�
.
= �† · ↵

9Z. x 7! i, Z ⇤ list ↵Z �
.
= �† · (i · ↵)list � y

list ↵ z
list (i · �) x �

.
= (i · �)

† · ↵

�
.
= �† · ↵

�
.
= �† · ↵list � xlist ↵ z

list ↵ x list � y

list ↵ x list � y �
.
= �† · ↵

x
.
= 0 list ↵ x �

.
= �† · ↵ list � y

9↵ 9�

9i

9↵ 9�

9�

9↵

9↵

9↵
9�

9i

9�
9i

9�

9�

9↵9�

9↵ 9�

loop

Figure 9. ‘De-sugared’ ribbon proof of list reverse

p q∃x

def
=

p q∃x

skip

∃x p q

if x is not
free in p

p∃y∃x

def
=

p∃y∃x

skip

∃x∃y p

Figure 10. Syntactic sugar for existential boxes

RIBBON

`asn
SL p

BASIC
`SL{asn P} c {asn Q}
`com
SL c : P → Q

EXISTS

`dia
SL G

`asn
SL G∃x

CHOICE

`dia
SL G1 : P → Q

`dia
SL G2 : P → Q

`com
SL

G1

or
G2

: P → Q

LOOP

`dia
SL G : P → P

`com
SL

loop
G

: P → P

MAIN
∀v ∈ VG.`asn

SL ΛG v
∀(v, C,w) ∈ EG.`com

SL C : ⊗v∈v bot(ΛG v)→ ⊗w∈w top(ΛG w)

`dia
SL G : top(G)→ bot(G)

Figure 11. Proof rules for diagrams

cases where this is not desirable. For instance, although ‘while
true do skip’ could be proved using a full-blown loop diagram,
one basic step may provide sufficient detail. A ribbon diagram can
thus be viewed as a flexible combination of diagrammatic and tradi-
tional proofs, with the BASIC rule as the interface between the two
levels. By invoking the BASIC rule right at the root of the proof
tree, we obtain a trivial completeness result (see Thm. 15).

3.3 Composing ribbon diagrams
The proof rules already presented provide only limited mechanisms
for building new diagrams from old. We can wrap diagrams in
existential boxes, or put them inside choice or loop diagrams, but
the rules do not describe how to stack two diagrams vertically, or
place them side by side. In this subsection we derive two additional
proof rules for composing diagrams.

Definition 10 (Sequential composition of diagrams). We notate se-
quential composition by vertical stacking. We overload this nota-
tion for both diagrams and assertion-gadgets. If G and H are dia-
grams that satisfy:

• terminals G = initialsH = VG ∩ VH , and

• ΛG(v)
ΛH(v)

is defined for all v ∈ VG ∩ VH
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x:=z

list ↵ z

list ↵ x

list � y
9�

y:=x

list � xlist ↵ z

list � y

9�

x:=z

y:=x

list � xlist ↵ z

list ↵ x list � y

9�

=

Figure 12. An example of sequential composition

then we write G
H

for the diagram (VG ∪ VH ,Λ, EG ∪ EH), where

Λ(v) =


ΛG(v) if v ∈ VG \ VH
ΛH(v) if v ∈ VH \ VG(

ΛG(v)

ΛH(v)

)
if v ∈ VG ∩ VH .

Simultaneously, sequential composition on assertion-gadgets is
(partially) defined as follows:

p

p
= p

G∃x

H∃x
=

G
H

∃x provided G
H

is defined.

Example 11. The definition above appears fiddly, but it becomes
natural once the diagrams are drawn. Figure 12 shows how two
diagrams, each comprising a single existential box around three
ribbons and one basic step, can be sequentially composed.

Definition 12 (Parallel composition of diagrams). If G and H
are diagrams with disjoint sets of node-identifiers, then we write
G ‖ H for the diagram (VG ∪ VH ,ΛG ∪ ΛH , EG ∪ EH).

Theorem 13. The following rules are derivable from those in
Fig. 11.

SEQ

`dia
SL G : P → Q

`dia
SL H : Q→ R

`dia
SL

G
H

: P → R

PAR

`dia
SL G : P → Q

`dia
SL H : P ′ → Q′

`dia
SL G ‖ H : P P ′ → QQ′

Proof. See Appx. A.

3.4 Semantics of ribbon diagrams
Since our diagrams have a parallel nature, but our language is
only sequential, it follows that each diagram proves not a single
command, but a set of commands, each being one possible linear
extension of the partial ordering imposed by the diagram. The
coms function defined in Fig. 13 is responsible for extracting this
set from a given diagram. Each command is obtained by picking
a valid order of command- and assertion-gadgets (using the lin
function defined below), recursively extracting a command from
each gadget, and then sequentially composing the results.

Definition 14 (Linear extensions). For a diagram G, we define
lin G as the set of all lists [x0, . . . , xk−1] of AsnGadgets and
ComGadgets, where there exists a bijection π : k → VG ] EG

coms(G) = {c0 ; · · · ; ck−1 ; skip |
∃[x0, . . . , xk−1] ∈ lin G.∀i ∈ k. ci ∈ coms xi}

coms c = {c} coms
loop
G

= {loop c | c ∈ coms G}

coms

G1

or
G2

=
{c1 or c2 |
c1 ∈ coms G1,
c2 ∈ coms G2}

coms p = {skip}

coms G∃x = coms G.

Figure 13. Extracting commands from a diagram

that satisfies, for all (v, C,w) ∈ EG:

∀v ∈ v. π−1(v) < π−1(v, C,w)

∀w ∈ w. π−1(v, C,w) < π−1(w)

and where, for all i ∈ k:

xi =

{
ΛG(v) if π(i) = v

C if π(i) = (v, C,w).

By ACYCLICITY, all diagrams admit at least one linear extension.

Theorem 15 (Completeness). Any separation logic proof can be
recreated as a ribbon diagram.

`SL{p} c {q} =⇒ (∃G,P,Q. c ∈ coms G ∧ p = asn P
∧ q = asn Q ∧ `dia

SL G : P → Q)

Proof. Choose P = p , Q = q , and G =

({v1, v2}, {v1 7→ p , v2 7→ q }, {({v1}, c , {v2})})

for some v1 6= v2 ∈ V . Isabelle

Although completeness is trivial, soundness is trickier. In fact, the
system presented so far is unsound.

Non-Theorem 16 (Soundness). Any ribbon diagram can be recre-
ated as a separation logic proof:

`dia
SL G : P → Q =⇒ ∀c ∈ coms G.`SL{asn P} c {asn Q}.

Counterexample. Consider the diagram on the right-hand side of
Fig. 12. It provides a proof of two Hoare triples,

`SL{∃β. list α z ∗ list β x} y:=x ; x:=z {∃β. list α x ∗ list β y}
`SL{∃β. list α z ∗ list β x} x:=z ; y:=x {∃β. list α x ∗ list β y}

the second of which is invalid.

The problem is that our diagrams do not take into account depen-
dencies on program variables. There are two ways to salvage this
situation, which we explore in the next two sections. The first is to
use what we call rasterisation to limit the possible linear extensions
of a diagram, and the second is to employ variables-as-resource.

4. Rasterisation
Our first proposal for attaining soundness involves making the
ordering of the proof steps explicit; that is, committing to one
particular chain of assertion- and command-gadgets. We achieve
this by modifying Defn. 5 as follows.

8 2012/7/10



com[(γ0, F0), . . . , (γk, Fk)] = com γ0 ; · · · ; com γk

com P = skip com c
P

Q

= c com ∃xD = comD

com

P

D

or
E

Q

= (comD)
or(com E)

com

P
loop
D

Q

= loop(comD)

Figure 14. Extracting a command from a rasterised diagram

Definition 17 (Ordered diagrams). The set OrderedDiagram of
ordered diagrams is defined in the same way as Diagram (Defn. 5),
except we use natural numbers (rather than elements of V) as node-
identifiers, and have EG as a list of hyperedges rather than an
unordered set. This list must be consistent with the proof; that is, if
(v, C,w) precedes (v′, C′,w′) in EG, and w′ ∈ w′ and v ∈ v,
then there must not exist a chain w′ −I

∗ v.

By reinterpreting Fig. 9 so that node positions are meaningful,
it can be seen as an ordered diagram. That is, suppose that the
assertion-gadgets are numbered from top to bottom, then from left
to right, and that the command-gadgets are ordered by their vertical
position. To achieve soundness, we need to check that whenever a
command writes to a program variable, that variable does not ap-
pear in any concurrent ribbons. Adjusting the proof rules of Fig. 11
to accommodate this is possible, but fiddly. Instead, we observe
that having imposed a total order on our assertion- and command-
gadgets, our graphical syntax becomes mostly superfluous, and we
can reinterpret our pictures as terms in the following, simpler lan-
guage of rasterised diagrams. (The details of the conversion are
given in Appx. D.)

Definition 18 (Rasterised diagrams). Let D range over the set
RDiagram of rasterised diagrams. A rasterised diagram is a non-
empty list, written as

(γ0, F0)
· · ·

(γk, Fk)
or [(γ0, F0), . . . , (γk, Fk)],

of cells γ0, . . . , γk ∈ Cell and frames F0, . . . , Fk ∈ Interface. The
syntax of cells is as follows:

Cell
def
= {γ ::= P | c

P

P

| ∃xD |

P

D

or
D

P

|
P

loop
D

P

}.

The top and bot functions are straightforwardly amended for ras-
terised diagrams and cells. Where ordinary diagrams may admit
multiple commands, rasterised diagrams admit only one; this is ex-
tracted by the com function defined in Fig. 14.

The rules given in Fig. 15 define the provability of cells and ras-
terised diagrams. For composing rasterised diagrams, it is possible
to derive proof rules in the spirit of those in Thm. 13.

Definition 19 (Parallel composition of rasterised diagrams). If D
and E are rasterised diagrams of lengths m and n, and µ is a
binary sequence containing m zeroes and n ones, then we define
the parallel composition of D and E according to µ as follows:

D ‖µ E def
= zipµ(D,E, topD, top E)

RRIBBON

`cell
SL (P, F ) : P F → P F

REXISTS

`rdia
SL D : P → Q wr D 6∩ rd F

`cell
SL ( ∃xD ,F ) : ∃xP F → ∃xQ F

RBASIC
`SL{asn P} c {asn Q} wr c 6∩ rd F

`cell
SL ( c

P

Q

, F ) : P F → QF

RLOOP

`rdia
SL D : P → P
wr D 6∩ rd F

`cell
SL (

P
loop
D

P

,F ) : P F → P F

RCHOICE

`rdia
SL D : P → Q

`rdia
SL E : P → Q

(wr D ∪ wr E) 6∩ rd F

`cell
SL (

P

D

or
E

Q

,F ) : P F → QF

RMAIN

∀i ∈ k + 1.`cell
SL (γi, Fi) : Pi → Pi+1

`rdia
SL [(γ0, F0), . . . , (γk, Fk)] : P0 → Pk+1

Figure 15. Proof rules for rasterised diagrams

where zip is defined inductively as follows:

zipε(_, _, _, _) = [ ]
zip0µ((γ, F ) ::D,E, _, Q) = (γ, F ⊗Q) ::

zipµ(D,E, bot γ ⊗ F,Q)
zip1µ(D, (γ, F ) :: E,P, _) = (γ, P ⊗ F ) ::

zipµ(D,E, P, bot γ ⊗ F ).

The construction given above is far more intuitive when interpreted
visually. The appropriate µ is simply determined by the order in
which the commands in the two operands vertically interleave.

Example 20. One way to obtain the ribbon diagram in Fig. 1b (in
rasterised form) is to compose its first two columns in parallel with
its third, as follows:

 [x]:=1

x 7→ 0

x 7→ 1

, y 7→ 0


 [y]:=1

y 7→ 0

y 7→ 1

, x 7→ 1


‖001

 [z]:=1

z 7→ 0

z 7→ 1

, ε

 =

 [x]:=1

x 7→ 0

x 7→ 1

, y 7→ 0 z 7→ 0


 [y]:=1

y 7→ 0

y 7→ 1

, x 7→ 1 z 7→ 0


 [z]:=1

z 7→ 0

z 7→ 1

, x 7→ 1 y 7→ 1


Theorem 21. The following rules are derivable from those in
Fig. 15.

