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Abstract—A well-known approach for generating custom hard-
ware with high throughput and low resource usage is modulo
scheduling, in which the number of clock cycles between suc-
cessive inputs (the initiation interval, II) can be lower than the
latency of the computation. The II is traditionally an integer, but
in this paper, we explore the benefits of allowing it to be a rational
number. A rational II can be interpreted as the average number
of clock cycles between successive inputs. Since the minimum
rational II can be less than the minimum integer II, higher
throughput is possible; moreover, allowing rational IIs gives more
options in a design-space exploration. We formulate rational-
II modulo scheduling as an integer linear programming (ILP)
problem that is able to find latency-optimal schedules for a fixed
rational II. We also propose two heuristic approaches that make
rational-II scheduling more feasible: one based on identifying
strongly connected components in the data-flow graph, and one
based on iteratively relaxing the target II until a solution is
found. We have applied our methods to a standard benchmark
of hardware designs, and our results demonstrate an average
speedup w.r.t. II of 1.24× in 35% of the encountered scheduling
problems compared to state-of-the-art formulations.

Index Terms—High-level Synthesis, Scheduling

I. INTRODUCTION

SCHEDULING, the task of mapping operations to clock
cycles while respecting resource constraints and max-

imising throughput, is central in hardware synthesis. High
throughput can be achieved by interleaving the schedules of
successive samples, as obtained using modulo scheduling [1].
The aim is to minimize the number of clock cycles between
successive inputs, which is called the initiation interval (II).

In traditional modulo scheduling, the II is always an inte-
ger [2]. In this work, we explore the consequences of allowing
rational IIs, such as 3

2 . The idea of a rational II is not new
– it has been proposed by Fimmel and Müller in the domain
of VLIW architectures [3]. However, our work lifts several
restrictions that limit the applicability of the Fimmel–Müller
approach (see Section III) and is also the first to explore
rational IIs in the context of hardware design. The rough idea
is to allow the number of clock cycles between successive
inputs to vary, and then to reinterpret the II as the average of
these numbers. For example, in a situation where the integer
II is 2 (i.e., a new sample can be inserted every two clock
cycles) there might be another solution where the II alternates
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between 1 and 2. This means that two samples can begin
processing every three cycles, which can be interpreted as a
rational II of 3

2 . A hardware implementation using this smaller,
rational II would show significant speedup, throughput being
the reciprocal of the II, and better utilisation of functional
units (FUs). Moreover, since the rational numbers form a dense
set, a further benefit of rational-II scheduling is that it can
lead to additional points in the area/throughput trade-off, thus
providing more fine-grained control over the design space.

This paper presents several new latency-optimal and heuris-
tic approaches to solve the rational-II modulo scheduling
problem, significantly improving on the state-of-the-art in
terms of throughput achieved and solving time.

First, in Section IV, we formulate the general problem using
integer linear programming (ILP). Our approach outperforms
a naı̈ve approach (based on partially unrolling and then using
existing integer-II schedulers) in terms of problems solved
and latency-optimal solutions found. However, since rational-
II modulo scheduling takes longer to solve than traditional
integer-II scheduling, heuristics are necessary.

Then, we propose another ILP-based approach, which we
call uniform scheduling (Section V), that involves constraining
each sample to follow the same schedule. In our example
above, the two samples that are inserted every three clock
cycles could follow completely unrelated schedules. The ad-
vantage of a uniform schedule is that the control flow in the
resulting hardware may be simpler; the drawback is that parts
of the search space for rational-II schedules are pruned.

Following Dai and Zhang [4], our first heuristic ap-
proach (Section VI) identifies strongly connected components
(SCCs) [5] in the flow graph, in order to solve several
smaller scheduling problems that are composed afterwards.
This reduces the complexity of the scheduling problem but
can increase the latency of solutions found.

In our second heuristic approach (Section VII), we propose
the first formulation of iterative modulo scheduling [2] for
rational IIs. The idea is first to attempt scheduling with
the minimum II, but to keep trying with successively larger
rational IIs if the solver times out.

Finally, in Section VIII, we compare all existing and novel
approaches in terms of problems solved, II achieved, and
latency achieved. We also show how rational-II scheduling
can be useful for design space exploration of automatically
generated FPGA designs after place & route.

https://orcid.org/0000-0003-2896-3709
https://orcid.org/0000-0002-4357-2119
https://orcid.org/0000-0001-6735-5533
https://orcid.org/0000-0003-4725-4246


2

for (i=2; i<N; i++) {
A[i] = r(C[i-2]); / / o0

B[i] = r(A[i]); / / o1

C[i] = r(B[i]); / / o2

D[i] = r(C[i]); / / o3

E[i] = r(D[i]); / / o4

}
(a) Source code

o0

o1 o2

o3 o4

2

(b) DFG of the loop body

Fig. 1: Example for rational-II scheduling. Each vertex in the
DFG represents one computation from the example code.