RSEQ

`rdia
SL D : P → Q

`rdia
SL E : Q→ R

`rdia
SL

D
E

: P → R

RPAR

`rdia
SL D : P → Q

`rdia
SL E : P ′ → Q′ D # E

`rdia
SL D ‖µ E : P P ′ → QQ′

Proof. See Appx. B.
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Theorem 22 (Soundness – rasterised). Any rasterised ribbon dia-
gram can be recreated as a separation logic proof.

`rdia
SL D : P → Q =⇒ `SL{asn P} comD {asn Q}.

Proof. By mutual rule induction. Isabelle

5. Variables-as-resource
Rasterisation sacrifices much of the flexibility of our ribbon dia-
grams. It is often sound to tweak the layout of a diagram by sliding
steps up or down or reordering ribbons, but rasterisation rules out
all such manoeuvres. In this section, we explain how the variables-
as-resource paradigm [24] can be used to obtain soundness while
preserving the graphical nature of diagrams.

The variables-as-resource paradigm treats program variables a
little like separation logic treats heap cells. Each program vari-
able x is associated with a piece of resource, all of which (writ-
ten Own1(x)) must be held to write to x, and some of which
(Ownπ(x) for some 0 < π ≤ 1) must be held to read it. This
treatment supplants the use of rd and wr sets in Fig. 7, so these
can henceforth be assumed empty. The counterexample to Thm. 16
is no longer admissible, because neither assignment in the diagram
holds the necessary resource in its precondition.

Thanks to the generality of our formalisation, the introduction
of variables-as-resource does not contradict any previous results.
We simply choose appropriate axioms and primitive commands,
and amend the BASIC rule to use `VaR rather than `SL.

Theorem 23 (Soundness – variables-as-resource). Using variables-
as-resource, any ribbon diagram can be recreated as a separation
logic proof:

`dia
VaRG : P → Q =⇒ ∀c ∈ coms G.`VaR{asn P} c {asn Q}.

Proof. See Appx. C. Isabelle

Figure 16 exhibits a ribbon proof, conducted using variables-as-
resource, of the list-reversal program from §2.2. Variables-as-
resource dictates that every assertion in the proof is accompanied
by one Own predicate for each program variable it mentions. For
instance, the precondition list δ x is paired with some of x’s re-
source. The shading is merely syntactic sugar; for instance:

x, 1
2
y x 7→ i, y def

= Own1(x) ∗Own .5(y) ∗ x 7→ i, y .

The other preconditions – the resources associated with y and z
– entitle the program to write to these program variables in due
course. Note that at the entry to the while loop, part of x’s resource
is required in order to carry out the test of whether x is zero. At
various points in the proof, variable resources are split or combined,
but their total is always conserved. Figure 16 introduces a couple
of novel features: ribbons may pass ‘underneath’ basic steps to
reduce the need for twisting (see e.g. the ‘Choose α := δ and
β := ε’ step), and horizontal space is conserved by writing some
assertions sideways. The diagram can be laid out in several ways,
unconstrained by the rasterisation strategy of the previous section,
so there exists the potential to use the same diagram to justify
several variations of a program. Recall the shortcoming of Fig. 5b,
that it misleadingly suggested that ‘y:=x’ and ‘x:=z’ could be
safely permuted. Figure 16 forbids this by showing the dependency
on ‘x’. On the other hand, both figures agree that the ‘Reassociate
i’ step can be safely manoeuvred up or down a little.

In this section and the previous one, we have presented two al-
ternative formalisations of ribbon diagrams. We remark that one
who seeks merely to present a proof of a particular program need
not use variables-as-resource; the splitting, distributing, and re-
combining of the resource associated with each variable is an un-
necessary burden. Figure 16 is significantly larger and fiddlier than

while (x!=0) {

}

list δ xx yz

Split x y:=0
1
2
x list δ x1

2
x list ε yy

Choose α := δ and β := ε
∃α
∃β
list α x1

2
x list β yy δ

.
= β† · α

x ˙6=01
2
x

Unfold list def

∃α′, i, Z. x 7→ i, Z ∗
list α′ Z ∗ α .

= i · α′
x

Choose α := α′

∃α
∃i

∃Z. x 7→ i, Z
∗ list αZ

x δ
.
=

β† · (i · α)

z:=[x+1] Split y

list α z1
2
z x 7→ i, zx, 1

2
z 1

2
y

list
β
y

1
2
y

[x+1]:=y Reassoc. i

x 7→ i, yx, 1
2
y1

2
z δ

.
=

(i · β)† · αCombine z Fold list def

list α zz list (i · β) xx y

Choose β := (i · β)
∃β

list β xx δ
.
= β† · α

y:=x

list β yyx

x:=z

list α x1
2
x z1

2
x

x .=01
2
x

Unfold list def

x α
.
= ε

Concatenate empty seq.

δ
.
= β†

Fold list def

list δ† yy

Figure 16. A ribbon proof of list reverse using variables-as-
resource
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x:=z

y:=x

list � xlist ↵ z

list ↵ x list � y

lemma listrev_lem13:

"` {list (lvar “↵”) (pvar “z”)}
“x” := (pvar “z”)
{list (lvar “↵”) (pvar “x”)}"

by (auto simp add: assign_axiom)

✗

✓

Figure 17. Tool support for checking ribbon proofs

Fig. 5b, which does not use variables-as-resource. Concrete pic-
tures should be drawn carefully so they can be successfully ras-
terised. Conversely, one who seeks to explore potential optimisa-
tions, or to analyse the dependencies between various components
of a program, should invest in variables-as-resource.

6. Tool support
We have developed a prototype tool whose inputs are an ordered
diagram G = (VG,ΛG, EG) (see Defn. 17) and a collection of
small Isabelle proof scripts: one for each basic step. Our tool
translates G into a rasterised diagram, and then uses our Isabelle
formalisation of Thm. 22 and the proof rules of Fig. 15 to assemble
the Isabelle proof scripts for the individual commands into a single
script that verifies the entire diagram.

Supplied with appropriate proof rules for primitive commands
and a collection of axioms about lists, our tool has successfully ver-
ified the ribbon proofs in Figs. 3 and 5b. In both cases, all of the
proof scripts for the individual basic steps are small, and they can
often be discharged without manual assistance. Ordinarily, when
formalising a proof of such a program in separation logic, much
effort is expended in using the associativity and commutativity
laws of the ∗-operator to manipulate long assertions into particular
forms. A key feature of our ribbon proof tool is that this bureau-
cracy is shifted from the individual proof steps into the surround-
ing graphical structure, where it is more naturally handled. Note
that the RMAIN rule (Fig. 15) permits the individual proof scripts
to be checked in any order – even concurrently. This feature recalls
recent developments in theorem proving that allow proof scripts to
be processed in a non-serial manner [31].

Our tool outputs a pictorial representation of the graph it has
verified, laid out using the dot tool in the Graphviz library.2 One
such picture (with the layout manually tweaked) is shown in Fig. 9.
Clicking on any basic step loads the corresponding Isabelle proof
script, which can then be edited. When a step’s proof is admitted
by Isabelle, the corresponding node in the pictorial representation
is marked with a tick; a failed or incomplete proof is marked with
a cross. Figure 17 illustrates this on a snippet of Fig. 9, and also
shows the Isabelle script for one of the steps.

In the current prototype, the user must supply the input in tex-
tual form, but in the future, we intend to enable direct interaction
with the graphical representation, perhaps through a framework for
diagrammatic reasoning such as Diabelli [29]. We envisage an in-
teractive graphical interface for exploring and modifying proofs,
that allows steps to be collapsed or expanded to the desired granu-
larity: whether that is the fine details of every rule and axiom, or a
coarse bird’s-eye view of the overall structure of the proof.

The ribbon proofs in this paper have all been laid out manually
(and we are preparing a public release of the LATEX macros we use to
do this) but there is scope for additional tool support for discovering
pleasing layouts automatically.

2 http://www.graphviz.org

{
x 7→ 0 ∗ y 7→ 0 ∗ z 7→ 0

}
[x]:=1;{
x 7→ 1 ∗ y 7→ 0 ∗ z 7→ 0

}{
y 7→ 0 ∗ z 7→ 0

}
[y]:=1;{
y 7→ 1 ∗ z 7→ 0

}
[z]:=1;{
y 7→ 1 ∗ z 7→ 1

}

- frame
x 7→ 1

{
x 7→ 1 ∗ y 7→ 1 ∗ z 7→ 1

}
(a)

{
x 7→ 0 ∗ y 7→ 0 ∗ z 7→ 0

}{
x 7→ 0 ∗ y 7→ 0

}
[x]:=1;{
x 7→ 1 ∗ y 7→ 0

}
[y]:=1;{
x 7→ 1 ∗ y 7→ 1

}

- frame
z 7→ 0

{
x 7→ 1 ∗ y 7→ 1 ∗ z 7→ 0

}
[z]:=1;{
x 7→ 1 ∗ y 7→ 1 ∗ z 7→ 1

}
(b)

Figure 18. Two alternatives to the proof outline in Fig. 1a

7. Related and further work
Ribbon proofs are more than just a pretty syntax; they are a sound
and complete proof system. Proof outlines have previously been
promoted from a notational device to a formal system by Schnei-
der [27], and by Ashcroft, who remarks that “the essential property
of [proof outlines] is that each piece of program appears once” [1].
Very roughly speaking, ribbon proofs extend this property to each
piece of assertion.

When constructing a proof outline, one can reduce the repeti-
tion by ‘framing off’ state that is unused for several instructions.
For instance, Fig. 18a depicts, using Bornat’s technique [5], one
variation of Fig. 1a obtained by framing off x during the latter two
instructions; another option is to frame off z during the first two
(Fig. 18b). It is unsatisfactory that there are several different proof
outlines for what is essentially the same proof. More pragmatically,
deciding among these options can be difficult with large proof out-
lines. Happily, each of these options yields the same ribbon proof
(Fig. 1b). We note a parallel here with proof nets [12], which are a
graphical mechanism for unifying proofs in linear logic that differ
only in uninteresting ways, such as the order of rule applications.

The graphical structures described in Defn. 5 resemble Milner’s
bigraphs [20], with assertions and commands as nodes, a link
graph to show the deductions of the proof, and a place graph
to allow existential boxes, choices and loops to contain nested
graphs. In fact, our diagrams correspond to a restricted form called
binding bigraphs, in which edges may not cross place boundaries.
Relaxing this restriction may enable a model of the ‘dynamic’
scoping of existential boxes exhibited in Fig. 6, which our current
formalisation dismisses as a purely syntactic artefact.

Ribbon proofs can be understood as objects of a symmetric
monoidal category, and our pictures as string diagrams, which are
widely used as graphical languages for such categories [28]. In
future work we intend to investigate this categorical semantics of
ribbon proofs; in particular, the use of traces [19] to model the
loop construction depicted in Fig. 4b, and coproducts to model if-
statements and existential boxes.

Another avenue for future work is to investigate the connec-
tion between our ribbon proofs and Raza’s labelled separation
logic [25]. Labelled separation logic seeks to justify compiler re-
orderings by analysing the dependencies between program state-
ments, and checking that these are not violated. The dependencies
are detected by first labelling each component of each assertion
with the commands that access it, and then propagating these la-
bels through program proofs. Raza’s labels play a similar role to
the columns in our ribbon diagrams: each ribbon and each com-
mand occupies one or more columns of a diagram, and commands
that occupy common columns may share a dependency (modulo
ribbon twisting, which upsets the column ordering).

We have so far considered only sequential programs, even
though the proofs themselves have a concurrent nature. It may
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with the assignments to i and j cannot be justified by this picture
because the commands involved are not horizontally separated.

Remark 26 (Rasterisation or variables-as-resource?). We have
presented two alternative formalisations of ribbon diagrams. We
remark that one who seeks merely to present a proof of a particular
program need not use variables-as-resource; the splitting, distribut-
ing, and re-combining of the resource associated with each variable
is an unnecessary burden. (Figure 12 is several times larger than it
would have been without variables-as-resource.) Concrete pictures
should be drawn carefully so they can be successfully rasterised.
Conversely, one who seeks to explore potential optimisations, or
to analyse the dependencies between various components of a pro-
gram, should invest in variables-as-resource.

6. Tool support
We have designed a prototype tool whose inputs are a ribbon
diagram G = (VG,⇤G, EG) and a collection of small Isabelle
proof scripts: one for each basic step. The components of G are
as described in Defn. 7 with the exceptions that the elements of VG

are natural numbers, and EG is a list rather than a set of edges.
Thus, as explained in Sect. 4, the ordering of assertion-nodes and
command-nodes is explicitly determined. Our tool translates G into
a rasterised diagram, and then uses our Isabelle formalisation of
Thm. 24 and the proof rules of Fig. 11 to assemble the Isabelle
proof scripts for the individual commands into a single script that
verifies the entire diagram.