Relationship to prior work: This article is a revised and
extended version of a conference paper [6]. The non-uniform
ILP formulation, the SCC heuristic, and the iterative solver
are all new contributions of this article.

Auxiliary material: All the new and existing scheduling
algorithms discussed in this article are available in the open-
source scheduling library HatScheT [7]. All optimisation
problems have been formulated using the open-source ScaLP
library [8], which supports the Gurobi, CPLEX, LPSolve [9]
and SCIP [10] solvers. Our benchmark problems can be
accessed from the HatScheT repository, and can be synthe-
sized after using the open-source tools FloPoCo [11] and
Origami HLS [12] to generate VHDL code.

II. MOTIVATING EXAMPLE

Consider the example given in Figure 1. Figure 1a shows a
for-loop that performs an arbitrary operation r five times per
iteration, modifying five different arrays (A–E) each containing
at least N elements. The implementation of loops like this can
be sped up by building a pipeline. The best performance of
this pipeline is achieved when the modulo scheduling problem
is solved optimally w.r.t. II and latency [2].

The data-flow graph (DFG) shown in Figure 1b is used to
model the scheduling problem. It comprises five vertices of the
same resource type r, whose latency is one cycle. The edge
from o3 to o0 is labelled with a dependence distance of two
to indicate a recurrence: operation o0 on sample i depends on
the result of operation o3 on sample i − 2. The other edges
implicitly have a dependence distance of zero.

The maximum throughput achieved using modulo schedul-
ing depends both on recurrences and on resource con-
straints (see Section IV-A). This example has one recurrence
whose dependence distance is two and whose latency is three
cycles, so the II cannot be less than 3

2 . This is called the
recurrence-constrained minimum II [13]:

II⊥rec = max
j∈ recurrences

(
latencyj/distancej

)
, (1)

where latencyj and distancej give the latency and dependence
distance of the jth recurrence.

Moreover, because there are five r-operations, the II also
cannot be less than 5/FUs(r), where FUs(r) is the number of
functional units that can execute operations of type r. This is
called the resource-constrained minimum II:

II⊥res = max
r∈ resources

(#r/FUs(r)) (2)
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Fig. 2: Comparing the throughput obtained for the DFG of
Figure 1b using rational-II and integer-II scheduling. Points
nearer the bottom of the graph represent higher throughput.

TABLE I: Comparing integer-II and rational-II schedules for
Figure 1b when FUs(r) = 3. The tables assign each operation
(first 9 samples) to a clock cycle and a functional unit (FU).
We write n:oi for operation oi on sample n. The thick borders
pick out the fourth sample. The . symbol indicates a clock
cycle that starts a new sample.

FU1 FU2 FU3
0:o0
0:o1
1:o0 0:o2
1:o1 0:o3
2:o0 1:o2 0:o4
2:o1 1:o3
3:o0 2:o2 1:o4
3:o1 2:o3
4:o0 3:o2 2:o4
4:o1 3:o3
5:o0 4:o2 3:o4
5:o1 4:o3
6:o0 5:o2 4:o4
6:o1 5:o3
7:o0 6:o2 5:o4
7:o1 6:o3
8:o0 7:o2 6:o4
8:o1 7:o3

8:o2 7:o4
8:o3

8:o4

(a) Integer II = 2
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FU1 FU2 FU3
0:o0
0:o1
0:o2 1:o0
0:o3 1:o1
0:o4 1:o2 2:o0
3:o0 1:o3 2:o1
3:o1 1:o4 2:o2
3:o2 4:o0 2:o3
3:o3 4:o1 2:o4
3:o4 4:o2 5:o0
6:o0 4:o3 5:o1
6:o1 4:o4 5:o2
6:o2 7:o0 5:o3
6:o3 7:o1 5:o4
6:o4 7:o2 8:o0

7:o3 8:o1
7:o4 8:o2

8:o3
8:o4

.

.

.

.

.

.

.

.

.

(b) Rational II = 5
3
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where #r is the number of operations of type r in the DFG.
Figure 2 shows the ideal performance of our proposed

approach on Figure 1b compared to optimal integer-II solu-
tions, over all possible resource allocations. In all cases except
FUs(r) = 1, our approach leads to improved throughput,
reaching 33% when FUs(r) is 4 or 5.

To be more concrete, Table I shows one possible outcome of
scheduling our example graph when FUs(r) = 3, using both
integer and rational IIs. In the integer-II case, one sample is
inserted every two clock cycles, while in the rational-II case,
three samples are inserted every five cycles.

There are four observations worth making here.
• The integer-II schedule requires 2 clock cycles more to

process 9 samples completely.
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TABLE II: Modulo reservation tables (MRTs) of the integer-II
(left) and rational-II (right) schedules in Table I

0 1

FU1 o0 o1

FU2 o2 o3

FU3 o4 -

0 1 2 3 4

FU1 o0 o1 o2 o3 o4

FU2 o3 o4 o0 o1 o2

FU3 o1 o2 o3 o4 o0

• In the integer-II schedule, FU3 is idle half of the time;
the rational-II schedule keeps all FUs 100% utilised.