Supplied with appropriate proof rules for primitive commands
and a collection of axioms about lists, our tool has successfully
verified the ribbon proofs in Figs. 3 and 5b. In both cases, all of the
proof scripts for the individual basic steps are small, and they can
often be discharged without manual assistance.

Ordinarily, when formalising a proof of such a program in
separation logic, much effort is expended in using the associativity
and commutativity laws of the ‘⇤’-operator to manipulate long
assertions into particular forms. A key feature of our ribbon proof
tool is that this task is entirely handed off to the graphical structure,
allowing the user to concentrate on just the individual, localised
steps.

Our tool outputs a pictorial representation of the graph it has
verified, laid out using the dot tool in the Graphviz library.2 One
such picture, with the layout manually tweaked, is shown in Fig. 8.
Clicking on any basic step brings up the corresponding Isabelle
proof script, which can then be edited. The RMAIN rule permits
the individual proof scripts to be checked in any order – even con-
currently. When a step’s proof is admitted by Isabelle, the corre-
sponding node in the pictorial representation is coloured green; a
failed proof leads to a red node, and a step whose proof is currently
being checked remains grey.

In the current prototype, the user must supply the input as a tex-
tual description, but in the future, we intend to enable the user to
interact directly with the graphical representation. We envisage an
interactive graphical interface for exploring and modifying proofs,
that allows steps to be collapsed or expanded to the desired gran-
ularity: whether that is the fine details of every logical rule and
axiom, or a coarse birds-eye view of the overall structure of the
proof.

The ribbon proofs in this paper have all been produced manually
(with the help of several LATEX macros), but there is scope for
additional tool support in finding layouts that minimise twists.

2 http://www.graphviz.org

while true {

with buff when full {

}

}

(full ^ c 7! _) _ (¬full ^ emp)

full

full ^ c 7! _

c 7! _ full ^ emp

y := c full := false

y 7! _ ¬full ^ emp

(full ^ c 7! _) _ (¬full ^ emp)

dispose(y)

Figure 13. Ribbon proof of single-cell buffer.

7. Further work
Background
Ribbon proofs were introduced by Bean [1] as a proof system for
the propositional fragment of bunched implications logic (BI) [21].
Because BI is the basis of the assertion language used in separa-
tion logic [15], his system can be used to prove entailments be-
tween propositional separation logic assertions. Our system ex-
pands Bean’s into a full-blown program logic by adding support
for commands and existentially-quantified variables. Both entail-
ments, p ) q, and Hoare triples, {p} c {q}, can now be proved
within the same system. Bean’s ribbon proof system extends, in
turn, Fitch’s box proofs for first-order logic [9]. We note here also
the resemblence to Girard’s proof nets for linear logic [11], which,
like our own system, are intended to eliminate visual redundancy
from proofs.

7.1 Concurrency
We have so far considered only sequential programs, even though
the proofs themselves have a concurrent nature. It may be possible
to extend our ribbon proof system to handle concurrent separation
logic [20] as follows. Consider a program (adapted from [20]) in
which two threads communicate through a shared single-cell buffer
at location c:
while (true) {
x:=new();
with buff when !full {
full:=true; c:=x;
}
}

while (true) {
with buff when full {
full:=false; y:=c;
}
dispose(y);
}

The resource invariant protected by the lock buff is (full ^ c 7! _)
_ (¬full ^ emp), which means that the location c is shared ex-
actly when the full flag is set.

Figure 13 imagines a ribbon proof of the right-hand thread. The
resource invariant is initially placed in a protected ribbon that is
inaccessible to the thread (as suggested by the diagonal hashing).
Upon entering the critical region, that ribbon is made available to
the thread. The resource invariant is re-established at the end of the
critical region, at which point it becomes protected and inaccessible
once more.
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the propositional fragment of bunched implications logic (BI) [21].
Because BI is the basis of the assertion language used in separa-
tion logic [15], his system can be used to prove entailments be-
tween propositional separation logic assertions. Our system ex-
pands Bean’s into a full-blown program logic by adding support
for commands and existentially-quantified variables. Both entail-
ments, p ) q, and Hoare triples, {p} c {q}, can now be proved
within the same system. Bean’s ribbon proof system extends, in
turn, Fitch’s box proofs for first-order logic [9]. We note here also
the resemblence to Girard’s proof nets for linear logic [11], which,
like our own system, are intended to eliminate visual redundancy
from proofs.

7.1 Concurrency
We have so far considered only sequential programs, even though
the proofs themselves have a concurrent nature. It may be possible
to extend our ribbon proof system to handle concurrent separation
logic [20] as follows. Consider a program (adapted from [20]) in
which two threads communicate through a shared single-cell buffer
at location c:
while (true) {
x:=new();
with buff when !full {
full:=true; c:=x;
}
}

while (true) {
with buff when full {
full:=false; y:=c;
}
dispose(y);
}

The resource invariant protected by the lock buff is (full ^ c 7! _)
_ (¬full ^ emp), which means that the location c is shared ex-
actly when the full flag is set.

Figure 13 imagines a ribbon proof of the right-hand thread. The
resource invariant is initially placed in a protected ribbon that is
inaccessible to the thread (as suggested by the diagonal hashing).
Upon entering the critical region, that ribbon is made available to
the thread. The resource invariant is re-established at the end of the
critical region, at which point it becomes protected and inaccessible
once more.

Beyond concurrent separation logic, it is hoped that our proof
system can be applied fruitfully to more advanced separation log-

11 2012/6/1

with the assignments to i and j cannot be justified by this picture
because the commands involved are not horizontally separated.

Remark 26 (Rasterisation or variables-as-resource?). We have
presented two alternative formalisations of ribbon diagrams. We
remark that one who seeks merely to present a proof of a particular
program need not use variables-as-resource; the splitting, distribut-
ing, and re-combining of the resource associated with each variable
is an unnecessary burden. (Figure 12 is several times larger than it
would have been without variables-as-resource.) Concrete pictures
should be drawn carefully so they can be successfully rasterised.
Conversely, one who seeks to explore potential optimisations, or
to analyse the dependencies between various components of a pro-
gram, should invest in variables-as-resource.

6. Tool support
We have designed a prototype tool whose inputs are a ribbon
diagram G = (VG,⇤G, EG) and a collection of small Isabelle
proof scripts: one for each basic step. The components of G are
as described in Defn. 7 with the exceptions that the elements of VG

are natural numbers, and EG is a list rather than a set of edges.
Thus, as explained in Sect. 4, the ordering of assertion-nodes and
command-nodes is explicitly determined. Our tool translates G into
a rasterised diagram, and then uses our Isabelle formalisation of
Thm. 24 and the proof rules of Fig. 11 to assemble the Isabelle
proof scripts for the individual commands into a single script that
verifies the entire diagram.

Supplied with appropriate proof rules for primitive commands
and a collection of axioms about lists, our tool has successfully
verified the ribbon proofs in Figs. 3 and 5b. In both cases, all of the
proof scripts for the individual basic steps are small, and they can
often be discharged without manual assistance.

Ordinarily, when formalising a proof of such a program in
separation logic, much effort is expended in using the associativity
and commutativity laws of the ‘⇤’-operator to manipulate long
assertions into particular forms. A key feature of our ribbon proof
tool is that this task is entirely handed off to the graphical structure,
allowing the user to concentrate on just the individual, localised
steps.

Our tool outputs a pictorial representation of the graph it has
verified, laid out using the dot tool in the Graphviz library.2 One
such picture, with the layout manually tweaked, is shown in Fig. 8.
Clicking on any basic step brings up the corresponding Isabelle
proof script, which can then be edited. The RMAIN rule permits
the individual proof scripts to be checked in any order – even con-
currently. When a step’s proof is admitted by Isabelle, the corre-
sponding node in the pictorial representation is coloured green; a
failed proof leads to a red node, and a step whose proof is currently
being checked remains grey.

In the current prototype, the user must supply the input as a tex-
tual description, but in the future, we intend to enable the user to
interact directly with the graphical representation. We envisage an
interactive graphical interface for exploring and modifying proofs,
that allows steps to be collapsed or expanded to the desired gran-
ularity: whether that is the fine details of every logical rule and
axiom, or a coarse birds-eye view of the overall structure of the
proof.

The ribbon proofs in this paper have all been produced manually
(with the help of several LATEX macros), but there is scope for
additional tool support in finding layouts that minimise twists.

2 http://www.graphviz.org

with buff when full {

}

(full ^ c 7! _) _ (¬full ^ emp)

full

full ^ c 7! _

c 7! _ full ^ emp

y := c full := false

y 7! _ ¬full ^ emp

(full ^ c 7! _) _ (¬full ^ emp)

dispose(y)

Figure 13. Ribbon proof of single-cell buffer.

7. Further work
Background
Ribbon proofs were introduced by Bean [1] as a proof system for
the propositional fragment of bunched implications logic (BI) [21].
Because BI is the basis of the assertion language used in separa-
tion logic [15], his system can be used to prove entailments be-
tween propositional separation logic assertions. Our system ex-
pands Bean’s into a full-blown program logic by adding support
for commands and existentially-quantified variables. Both entail-
ments, p ) q, and Hoare triples, {p} c {q}, can now be proved
within the same system. Bean’s ribbon proof system extends, in
turn, Fitch’s box proofs for first-order logic [9]. We note here also
the resemblence to Girard’s proof nets for linear logic [11], which,
like our own system, are intended to eliminate visual redundancy
from proofs.

7.1 Concurrency
We have so far considered only sequential programs, even though
the proofs themselves have a concurrent nature. It may be possible
to extend our ribbon proof system to handle concurrent separation
logic [20] as follows. Consider a program (adapted from [20]) in
which two threads communicate through a shared single-cell buffer
at location c:
while (true) {
x:=new();
with buff when !full {
full:=true; c:=x;
}
}

while (true) {
with buff when full {
full:=false; y:=c;
}
dispose(y);
}

The resource invariant protected by the lock buff is (full ^ c 7! _)
_ (¬full ^ emp), which means that the location c is shared ex-
actly when the full flag is set.

Figure 13 imagines a ribbon proof of the right-hand thread. The
resource invariant is initially placed in a protected ribbon that is
inaccessible to the thread (as suggested by the diagonal hashing).
Upon entering the critical region, that ribbon is made available to
the thread. The resource invariant is re-established at the end of the
critical region, at which point it becomes protected and inaccessible
once more.

Beyond concurrent separation logic, it is hoped that our proof
system can be applied fruitfully to more advanced separation log-
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Figure 19. Ribbon proof of single-cell buffer

be possible to extend our ribbon proof system to handle concur-
rent separation logic [21] as follows. Consider a program (adapted
from [21]) in which two threads communicate through a shared
single-cell buffer at location c:

while (true) {
x:=new();
with buff when !full {
full:=true; c:=x;
}
}

while (true) {
with buff when full {
full:=false; y:=c;
}
dispose(y);
}

The resource invariant protected by the lock buff is (full ∧ c 7→ _)
∨ (¬full ∧ emp), which means that the location c is shared ex-
actly when the full flag is set. Figure 19 imagines a ribbon proof
of the right-hand thread. The resource invariant is initially placed
in a protected ribbon that is inaccessible to the thread (as suggested
by the diagonal hashing). Upon entering the critical region, the rib-
bon becomes available, and upon leaving it, the resource invariant
is re-established and the ribbon becomes inaccessible once again.

Beyond concurrent separation logic, we intend our proof system
to be applied fruitfully to more advanced separation logics. It has
already been applied to a logic for relaxed memory [4]; some other
candidates handle fine-grained concurrency [7, 9, 10, 30], dynamic
threads [8], storable locks [13], loadable modules [18] and garbage
collection [16]. Increasingly complicated logics for increasingly
complicated programming features make techniques for intuitive
construction and clear presentation ever more crucial.

8. Conclusion
Ribbon proofs are an attractive and practical approach for con-
structing and presenting proofs in separation logic or any derivative
thereof. They contain less redundancy than a proof outline, and ex-
press the intent of the proof more clearly. Each step of the proof
can be checked locally, by focusing only on the relevant resources.
They are useful pedagogically for explaining how a simple proof is
constructed, but also scale to more complex programs (as demon-
strated in Appx. E). They show graphically the distribution of re-
source in a program, and in particular, which parts of a program
operate on disjoint resources, and this may prove useful for explor-
ing parallelisation opportunities.
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A. Proof of Theorem 13
Theorem 13. The following rules are derivable from those in
Fig. 11.

SEQ

`dia
SL G : P → Q

`dia
SL H : Q→ R

`dia
SL

G
H

: P → R

PAR

`dia
SL G : P → Q

`dia
SL H : P ′ → Q′

`dia
SL G ‖ H : P P ′ → QQ′

When sequentially composing diagrams, we shall need to rename
nodes.

Definition 24 (Support equivalence). Two diagrams G and H are
support-equivalent, written G l H , iff there exists a bijection
ρ : VG → VH that satisfies ΛG = ΛH ◦ ρ, and for all v, C,w:

(v, C,w) ∈ EG ⇔ ({ρ v | v ∈ v}, C, {ρw | w ∈ w}) ∈ EH .
Lemma 25. For any diagramsG andH , ifG l H then top(G) =
top(H) and bot(G) = bot(H).

Lemma 26. For any diagrams G and H , if G l H then `dia
SL G :

P → Q = `dia
SL H : P → Q.

Proof. Suppose `dia
SL G : P → Q. Perform rule-inversion on

MAIN, apply the properties given in Defn. 24 and Lem. 25, then
re-apply MAIN.

We now provide a more careful definition of sequential composi-
tion that takes node-renaming into account.

Definition 27 (Sequential composition of diagrams – amended).
We notate sequential composition by vertical stacking. We overload
this notation for both diagrams and assertion-gadgets. If G and H
are diagrams, and there exists H ′ l H such that:

• terminals G = initialsH ′ = VG ∩ VH′ , and

• ΛG(v)
ΛH′(v)

is defined for all v ∈ VG ∩ VH′

then we write G
H

for the diagram (VG∪VH′ ,Λ, EG∪EH′), where

Λ(v) =


ΛG(v) if v ∈ VG \ VH′

ΛH′(v) if v ∈ VH′ \ VG(
ΛG(v)

ΛH′(v)

)
if v ∈ VG ∩ VH′ .

Definition 28 (Parallel composition of diagrams – amended). If G
andH are diagrams, and there existsH ′ l H such that VG 6∩ VH′ ,
then we write G ‖ H for the diagram

(VG ∪ VH′ ,ΛG ∪ ΛH′ , EG ∪ EH′).

Notation. We shall write E↓ to mean that the expression E is
defined.

Lemma 29. Let:

Φdia(G)
def
= ∀H. if bot(G) = top(H) then

(G
H
↓ and (if `dia

SL G and `dia
SL H then

`dia
SL

G
H

and bot(G
H

) = bot(H)
and top(G

H
) = top(G)))

Φasn(A)
def
= ∀B. if bot(A) = top(B) then

(A
B
↓ and (if `asn

SL A and `asn
SL B then

`asn
SL

A
B

and bot(A
B

) = bot(B)
and top(A

B
) = top(A)))

Φcom(C)
def
= true.

Then we have

Φdia(G) ∧ Φasn(A) ∧ Φcom(C)

for all diagrams G, assertion-gadgets A and command-gadgets C.

Proof. We proceed by structural induction on diagrams. The six
cases are as follows.

1. ∀p.Φasn( p )

2. ∀x,G.Φdia(G)⇒ Φasn( G∃x )

3. ∀c.Φcom( c )

4. ∀G,H.Φdia(G) ∧ Φdia(H)⇒ Φcom

 G

or
H


5. ∀G.Φdia(G)⇒ Φcom

(
loop
G

)
6. ∀G. (∀v ∈ VG.Φasn(ΛG v)) ∧ (∀(_, C, _) ∈ EG.Φcom(C))
⇒ Φdia(G)

Only the sixth is interesting. To show Φdia(G), we start by picking
an arbitrary H and assuming bot(G) = top(H). That is,

⊗v∈terminals(G) bot(ΛG v) = ⊗v∈initials(H) top(ΛH v).

Hence there exists a bijection π : terminals(G) → initials(H)
for which:

∀v ∈ terminals(G). bot(ΛG v) = top(ΛH(π v)).

We can apply the first of our two inductive hypotheses to this to
obtain:

∀v ∈ terminals(G).

(
ΛG v

ΛH(π v)

)
↓ . (1)

Now we pick a new diagram H ′ l H , obtained by applying a
node-renaming ρ to H that satisfies:

∀v ∈ initials(H). ρ(v) = π−1(v)
∀v ∈ VH \ initials(H). ρ(v) /∈ VG

That is, ρ ensures that the initial nodes of H ′ coincide with the
terminal nodes of G, and that its other nodes are disjoint from G’s.
We now have:

terminals(G) = initials(H ′) = VG ∩ VH′ .

With (1), we obtain:

∀v ∈ VG ∩ VH′ .

(
ΛG v
ΛH′ v

)
↓ .

These two facts are sufficient for establishing G
H
↓ . For the second

part of Φdia(G), we must show

`dia
SL

G
H

under the additional assumptions that `dia
SL G and `dia

SL H both hold.
We use rule inversion on MAIN, and then Lem. 26 to deduce:

∀v ∈ VG.`asn
SL ΛG v (2)

∀v ∈ VH′ .`asn
SL ΛH′ v (3)

∀(v, C,w) ∈ EG.
`com
SL C : ⊗v∈v bot(ΛG v)→ ⊗w∈w top(ΛG w) (4)

∀(v, C,w) ∈ EH′ .
`com
SL C : ⊗v∈v bot(ΛH′ v)→ ⊗w∈w top(ΛH′ w). (5)

13 2012/7/10



We are to show:

∀v ∈ VG ∪ VH′ .`asn
SL Λ v (6)

∀(v, C,w) ∈ EG ∪ EH′ .
`com
SL C : ⊗v∈v bot(Λ v)→ ⊗w∈w top(Λw) (7)

where Λ is as defined in Defn. 27. To show (6), fix an arbitrary v in
VG ∪ VH′ . If v ∈ VG \ VH′ , use (2). If v ∈ VH′ \ VG, use (3). For
the case when v ∈ VG ∩ VH′ , we require

`asn
SL

(
ΛG(v)
ΛH′(v)

)
,

which is obtained from the inductive hypothesis. To show (7), fix
an arbitrary edge (v, C,w) in EG ∪EH′ . Suppose it is in EG; the
other possibility is handled similarly. We can use (4), but only once
we have established

⊗v∈v bot(ΛG v) = ⊗v∈v bot(Λ v) (8)
⊗w∈w top(ΛG w) = ⊗w∈w top(Λw). (9)

Of these, (8) follows from

∀v ∈ v. bot(ΛG v) = bot(Λ v),

which holds because if v ∈ VG \VH′ then ΛG and Λ coincide, and
if v ∈ VG ∩ VH′ then v must be a terminal node of G and hence
cannot be an incoming node of the edge (v, C,w). We obtain (9)
analogously.

The final part of Φdia(G) requires top(G
H

) = top(H) and
bot(G

H
) = bot(H). We give details only for the latter. After

unfolding the definition of bot , it suffices to exhibit a bijection
π : terminals(H)→ terminals

(
G
H

)
such that:

∀v ∈ terminalsH. bot(Λ(π v)) = bot(ΛH v).

In fact ρ, restricted to the terminal nodes of H , is such a bijection.
It then suffices to show:

∀v ∈ terminalsH ′. bot(Λ v) = bot(ΛH′ v).

This, in turn, is proved by cases. When v ∈ VH′ \ VG then Λ and
ΛH′ coincide by definition. When v ∈ VH′ ∩ VG, then bot(Λ v) is
equal to

bot

(
ΛG(v)
ΛH′(v)

)
,

which is equal to bot(ΛH′ v) by the induction hypothesis.

Proof of Thm. 13. The SEQ rule is a straightforward consequence
of Lem. 29. For the PAR rule, the key step is to show that

top(G ‖ H) = top(G)⊗ top(H)

Suppose that the composition operation renames H to H ′. We can
show

initials(G ‖ H) = initials(G) ] initials(H ′)

and hence:

top(G ‖ H)

= ⊗v∈initials(G‖H)(top(ΛG‖H v))

= (⊗v∈initials G(top(ΛG‖H v)))

⊗ (⊗v∈initialsH′(top(ΛG‖H v)))

= (⊗v∈initials G(top(ΛG v)))⊗ (⊗v∈initialsH′(top(ΛH′ v)))

= top(G)⊗ top(H ′)

= top(G)⊗ top(H) (by Lem. 25).

B. Proof of Theorem 21
Theorem 21. The following rules are derivable from those in
Fig. 15.

RSEQ

`rdia
SL D : P → P ′

`rdia
SL E : P ′ → P ′′

`rdia
SL

D
E

: P → P ′′

RPAR

`rdia
SL D : P → Q

`rdia
SL E : P ′ → Q′ D # E

`rdia
SL D ‖µ E : P P ′ → QQ′

Proof of RSEQ rule. Suppose D = [D0, . . . , Dk] and E =
[E0, . . . , El] for non-negative k and l. By rule inversion on
RMAIN, we obtain:

∀i ∈ k + 1.`cell
SL Di : Qi → Qi+1 (10)

∀i ∈ l + 1.`cell
SL Ei : Ri → Ri+1 (11)

for some [Q0, . . . , Qk+1] and [R0, . . . , Rl+1] with Q0 = P ,
Qk+1 = P ′ = R0 and Rl+1 = P ′′. Now define a list

[S0, . . . , Sk+l+1]

such that:

Si =

{
Qi if 0 ≤ i ≤ k + 1

Ri−k−1 if k + 1 ≤ i ≤ l + 1,

noting that Sk+1 = Qk+1 = R0. By the RMAIN rule, it suffices to
show:

∀i ∈ k + l + 2.`cell
SL

(
D
E

)
i

: Si → Si+1.

If i < k + 1, then
(
D
E

)
i

= Di, Si = Qi and Si+1 = Qi+1, so the
result follows from (10). Otherwise, if k+ 1 ≤ i < k+ l+ 2, then(
D
E

)
i

= Ei−k−1, Si = Ri−k−1 and Si+1 = Ri−k, so the result
follows from (11).

For proving the RPAR rule, we shall require a little more machinery.
We employ the following generalisation of the Hoare triple.

Definition 30 (Hoare chain). A Hoare chain Π is a term of the
following language:

Π ::= {P} | {P} (γ, F ) Π

where P, F ∈ Interface and γ ∈ Cell. A Hoare chain of length k
can be written

{P0} (γ0, F0) {P1} · · · {Pk−1} (γk−1, Fk−1) {Pk}.
If this chain is called Π, then we define pre(Π) as P0 and post(Π)
as Pk.

Definition 31 (Provability of a Hoare chain). A chain is provable,
written `chain

SL Π, if each of its triples is provable; that is:

`chain
SL {P} = true
`chain
SL {P} (γ, F ) Π = `rdia

SL (γ, F ) : P → pre(Π)
and `chain

SL Π.

Definition 32 (Extracting a Hoare chain from a rasterised diagram).
Note that the empty list is not a rasterised diagram.

chain[(γ, F )] = {top γ ⊗ F} (γ, F ) {bot γ ⊗ F}
chain((γ, F ) ::D) = {top γ ⊗ F} (γ, F ) (chainD).

Lemma 33. We have:

pre(chainD) = topD post(chainD) = bot D.

Lemma 34. `chain
SL (chainD) if and only if `rdia

SL D.

Proof. By structural induction on D.
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Definition 35 (Parallel composition of Hoare chains). If Π0 and
Π1 are Hoare chains of lengths k and l, and µ is a sequence
containing k zeroes and l ones, then Π0 ‖µ Π1 is defined according
to the following equations:

{P} ‖ε {Q} = {P ⊗Q}
({P} (γ, F ) Π0) ‖0µ Π1 =

{P ⊗ pre(Π1)} (γ, F ⊗ pre(Π1)) (Π0 ‖µ Π1)

Π0 ‖1µ ({Q} (γ, F ) Π1) =
{pre(Π0)⊗Q} (γ, pre(Π0)⊗ F ) (Π0 ‖µ Π1).

Lemma 36. For any k ≥ 0, for any binary sequence µ containing
k0 + 1 zeroes and k1 + 1 ones, where k = k0 + k1, and for any
provable rasterised diagramsD (of length k0 +1) andE (of length
k1 + 1):

chain(D ‖µ E) = chain(D) ‖µ chain(E)
top(D ‖µ E) = top(D)⊗ top(E)
bot(D ‖µ E) = bot(D)⊗ bot(E)

Proof. By mathematical induction on k. In the base case, µ is either
01 or 10. In the inductive step, µ is either 0µ′ or 1µ′, for some µ′

containing at least one zero and one one.

Lemma 37. If `cell
SL (γ, F ) : P → Q and wr(γ) 6∩ rd(R) then

`cell
SL (γ, F ⊗R) : P ⊗R→ Q⊗R.

Proof. By rule induction on `cell
SL .

Lemma 38. For any k ≥ 0, for any binary sequence µ containing
k0 zeroes and k1 ones, where k = k0 + k1, and for any chains
Π0 and Π1 of lengths k0 and k1, if `chain

SL Π0 and `chain
SL Π1

and Π0 # Π1 then `chain
SL Π0 ‖µ Π1 and pre(Π0 ‖µ Π1) =

pre(Π0)⊗ pre(Π1).

Proof. By mathematical induction on k. When k = 0, then k0 =
k1 = 0, so Π0 and Π1 both comprise single interfaces, say {P} and
{Q}. Hence Π0 ‖µ Π1 = {P ⊗Q}, which is vacuously provable.
For the inductive step, assume k = 1 + k′ for some k′ ≥ 0. Then
µ is non-empty, and hence begins with 0 or 1. Suppose it begins
with 0; the alternative case is argued similarly. That is, µ = 0µ′ for
some µ′. We deduce k0 > 0, which means Π0 can be written as

{P} (γ, F ) Π′0.

for some P , γ, F and Π′0. Since Π0 is provable, then so is Π′0, and

`cell
SL (γ, F ) : P → pre(Π′0) (12)

holds. Now, Π0 ‖µ Π1 is equal to:

{P ⊗ pre(Π1)} (γ, F ⊗ pre(Π1)) (Π′0 ‖µ′ Π1)

by Defn. 35. This Hoare chain is provable if

`chain
SL Π′0 ‖µ′ Π1 (13)

`cell
SL (γ, F ⊗ pre(Π1)) : P ⊗ pre(Π1)→ pre(Π′0 ‖µ′ Π1). (14)

But (13) holds as a direct result of the induction hypothesis. The
induction hypothesis also allows (14) to be written as:

`cell
SL (γ, F ⊗ pre(Π1)) : P ⊗ pre(Π1)→ pre(Π′0)⊗ pre(Π1)

which follows from (12) via Lem. 37, noting that the side-condition
on variable interference is met having assumed Π0 # Π1.

Proof of RPAR rule. The soundness of the following rule:

`chain
SL Π0 `chain

SL Π1 Π0 # Π1

`chain
SL Π0 ‖µ Π1

follows from Lem. 38. The RPAR rule can be derived from this
rule, together with Lems. 34 and 36.

C. Proof of Theorem 23
This proof has been formalised in Isabelle, and the proof script can
be viewed online at:

http://www.cl.cam.ac.uk/~jpw48/ribbons.html

Theorem 23 (Soundness – variables-as-resource). Using variables-
as-resource, any ribbon diagram can be recreated as a separation
logic proof:

`dia
VaRG : P → Q =⇒ ∀c ∈ coms G.`VaR{asn P} c {asn Q}.

Notation. For sets X and Y , let X ] Y be defined when X 6∩ Y
as X ∪ Y , and X − Y be defined when Y ⊆ X as X \ Y .

To prove this theorem, we employ the following generalisation of a
Hoare triple.

Definition 39 (Hoare chain). A Hoare chain is a sequence

{P0}x0 {P1} · · · {Pk−1}xk−1{Pk}
where each Pi is an Interface, and each xi is either a ComGadget
or an AsnGadget.

Definition 40 (Extracting Hoare chains). First, we define the no-
tion of a proof state. At any point while stepping through a Hoare
chain, a proof state σ ⊆ VG × {TOP, BOT} records those node-
identifiers which are either initial or have been produced as the
postcondition of an already-processed hyperedge and not yet con-
sumed as a precondition of another. A node-identifier is tagged BOT
if it has been processed, and TOP if it hasn’t. Then, for a diagram
G, we define chains(G) as the set of all Hoare chains

{P0}x0 {P1} · · · {Pk−1}xk−1{Pk}
for which there exist a list [σ0, . . . , σk] of proof-states and a bijec-
tion π : k → VG ] EG with the following properties. First, for all
(v, C,w) ∈ EG,

π−1(v, C,w) < π−1(w) for all w ∈ w
π−1(v) < π−1(v, C,w) for all v ∈ v.

Second,
σ0 = (initials G)× {TOP}

and, for all i ∈ k,

σi+1 =


(σi − {(v, TOP)}) ] {(v, BOT)} if π(i) = v

(σi − (v × {BOT})) ] (w × {TOP})
if π(i) = (v, C,w)

Third, for all i ∈ k + 1,

Pi =
(
⊗(v,TOP)∈σi top(ΛG v)

)
⊗
(
⊗(v,BOT)∈σi bot(ΛG v)

)
.

Finally, for all i ∈ k,

xi =

{
ΛG v if π(i) = v

C if π(i) = (v, C,w).

Because the ‘−’ and ‘]’ operators are only partial, we require the
following lemma to confirm that the list [σ0, . . . , σk] in the above
definition is well-defined.

Lemma 41 (Well-definedness of chains). For any diagram G, ev-
ery Hoare chain in chains(G) is well-defined, begins with top(G)
and ends with bot(G).

Our strategy for proving this lemma is mathematical induction on
the size of G. First we must modify Defn. 40, as follows.

Definition 42 (Extracting Hoare chains – amended). For a diagram
G and a set S ⊆ initials(G), we define chains(G,S) as the set of
all Hoare chains

{P0}x0 {P1} · · · {Pk−1}xk−1{Pk}
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for which there exist a list [σ0, . . . , σk] of proof-states and a bijec-
tion π : k → (VG \ S) ] EG with the following properties. (The
role of S is to contain those ofG’s initial nodes which have already
been processed, and hence should not be included in the resultant
Hoare chains.) First, for all (v, C,w) ∈ EG:

π−1(v, C,w) < π−1(w) for all w ∈ w
π−1(v) < π−1(v, C,w) for all v ∈ v \ S.

Second,

σ0 = {(v, TOP) | v ∈ (initials G) \ S} ∪ {(v, BOT) | v ∈ S}.
and, for all i ∈ k,

σi+1 =


(σi − {(v, TOP)}) ] {(v, BOT)} if π(i) = v

(σi − (v × {BOT})) ] (w × {TOP})
if π(i) = (v, C,w)

Third, for all i ∈ k + 1,

Pi =
(
⊗(v,TOP)∈σi top(ΛG v)

)
⊗
(
⊗(v,BOT)∈σi bot(ΛG v)

)
.

Finally, for all i ∈ k,

xi =

{
ΛG v if π(i) = v

C if π(i) = (v, C,w).

Lemma 43. For all k:
∀G.∀S ⊆ initials(G). ∀H ∈ chains(G,S).
if |VG \ S|+ |EG| = k then
H is well-defined and ends with bot(G).

Proof. We use mathematical induction on k.

Case 0. Each chain is of the form {P0}, so is trivially well-defined.
There being no edges, every node is both initial and terminal.
We have VG = initials(G) = terminals(G) = S. So

σ0 = (terminals G)× {BOT},
and hence

P0 = ⊗v∈terminals G bot(ΛG v) = bot(G)

as required.
Case k + 1. Each chain is of the form

{P0}x0 {P1} · · · {Pk−1}xk−1{Pk}
We case-split on whether x0 is an AsnGadget or a ComGadget.
Case x0 ∈ AsnGadget. Hence π(0) = v. Since [x0, . . . ,

xk−1] is a valid linear extension of G, we have v ∈
initials(G). Since S is excluded from π’s co-domain, we
have v /∈ S. Hence σ0 contains (v, TOP) but not (v, BOT).
This ensures that σ1 is well-defined, and hence, so is the ini-
tial step {P0}x0 {P1} of the chain. It now suffices to show
that the rest of the chain is in chains(G,S ]{v}), for then,
by the induction hypothesis, the remainder – and hence the
entire chain – is well-defined and ends with bot(G). To see
this, define a new bijection π′ such that π(i) = π(i+ 1) for
all i ∈ k, and a new list [σ′0, . . . , σ

′
k−1] = [σ1, . . . σk+1]

and confirm that the four properties listed in Defn. 42 hold.
Case x0 ∈ ComGadget. Hence π(0) = (v, C,w). Since [x0,

. . . , xk−1] is a valid linear extension of G, x0 has no
dependants; that is, v ⊆ S. Hence v × {BOT} ⊆ σ0.
Moreover, w × {BOT} 6∩ σ0 because w 6∩ (initials G),
which follows from Defn. 8. This ensures that σ1 is well-
defined, and hence, so is the initial step of the chain. Con-
sider the graph G′ obtained by removing from G the hyper-
edge (v, C,w) and the vertices in v (which, by LINEAR-
ITY, are not endpoints of any remaining hyperedge). The

removal preserves ACYCLICITY and LINEARITY, so G′ is
well-formed; moreover, bot(G′) = bot(G). Let S′ be S\v,
and note that |VG′ \ S′|+ |EG′ | = k. The rest of the chain
is in chains(G′, S′), and hence, by the induction hypoth-
esis, is well-defined and ends in bot(G′). Thus, the entire
chain is well-defined and ends in bot(G). Isabelle

Proof of Lemma 41. It is a straightforward consequence of the def-
inition of σ0 and Defn. 9 that every Hoare chain in chains(G) be-
gins with top(G). We note that when S is empty, chains(G,S) co-
incides with chains(G), so Lem. 43 implies the result. Isabelle

Proof of Thm. 23. We prove the following three statements by mu-
tual rule induction.
`dia
VaRG : P → Q =⇒ ∀c ∈ coms G.`VaR{asn P} c {asn Q}
`com
VaR C : P → Q =⇒ ∀c ∈ coms C.`VaR{asn P} c {asn Q}
`asn
VaRA =⇒ ∀c ∈ coms A.`VaR{asn(top A)} c {asn(bot A)}

We focus on the MAIN rule, as the others are straightforward
consequences of the corresponding rules in Fig. 7. Our inductive
hypotheses are:

∀v ∈ VG. ∀c ∈ coms(ΛG v).
`VaR{asn(top(ΛG v))} c {asn(bot(ΛG v))} (15)

∀(v, C,w) ∈ EG. ∀c ∈ coms C.
`VaR{asn(⊗v∈v bot(ΛG v))} c {asn(⊗w∈w top(ΛG w))}

(16)

We are to prove, for all c ∈ coms G, that:

`VaR{asn(topG)} c {asn(bot G)}. (17)

Observe that c can be written c0 ; · · ·; ck−1 ;skip for some linear
extension [x0, . . . , xk−1] ofG, where ci ∈ coms(xi) for all i ∈ k.
Consider the corresponding Hoare chain:

{P0}x0 {P1} · · · {Pk−1}xk−1{Pk}
We pick an arbitrary i ∈ k, and proceed depending on whether xi
is an AsnGadget or a ComGadget.

Case xi ∈ AsnGadget. Hence π(i) = v. Hence

σi+1 = (σi − {(v, TOP)}) ] {(v, BOT)}.
By Lem. 41, this expression is well-defined, and hence

σi = {(v, TOP)} ] σ′
σi+1 = {(v, BOT)} ] σ′

for some σ′. Hence
Pi = top(ΛG v)⊗ P ′
Pi+1 = bot(ΛG v)⊗ P ′

for some P ′. By (15), we have

`VaR{asn(top(ΛG v))} ci {asn(bot(ΛG v))}
from which

`VaR{asn(top(ΛG v))∗asn P ′} ci {asn(bot(ΛG v))∗asn P ′}
follows by separation logic’s frame rule (which, under variables-
as-resource, has no side-conditions). Hence

`VaR{asn Pi} ci {asn Pi+1}.
Case xi ∈ ComGadget. Similar, using (16) instead of (15) .

We then use Hoare logic’s sequencing rule to assemble a proof of
the entire chain:

`VaR{asn P0} c {asn Pk}.
It remains to show that P0 is top(G) and Pk is bot(G); this follows
directly from Lem. 41. Isabelle
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D. Rasterisation
The following process converts an ordered diagram G into a ras-
terised diagram Rdia G. We assume that all sets of vertices are or-
dered. For both lists and sets, we write · for concatenation.

Rdia G = Redges vEG
where v = initials G

Redges v [ ] = Rids ε (∅,v)
Redges v ((w1, C,w2) :: E) =

(Rids F (∅,w1)) · [Rcom(P,C,Q)] · Redges v
′E

where F = ⊗v∈v\w1
top(ΛG v)

P = ⊗w∈w1 bot(ΛG w)
Q = ⊗w∈w2 top(ΛG w)
v′ = (v \w1) ∪w2

Rcom(P, c ,Q) = c
P

Q

Rcom(P,

G1

or
G2

, Q) =

P

Rdia G1

or
Rdia G2

Q

Rcom(P,
loop
G

,Q) =

P
loop
Rdia G

Q

Rids F (vleft, ∅) = [ ]
Rids F (vleft, v · vright) =

[(Rasn(ΛG v), F ⊗ Fleft ⊗ Fright)] · Rids F (vleft · v,vright)
where Fleft = ⊗v∈vleft bot(ΛG v)

Fright = ⊗v∈vright top(ΛG v)

Rasn p = p

Rasn G∃x = ∃xRdia G

E. Ribbon proof of Version 7 Unix memory
manager

We illustrate the ability of our system to produce readable proofs
for more complex programs. Our case study is the memory man-
ager from Version 7 Unix, the abridged and corrected source code
of which is presented in Fig. 20.

The ribbon proof for this program, presented at the end of this
section, is several times larger than the proof outline for the same
program that has been published previously.3 This is because it
provides far more detail; to an extent that could not be supported
by the proof outline without becoming tediously repetitive.

Preliminaries
One feature of this case study is that components of assertions may
be undefined. When they are, the entire assertion is deemed false.
Picking an example from the glossary in Fig. 21: the expression
C ◦− D is undefined when C does not begin with D. By exploit-
ing undefinedness, our assertions become more expressive. For in-
stance, the assertion C = D ◦− [d] imparts not only that C is D’s
tail, but also that d is D’s head.

Another convention we adopt is that both program variables
and logical variables are typed, though the types are not written
explicitly in the proof. Some types are defined in the glossary. We

3 J. Wickerson, M. Dodds, and M. J. Parkinson, “Explicit stabilisation for
modular rely-guarantee reasoning,” University of Cambridge, Tech. Rep.,
2010

#define WORD sizeof(st)
#define BLOCK 1024
#define testbusy(p) ((int)(p)&1)
#define setbusy(p) (st *)((int)(p)|1)
#define clearbusy(p) (st *)((int)(p)&~1)

struct store { struct store *ptr; };
typedef struct store st;
static st s[2]; /*initial arena*/
static st *v; /*search ptr*/
static st *t; /*arena top*/

char* sbrk();

char* malloc(unsigned int nbytes) {
register st *p, *q;
register nw; static temp;
if(s[0].ptr == 0) { /*first time*/
s[0].ptr = setbusy(&s[1]);
s[1].ptr = setbusy(&s[0]);
t = &s[1]; v = &s[0];

}
nw = (nbytes+WORD+WORD-1)/WORD;
for(p = v; ; ) {
for(temp = 0; ; ) {
if(!testbusy(p->ptr)) {
q = p->ptr;
while(!testbusy(q->ptr)) {
p->ptr = q->ptr; q = p->ptr;

}
if(q >= p+nw && p+nw >= p) goto found;

}
q = p; p = clearbusy(p->ptr);
if(p > q) ;
else if(q !=t || p != s) return 0;
else if(++temp > 1) break;

}
temp = ((nw+BLOCK/WORD)

/(BLOCK/WORD))*(BLOCK/WORD);
q = (st *)sbrk(0);
if(q+temp < q) return 0;
q = (st *)sbrk(temp*WORD);
if((int)q == -1) {
v = s; //line added to fix bug
return 0;

}
t->ptr = q;
if(q != t+1) t->ptr = setbusy(t->ptr);
t = q->ptr = q+temp-1;
t->ptr = setbusy(s);

}
found:
v = p+nw;
if(q > v) v->ptr = p->ptr;
p->ptr = setbusy(v);
return((char *)(p+1));

}

free(register char *ap) {
register st *p = (st *)ap;
v = --p;
p->ptr = clearbusy(p->ptr);

}

Figure 20. The Version 7 Unix memory manager. From
http://minnie.tuhs.org/cgi-bin/utree.pl?file=V7/
usr/src/libc/gen/malloc.c. Abridged and corrected.
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model the C types int and unsigned int using the sets Z and N
respectively. (Thus, our proof does not consider integer overflows.)
We model pointers as fractions in the following set:

ptr
def
= {x | x× WORD ∈ Z},

where WORD, the number of bytes in a word, is typically either 4
or 8. Consequently, if x is a pointer, then ‘x + 1’ denotes the next
word rather than the next byte. We can access the lower bits of
a pointer (as is frequently required in this case study) by adding
or subtracting fractions. Note that having dividing all pointers by
WORD, we must be very careful when comparing pointers with non-
pointers.

The semantics of the single-cell assertion (with respect to a store
s and a heap h) requires the address to be word-aligned, that is, to
evaluate to a positive natural number:

s, h |= e1
e2

def
= let l1 = Je1K(s) and l2 = Je2K(s)

in l1 ∈ N+ ∧ h = {l1 7→ l2}.
As seen in the definition above, this case study introduces a new
notation for a memory cell: the usual separation logic notation
‘e1 7→ e2’ is replaced by

e1
e2 . Although it sacrifices linearity, this

notation is better able to extend to ranges of cells, in a manner
recalling Reynolds’ partition diagrams.4 Ranges appear frequently
in our case study, so a good notation is desirable. We use only what
Reynolds calls ‘regular’ ranges, whose upper bound is greater than
or equal to its lower bound:

s, h |= e2e1 def
= let l1 = Je1K(s) and l2 = Je2K(s)

in l1, l2 ∈ N+ ∧ l1 ≤ l2 ∧
dom(h) = {i ∈ N+ | l1 ≤ i < l2}.

The default diagram has an inclusive lower bound and an exclu-
sive upper bound, but alternatives can be obtained by switching
between

e
and e + 1 . Two ranges may be concatenated; that is,

e2e1 ∗ e3e2 implies
e3e1 . We can write

ee

as
e

. As an example: an unallocated chunk in the arena is written
yx

y . This can be rewritten in terms of the primitives defined

above as
x
y ∗ yx + 1 . It depicts a single cell at x with con-

tents y, followed by zero or more cells up to, but not including, the
cell at y.

The memory manager
The specifications for the malloc and free routines are given at
the beginning of Fig. 21. The precondition for malloc encom-
passes the possibility that the arena has not yet been initialised
(uninit). Once initialised, an arena comprises a monotonic se-
quence of chunks, each preceded by a pointer to the next chunk’s
pointer. Since chunks are word-aligned, the lower bits of their
pointers are redundant. The least significant of these is thus em-
ployed as a ‘busy’ bit, set when the following chunk is allocated.
The final chunk is pointed to by t; it is permanently marked ‘busy’
and points back to the first chunk, which is pointed to by s.

The allocation strategy employed by malloc is circular first-
fit. The search begins at the last-freed chunk (called the ‘victim’
chunk and pointed to by v), and coalesces consecutive unallocated
chunks as it goes. If the request cannot be satisfied, further memory
is requested from the system via a call to sbrk. The resulting chunk
is appended to the end of the arena, and any gap is simply marked
as an allocated chunk. If the call to sbrk fails, malloc fails too; this
possibility is captured by the second disjunct in its postcondition.

4 J. C. Reynolds, “Reasoning about arrays,” Communications of the ACM,
vol. 22, no. 5, pp. 290–299, May 1979

The arena predicate is parameterised by a mapping A of type
chunks_ext, which associates the first cell of each allocated chunk
with that chunk’s size in words. The ‘internal’ representation of the
arena, used in the proof but not displayed in the specification, is a
list C of type chunks_int. Each element 〈x, τ, y〉 of C describes
a chunk whose pointer is located at x and points to y, and has
busy status τ . From a client’s perspective, such a chunk comprises
y− x− 1 usable cells, the first of which is at location x+ 1. In the
definition of the arena predicate, the list C is split, at the victim
chunk, into C1 and C2. We write A ⊆ (C1 ◦ C2)a to express
that every chunk recorded in A is indeed marked as allocated in
the arena. The converse inclusion does not hold because, as noted
above, not all chunks marked as allocated have actually been given
to a client.

The uninit and arena predicates that appear in the specifica-
tions are treated as abstract by the clients of the memory manager.5

That is, the definitions presented at the end of Fig. 21 remain pri-
vate to the manager for the sake of modularity. Likewise, the brka
predicate (which means that the breakpoint is positioned at or after
the given address) is only defined within the sbrk routine, although
the axiom x ≤ y ∧ brka(y)⇒ brka(x) is exposed.

We remark that an alternative specification has been proposed,
which avoids the exposure of the logical variable A and the pro-
gram variables s, v and t.5 It is possible to modify our proof to
satisfy this improved specification [32], but we refrain from doing
so here to avoid introducing several technical complications of little
relevance to ribbon proofs.

The proof
The ribbon proof is best read by concentrating on each command
c in turn, and checking that it correctly transforms those ribbons
directly above it into those directly below it. Ribbons to the left or
right of c can largely be ignored; the only requirement upon them
is not to mention any program variable that c writes.

Finally, we note three further conventions adopted in this proof.
First, whenever a ribbon in a command’s postcondition also ap-
pears in its precondition, and the size and positioning makes the
correspondence unambiguous, the label in the postcondition can be
replaced by a ‘ditto’ mark. Second, to aid the reader, we repeat
ribbon labels at the top of each page, slightly dimmed. We some-
times issue similar reminders at the beginning of else-branches
of if-statements. Third, we use ‘jigsaw puzzle pieces’ to help the
reader connect the ribbons correctly at the boundaries of if- and
while-blocks (in accordance with Fig. 4).

5 M. J. Parkinson and G. M. Bierman, “Separation logic and abstraction,” in
POPL, 2005
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Specifications of main routines{
uninit sA ∨
arena s v tA

}
malloc(n)

{
(arena s v t (A ] {ret 7→ dn/WORDe}) ∗ ret + dn/WORDeret ) ∨
(arena s v tA ∗ ret .

= 0)

}
{
arena s v t (A ] {x 7→ n}) ∗ x + nx

}
free(x)

{
arena s v tA

}
Specifications of sub-routines{

brka x
}
sbrk(n)

{
(brka x ∗ ret .

= −1/WORD ∧ n ˙6= 0) ∨
(brka(ret + dn/WORDe) ∗ ret + dn/WORDeret ∗ x ≤̇ ret)

}

Types
tag

def
= {u, a} (unallocated/allocated)

ptr
def
= {x ∈ R | x× WORD ∈ Z}

chunks_int def
= {C : (N+ × tag × N+) list |

each 〈x, τ, y〉 in C satisfies x < y, and each
consecutive pair 〈x, τ, y〉 , 〈x′, τ ′, y′〉 satisfies y ≤ x′}

chunks_ext def
= N+ ⇀ N

Operators
(−)a : chunks_int→ chunks_ext def

= λC. {(x+ 1 7→ y − x− 1) | 〈x, a, y〉 ∈ C}

(A : chunks_ext) ] (A′ : chunks_ext) def
=

{
A ∪A′ if dom(A) ∩ dom(A′) = ∅
undefined otherwise

(C : chunks_int) ◦ (C′ : chunks_int) def
=

{
concatenation of C and C′ if result is a valid chunks_int
undefined otherwise

(C : chunks_int) ◦− (C′ : chunks_int) def
=

{
C′′ if C = C′ ◦ C′′
undefined otherwise

y
def
= y + 1

WORD

Predicates
chunku(x : ptr) (y : ptr)

def
=

yx
y

chunk a(x : ptr) (y : ptr)
def
= x <̇ y ∗ x

y

chunks(x : ptr) (y : ptr) (C : chunks_int) def
= (x

.
= y ∗ C .

= [ ]) ∨ ∃z : ptr.∃τ : tag.
chunkτ x z ∗ chunks z y (C ◦− [〈x, τ, z〉])

uninit (s : ptr) (A : chunks_ext) def
= 0

s
0 ∗A .

= ∅ ∗ brka(s+ 2)

arena (s : ptr) (v : ptr) (t : ptr) (A : chunks_ext) def
= ∃C1, C2 : chunks_int. chunks s v C1 ∗ chunks v tC2

∗A ⊆̇ (C1 ◦ C2)a ∗ t
s ∗ brka(t+ 1)

Lemma A. chunks x y C1 ∗ chunks y z C2 =⇒ chunks x z (C1 ◦ C2)

Lemma B. chunkτ x y =⇒ chunks x y [〈x, τ, y〉]
Lemma C. chunks w xC1 ∗ x ≤̇ y ∗ chunks y z C2 =⇒ (C1 ◦ C2) is defined

Lemma D. arena s v tA =⇒ ∃n > 0.
s
n ∗ (

s
n −∗ arena s v tA)

Lemma E. chunks w xC ∧ 〈y, τ, z〉 ∈ C =⇒ ∃C1, C2. chunks w y C1 ∗ chunkτ y z ∗ chunks z xC2

Lemma F. x ≤ y ∧ brka(y) =⇒ brka(x)

Figure 21. Glossary of definitions and lemmas used in the specifications and proofs of malloc and free
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char *malloc(unsigned int nbytes) {

Case split, first disjunct

Case split, second disjunct

if(s[0].ptr == 0) {

uninit sA ∨ arena s v tA

uninit sA

Unfold uninit

0
s
0 ∗A .

= ∅ ∗ brka(s + 2)

∃n
s
n n

.
= 0 ∗ s + 1

0
∗A .

= ∅ ∗ brka(s + 2)

Weaken

(n
.
= 0 ∗ s + 1

0
∗A .

= ∅ ∗ brka(s + 2)) ∨ (n >̇ 0 ∗ (
s
n −∗ arena s v tA))

arena s v tA

arena s v tA implies ∃n > 0.
s
n ∗ (

s
n −∗ arena s v tA) (Lem. D)

∃n
s
n n >̇ 0 ∗ (

s
n −∗ arena s v tA)

Weaken

(n
.
= 0 ∗ s + 1

0
∗A .

= ∅ ∗ brka(s + 2)) ∨ (n >̇ 0 ∗ (
s
n −∗ arena s v tA))

′′ n
.
= 0 ∗ s + 1

0
∗A .

= ∅ ∗ brka(s + 2)

Split

n
.
= 0 s + 1

0
A
.
= ∅ brka(s + 2)

Combine

s
0

s[0].ptr = setbusy(&s[1])

s
(s + 1) s[1].ptr = setbusy(&s[0])

s + 1
s

t = &s[1]

s <̇ t ∗ s
t

t
s brka(t + 1)

v = &s[0]

v .
= s v <̇ t ∗ v

t

Fold chunk a

chunk a v t

Fold chunks Fold chunks (Lem. B)

chunks v t [〈v, a, t〉]chunks s v [ ]
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}

for(p = v; ; ) {

for(temp = 0; ; ) {

if(!testbusy(p->ptr)) {

brka(t + 1)chunks v t [〈v, a, t〉] t
schunks s v [ ]A

.
= ∅

C1 := [ ];C2 := [〈v, a, t〉]

∃C1, C2. chunks s vC1 ∗ chunks v tC2 ∗A ⊆̇ (C1 ◦ C2)a

Fold arena

arena s v tA

∃n s
n n >̇ 0 ∗ (

s
n −∗ arena s v tA)

Weaken; use “p ∗ (p−∗ q)⇒ q”

arena s v tA

Unfold arena

∃C1 brka
(t

+
1
)

∃C2ch
u
n
ks

s
v
C

1

nw=(nbytes+WORD
+WORD-1)/WORD

chunks v tC2 A ⊆̇ (C1 ◦ C2)a
t
s

nw .
= 1 +⌈ nbytes
WORD

⌉

ch
u
n
ks

s
p
C

1

chunks p tC2

Unfold chunks

(p .
= t ∗ C2

.
= [ ]) ∨ ∃r, τ. chunkτ p r ∗ chunks r t (C2 ◦− [〈p, τ, r〉])

Unfold chunku and chunk a; combine

(p .
= t ∗ C2

.
= [ ] ∗ t

s ) ∨
(
t
s ∗ ∃r. rp

r ∗ chunks r t (C2 ◦− [〈p, u, r〉])) ∨
(
t
s ∗ ∃r. p <̇ r ∗ p

r ∗ chunks r t (C2 ◦− [〈p, a, r〉]))

Factor out p-cell

∃n
p
n (p .

= t ∗ C2
.
= [ ] ∗ n .

= s ) ∨
(
t
s ∗ ∃r. rp + 1 ∗ n .

= r ∗ chunks r t (C2 ◦− [〈p, u, r〉]))
∨ (

t
s ∗ ∃r. p <̇ r ∗ n .

= r ∗ chunks r t (C2 ◦− [〈p, a, r〉]))

p
n ∧
n ∈ N
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while(!testbusy(q->ptr)) {

(p .
= t ∗ C2

.
= [ ] ∗ n .

= s ) ∨
(
t
s ∗ ∃r. rp + 1 ∗ n .

= r ∗ chunks r t (C2 ◦− [〈p, u, r〉]))
∨ (

t
s ∗ ∃r. p <̇ r ∗ n .

= r ∗ chunks r t (C2 ◦− [〈p, a, r〉]))

p
n ∧
n ∈ N

nw
.=

1
+ ⌈

nbytes
WORD ⌉

A ⊆̇ (C1 ◦ C2)a

brka
(t

+
1
)

ch
u
n
ks

s
p
C

1

∃n∃C2∃C1

Reject first and third disjuncts (they contradict n ∈ N)

′′ t
s ∗ ∃r. rp + 1 ∗ n .

= r ∗ chunks r t (C2 ◦− [〈p, u, r〉])

Combine

t
s ∗ ∃r. rp

r ∗ chunks r t (C2 ◦− [〈p, u, r〉])

Split

∃r

rp
r chunks r t (C2 ◦− [〈p, u, r〉]) t

s

Note C2 ◦− [〈p, u, r〉] is defined

′′ A ⊆̇ (C1 ◦ (C2 ◦−
[〈p, u, r〉]))a

C2 := C2 ◦− [〈p, u, r〉]
∃C2

chunks r tC2 A ⊆̇ (C1 ◦ C2)a

q = p->ptr

qp
q chunks q tC2

Unfold chunks

(q .
= t ∗ C2

.
= [ ]) ∨

(∃r, τ. chunkτ q r ∗ chunks r t (C2 ◦− [〈q, τ, r〉]))

Unfold chunku and chunk a; combine

(q .
= t ∗ C2

.
= [ ] ∗ t

s ) ∨
(
t
s ∗ ∃r. rq

r ∗ chunks r t (C2 ◦− [〈q, u, r〉])) ∨
(
t
s ∗ ∃r. q <̇ r ∗ q

r ∗ chunks r t (C2 ◦− [〈q, a, r〉]))

Factor out q-cell

∃n
q
n (q .

= t ∗ C2
.
= [ ] ∗ n .

= s ) ∨
(
t
s ∗ ∃r. rq + 1 ∗ n .

= r ∗ chunks r t (C2 ◦− [〈q, u, r〉]))
∨ (

t
s ∗ ∃r. q <̇ r ∗ n .

= r ∗ chunks r t (C2 ◦− [〈q, a, r〉]))

q
n ∧
n ∈ N

Reject first and third disjuncts (they contradict n ∈ N)

′′ t
s ∗ ∃r. rq + 1 ∗ n .

= r ∗ chunks r t (C2 ◦− [〈q, u, r〉])

Combine

t
s ∗ ∃r. rq

r ∗ chunks r t (C2 ◦− [〈q, u, r〉])

Split
∃r

rq
r chunks r t (C2 ◦− [〈q, u, r〉]) t

s
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}

if(q >= p+nw && p+nw >= p)

chunks r t (C2 ◦− [〈q, u, r〉])rq
r

qp
q

nw
.=

1
+ ⌈

nbytes
WORD ⌉

t
s A ⊆̇ (C1 ◦ C2)a

brka
(t

+
1
)

ch
u
n
ks

s
p
C

1

∃r ∃C2∃C1

Note C2 ◦− [〈q, u, r〉] is defined

′′ A ⊆̇ (C1 ◦ (C2 ◦−
[〈q, u, r〉]))a

p->ptr = q->ptr

rq
r

p
r

Weaken C2 := C2 ◦− [〈q, u, r〉]
∃C2rp

r

chunks r tC2 A ⊆̇ (C1 ◦ C2)a

q = p->ptr

qp
q chunks q tC2

Unfold chunks

(q .
= t ∗ C2

.
= [ ]) ∨

(∃r, τ. chunkτ q r ∗ chunks r t (C2 ◦− [〈q, τ, r〉]))

Unfold chunku and chunk a; combine

(q .
= t ∗ C2

.
= [ ] ∗ t

s ) ∨
(
t
s ∗ ∃r. rq

r ∗ chunks r t (C2 ◦− [〈q, u, r〉])) ∨
(
t
s ∗ ∃r. q <̇ r ∗ q

r ∗ chunks r t (C2 ◦− [〈q, a, r〉]))

Factor out q-cell

∃n
q
n (q .

= t ∗ C2
.
= [ ] ∗ n .

= s ) ∨
(
t
s ∗ ∃r. rq + 1 ∗ n .

= r ∗ chunks r t (C2 ◦− [〈q, u, r〉]))
∨ (

t
s ∗ ∃r. q <̇ r ∗ n .

= r ∗ chunks r t (C2 ◦− [〈q, a, r〉]))

′′

Fold chunku Combine; use equalities

chunku p q (q .
= t ∗ C2

.
= [ ] ∗ t

s ) ∨
(
t
s ∗ ∃r. rq

r ∗ chunks r t (C2 ◦− [〈q, u, r〉])) ∨
(
t
s ∗ ∃r. q <̇ r ∗ q

r ∗ chunks r t (C2 ◦− [〈q, a, r〉]))

Factor out t-cell; fold chunk a, chunku and chunks

chunks q tC2
t
s

q
≥̇

p
+
nw

goto found
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}

chunks q tC2chunku p q

nw
.=

1
+ ⌈

nbytes
WORD ⌉

t
s A ⊆̇ (C1 ◦ C2)a

brka
(t

+
1
)

ch
u
n
ks

s
p
C

1

∃C2∃C1

C1 ◦ [〈p, u, q〉] ◦ C2 is defined (Lem. C)

′′ ′′ ′′ A ⊆̇ (C1 ◦
[〈p, u, q〉]
◦ C2)aConcatenate chunks (Lem. A)

chunks p t ([〈p, u, q〉] ◦ C2)

C2 := [〈p, u, q〉] ◦ C2

∃C2

chunks p tC2 A ⊆̇ (C1 ◦ C2)a

(p .
= t ∗ C2

.
= [ ] ∗ n .

= s ) ∨
(
t
s ∗ ∃r. rp + 1 ∗ n .

= r ∗ chunks r t (C2 ◦− [〈p, u, r〉]))
∨ (

t
s ∗ ∃r. p <̇ r ∗ n .

= r ∗ chunks r t (C2 ◦− [〈p, a, r〉]))

p
n

nw
.=

1
+ ⌈

nbytes
WORD ⌉

A ⊆̇ (C1 ◦ C2)a

brka
(t

+
1
)

ch
u
n
ks

s
p
C

1

∃C1 ∃C2 ∃n p
n

Combine; use equalities

(p .
= t ∗ C2

.
= [ ] ∗ t

s ) ∨ (
t
s ∗ ∃r. p <̇ r ∗ p

r ∗ chunks r t (C2 ◦− [〈p, a, r〉]))

Factor out t-cell; fold chunk a and chunks

chunks p tC2
t
s

q = p
ch
u
n
ks

s
q
C

1

chunks q tC2 q .
= p

Unfold chunks

(q .
= t ∗ C2

.
= [ ]) ∨ (∃r, τ. chunkτ q r ∗ chunks r t (C2 ◦− [〈q, τ, r〉]))

Unfold chunku and chunk a; combine with t-cell; use equalities

(q .
= t ∗ C2

.
= [ ] ∗ p

s ) ∨
(
t
s ∗ ∃r. rq

r ∗ chunks r t (C2 ◦− [〈q, u, r〉])) ∨
(
t
s ∗ ∃r. q <̇ r ∗ q

r ∗ chunks r t (C2 ◦− [〈q, a, r〉]))

′′

p = clearbusy(p->ptr)

(q .
= t ∗ p .

= s ∗ C2
.
= [ ] ∗ t

s ) ∨
(
t
s ∗ pq

p ∗ chunks p t (C2 ◦− [〈q, u, p〉])) ∨
(
t
s ∗ q <̇ p ∗ q

p ∗ chunks p t (C2 ◦− [〈q, a, p〉]))

Factor out t-cell; fold chunku and chunk a

(q .
= t ∗ p .

= s ∗ C2
.
= [ ]) ∨ ∃τ. chunkτ q p ∗ chunks p t (C2 ◦− [〈q, τ, p〉]) t

s
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if(p > q)

else

if(q != t || p != s)

t
s(q .

= t ∗ p .
= s ∗ C2

.
= [ ]) ∨ ∃τ. chunkτ q p ∗ chunks p t (C2 ◦− [〈q, τ, p〉]) nw

.=
1

+ ⌈
nbytes
WORD ⌉

A ⊆̇ (C1 ◦ C2)a

brka
(t

+
1
)

ch
u
n
ks

s
q
C

1

∃C2∃C1

p >̇ q

p >̇ q contradicts chunks s qC1 ∗ p .
= s

chunks s qC1 ∃τ. chunkτ q p ∗ chunks p t (C2 ◦− [〈q, τ, p〉])

∃τ

chunkτ q p ∗ chunks p t (C2 ◦− [〈q, τ, p〉])

C1 ◦ [〈q, τ, p〉] is defined (Lem. C)

′′ ′′ A ⊆̇ ((C1 ◦ [〈q, τ, p〉])
◦ (C2 ◦− [〈q, τ, p〉]))a

Append q chunk to end of C1 (Lem. A)

chunks s p (C1 ◦ [〈q, τ, p〉]) ∗ chunks p t (C2 ◦− [〈q, τ, p〉])

C1 := C1 ◦ [〈q, τ, p〉];C2 := C2 ◦− [〈q, τ, p〉]
∃C1

∃C2

chunks s pC1

chunks p tC2 A ⊆̇ (C1 ◦ C2)a

(q .
= t ∗ p .

= s ∗ C2
.
= [ ])

∨ ∃τ. chunkτ q p ∗ chunks p t (C2 ◦− [〈q, τ, p〉])

nw
.=

1
+ ⌈

nbytes
WORD ⌉

t
s A ⊆̇ (C1 ◦ C2)a

brka
(t

+
1
)

chunks s qC1∃C2∃C1 p ≤̇ q

p ≤ q contradicts chunkτ q p

q .
= t ∗ p .

= s ∗ C2
.
= [ ]

q .
= t ∗ p .

= s ∗ C2
.
= [ ] ∗ (q ˙6= t ∨ p ˙6= s)

Propagate contradiction across entire interface

false
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else

if(++temp > 1)

}

false

return 0

false

q .
= t ∗ p .

= s ∗ C2
.
= [ ]

nw
.=

1
+ ⌈

nbytes
WORD ⌉

t
s A ⊆̇ (C1 ◦ C2)a

brka
(t

+
1
)

chunks s qC1∃C2∃C1

Use equalities; weaken

chunks p tC1 p .
= s A ⊆̇ (C1)a

C := C1

∃C

chunks p tC A ⊆̇ Ca

break

false

nw
.=

1
+ ⌈

nbytes
WORD ⌉

t
s A ⊆̇ (C1)achunks p tC1

brka
(t

+
1
)

p .
= s∃C2∃C1

Fold chunks

chunks s p [ ]

C2 := C1;C1 := [ ]

∃C1

∃C2

chunks s pC1

chunks p tC2 A ⊆̇ (C1 ◦ C2)a

false
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if(q+temp < q)

if((int)q == -1) {

}

Continue from break

∃C ch
u
n
ks

p
t
C

p .
= s A ⊆̇ Ca t

s brka(t + 1)

nw
.=

1
+ ⌈

nbytes
WORD ⌉

temp = ((nw+BLOCK/WORD)/
(BLOCK/WORD))*(BLOCK/WORD) q = (st *)sbrk(0)

temp >̇ nw brka(q) q ≥̇ t + 1

q + temp <̇ q

Integer overflows not modelled Use Lem. F

false brka(t + 1)

return 0

false

temp >̇ nw

q = (st *)sbrk(temp*WORD)

((brka(t + 1) ∗ q .
= −1/WORD)

∨ (brka(q + temp) ∗ t + 1 ≤̇ q
∗ q + tempq

))

brka(t + 1)

Use equality Kill

chunks s tC
Fold chunks

chunks s s [ ]

v = s //line added to fix bug

chunks s v [ ] chunks v tC

C1 := [ ];C2 := C

∃C1

∃C2

chunks s vC1

chunks v tC2 A ⊆̇ (C1 ◦ C2)a

Fold arena

arena s v tA

Prepare for return

(arena s v tA ∗ ret .
= 0)[0/ret]

return 0

false

∃C
p .

= s chunks p tC temp >̇ nw A ⊆̇ Ca t
s

brka(q + temp) ∗ t + 1 ≤̇ q
∗ q + tempq
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if(q != t+1)

brka(q + temp) ∗ t + 1 ≤̇ q
∗ q + tempq

temp >̇ nwchunks p tC t
sA ⊆̇ Cap .

= s
nw

.=
1

+ ⌈
nbytes
WORD ⌉

∃C

Splitt->ptr = q

t
q

q + tempq brka
(q

+
temp

)

t + 1 ≤̇ q

t + 1 <̇ q

t->ptr =
setbusy(t->ptr)

t
q

Fold chunk a

chunk a t q

Weaken

∃τ. chunkτ t q

t + 1
.
= q

Fold chunku

chunku t q

Weaken

∃τ. chunkτ t q

Note temp ≥ 2, so array contains at least two cells

′′q

q
+

temp
−

1
q q + temp− 1

∃τ

chunkτ t q

C ◦ [〈t, τ, q〉] is defined (Lem. C)

′′ ′′ A ⊆̇ (C ◦
[〈t, τ, q〉])a

Concatenate chunks (Lem. A) t = q->ptr = q+temp-1

chunks p q (C ◦ [〈t, τ, q〉]) brka
(t

+
1
)

q
t

tq t

C := C ◦ [〈t, τ, q〉] Fold chunku

∃C
chunku q t

chunks p qC A ⊆̇ Ca
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}

chunku q tchunks p qC

brka
(t

+
1
)

A ⊆̇ Ca tp
.=
s

nw
.=

1
+ ⌈

nbytes
WORD ⌉
∃C

C ◦ [〈q, u, t〉] is defined (Lem. C)

′′ ′′ A ⊆̇ (C ◦
[〈q, u, t〉])a

Concatenate chunks (Lem. A)

chunks p t (C ◦ [〈q, u, t〉])

Fold chunks C2 := C ◦ [〈q, u, t〉] t->ptr = setbusy(s)

∃C2

chunks s p [ ]
t
s

chunks p tC2 A ⊆̇ (C2)a

C1 := [ ]

∃C1

chunks s pC1 A ⊆̇ (C1 ◦ C2)a

false

found:

nw .
= 1 +⌈ nbytes
WORD

⌉chunks q tC2

ch
u
n
k
u p

q

q ≥̇ p + nw t
sA ⊆̇ (C1 ◦ C2)a

brka
(t

+
1
)

ch
u
n
ks

s
p
C

1

∃C2∃C1

Unfold chunku v = p+nw

p
q

qp
p <̇ v ′′v .

= p + nw v ≤̇ q
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if(q > v)

qp
p <̇ v

v
.=
p

+
nw

v ≤̇ q

ch
u
n
ks

q
t
C

2

p
q

nw
.=

1
+ ⌈

nbytes
WORD ⌉

t
sA ⊆̇ (C1 ◦ C2)a

brka
(t

+
1
)

ch
u
n
ks

s
p
C

1

∃C1 ∃C2

v <̇ q

Split array

vp v qv

v->ptr = p->ptr

′′ v
q

Make chunku

chunku v q

C1 ◦ [〈v, u, q〉] ◦ C2 is defined (Lem. C)

′′′′ ′′ ′′ A ⊆̇ (C1 ◦
[〈v, u, q〉] ◦ C2)a

Concatenate chunks (Lem. A)

chunks v t ([〈v, u, q〉] ◦ C2)

C2 := [〈v, u, q〉] ◦ C2

∃C2

chunks v tC2 A ⊆̇ (C1 ◦ C2)a

∃C2ch
u
n
ks

s
p
C

1

p
q

v .
= qqp ch

u
n
ks

q
t
C

2

A ⊆̇ (C1 ◦ C2)a

v
.=
p

+
nw

p <̇ v

Kill

Use equality

vp ′′

p->ptr = setbusy(v)

p
v

Fold chunk a; use equality

chunk a p v v .
= p + nw p + nwp
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}

v .
= p + nw

ch
u
n
ks

v
t
C

2

p + nwp
chunk a p v A ⊆̇ (C1 ◦ C2)a

ch
u
n
ks

s
p
C

1

nw
.=

1
+ ⌈

nbytes
WORD ⌉

t
s

brka
(t

+
1
)

∃C1 ∃C2

C1 ◦ [〈p, a, p + nw〉] ◦ C2 is defined (Lem. C); hence so is A ] {p + 1 7→ nw− 1}

′′ ′′ A ] {p + 1 7→
nw− 1} ⊆̇
(C1 ◦ [〈p, a,
p + nw〉] ◦ C2)a

′′

Concatenate chunks (Lem. A); use equality

chunks s v (C1 ◦ [〈p, a, p + nw〉])

C1 := C1 ◦ [〈p, a, p + nw〉]
∃C1

chunks s vC1 A ] {p + 1 7→
nw− 1}
⊆̇ (C1 ◦ C2)a

Fold arena

arena s v t (A ] {p + 1 7→ nw− 1})

Use equality

arena s v t (A ] {p + 1 7→
⌈ nbytes

WORD

⌉
}) p + 1 + dnbytes/WORDep + 1

Combine; prepare for return statement

(arena s v t (A ] {ret 7→
⌈ nbytes

WORD

⌉
}) ∗ ret + dnbytes/WORDeret )[p + 1/ret]

return ((char *)(p+1))

Establish postcondition

(arena s v t (A ] {ret 7→
⌈ nbytes

WORD

⌉
}) ∗ ret + dnbytes/WORDeret ) ∨ (arena s v tA ∗ ret .

= 0)
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free(register char *ap) {

arena s v t (A ] {ap 7→ n}) ap + nap

register st *p = (st *)ap

arena s v t (A ] {p 7→ n}) p + np

Unfold arena

∃C1

∃C2

chunks s vC1 chunks v tC2 A ] {p 7→ n}
⊆̇ (C1 ◦ C2)a

t
s

brka
(t

+
1
)

Concatenate chunks (Lem. A); C := C1 ◦ C2

∃C

chunks s tC A ] {p 7→ n} ⊆̇ Ca

v = --p

A ] {p + 1 7→ n} ⊆̇ Ca p + n + 1p + 1 v
=

p

From (p + 1 7→ n) ∈ Ca obtain 〈p, a, p + n+ 1〉 ∈ C; hence split chunks (Lem. E)

∃C1

∃C2

chunks s pC1 chunk a p (p + n+ 1) chunks(p + n+ 1) tC2 A ] {p + 1 7→ n}
⊆̇ (C1 ◦ [〈p, a,
p + n+ 1〉] ◦ C2)aUnfold chunk a

p
(p + n + 1)

p-ptr = clearbusy(p->ptr)

p
p + n + 1

Fold chunku Use defn of (−)a

chunku p (p + n+ 1) A ⊆̇ (C1 ◦ [〈p, u, p + n+ 1〉] ◦ C2)a

Concatenate chunks (Lem. A)

chunks p t ([〈p, u, p + n+ 1〉] ◦ C2)

Use equality

chunks s vC1 chunks v t ([〈v, u, v + n+ 1〉] ◦ C2) A ⊆̇ (C1 ◦ [〈v, u, v + n+ 1〉] ◦ C2)a

C2 := [〈v, u, v + n+ 1〉] ◦ C2

∃C2

chunks v tC2 A ⊆̇ (C1 ◦ C2)a

Fold arena

arena s v tA
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