• In the rational-II schedule, all operations on one sample
can be performed by the same FU (see the thick borders
in Table I); however, it should be noted that this is only
one of many possible resource bindings.

• The rational-II schedule is uniform, in that all the samples
follow the same schedule – they are merely offset by
having different start times (and bound to different FUs).

Resource usage can also be visualized using modulo reser-
vation tables (MRTs) [14], as shown in Table II. Note that the
number of rows is FUs(r) and the number of columns is the
number of cycles after which the schedule repeats.

III. RELATED WORK

Determining a modulo schedule under resource constraints
is an NP-hard, multi-criteria optimisation problem [15], [16].
Traditionally, the problem is simplified by using the integer-
II modulo scheduling framework [1] which is a simpler
version of the rational-II modulo scheduling framework that
was published later in [3]. Within these frameworks, search
strategies can be classified as either heuristic or optimal.

A. Integer-II Modulo Scheduling

Although non-iterative approaches have been investi-
gated [17], most state-of-the-art methods in integer-II modulo
scheduling utilize constant candidate IIs with the objective of
minimizing the sample latency. Here, ILP-based schedulers
are the state-of-the-art in latency-optimal scheduling. Heuristic
approaches, often based on systems of difference constraints
(SDC), drop the ability to determine latency-optimal schedules
in order to reduce solving times [18].

A comparison of ILP-based integer-II modulo
schedulers [19] suggests that the Eichenberger–Davidson
(ED97) [20] and Moovac (MV) [21] formulations represent
the state-of-the-art. Early heuristic approaches aimed to
reduce solving time [15], [22] or to lower costs for lifetime
storage [23], [24]. Using MRTs (see e.g. [13]), genetic
algorithms [25] and graph-based approaches [4], [26], [27],
even faster solving times have been achieved. The SDC-based
modulo scheduling algorithm (MSDC) proposed by Canis et
al. [13] can be considered as the state-of-the-art in heuristic
integer-II modulo scheduling, since it is implemented in the
widely used HLS tool LegUp [14] and is competitive with
latency-optimal schedulers in terms of finding schedules for
the given II [21].

B. Rational-II Modulo Scheduling

Fimmel and Müller first considered the use of rational IIs
in their work on modulo scheduling in compilers for VLIW
architectures [3]. We bring their ideas to hardware design, and
also address several shortcomings of their formulation:
• Their formulation only applies when II⊥res < II⊥rec. In

Section VIII-B, we show that actually this assumption
is one that rarely holds.

• Their formulation involves finding solutions to a mixed-
ILP problem. Compared to our proposed approaches,
this results in longer solving times and fewer optimal
schedules being found, as shown in Section VIII-C.

• Their approach includes no strategy to deal with solver
timeouts. Whenever no solution was found, there is no
strategy to obtain a schedule at all.

The first two points are addressed in Sections IV and V
where we propose two different ILP-based approaches that
significantly outperform Fimmel–Müller in terms of problems
solved and throughput achieved. As for the third point, we
propose the first formulation for heuristic rational-II modulo
scheduling in Section VI and the first framework for iterat-
ing over rational-IIs in modulo scheduling in Section VII.
Analogous to the success of integer-II modulo scheduling
in such fields as software pipelining and HLS, we believe
that progress on heuristics and fallback strategies is required
to enable the potential of rational-II modulo scheduling to
optimise throughput in a broad range of applications.

IV. RATIONAL-II SCHEDULING

In this section, we propose a general ILP formulation to
solve the rational-II modulo scheduling problem. Compared to
the uniform formulation that will be introduced in Section V,
this formulation is a more general approach that is able to
solve more scheduling problems optimally w.r.t. II (as shown
in Section IV-D). Our approach is a strictly linear program,
since all non-linear functions used in the following do not act
over decision variables.

First, we present some preliminaries and useful definitions,
and highlight the main differences between integer-II and
rational-II modulo scheduling (Sections IV-A and IV-B). All
constants and variables used are listed in Table III. Our
proposed ILP formulation is described in Section IV-C. In
contrary to the motivating example, this approach does not
guarantee uniform schedules, but more problems can be solved
for the optimal II, which we highlight in Section IV-D.

A. Integer and Rational Minimum II

The recurrence-constrained and the resource-constrained
minimum II, as defined in (1) and (2), provide lower bounds
for the II. The integer minimum II is defined as

II⊥N = max(dII⊥rese, dII⊥rece) . (3)

The rational minimum II, on the other hand, avoids the ceiling
functions. It can be defined as

II⊥Q = max(II⊥res, II
⊥
rec) . (4)
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TABLE III: A glossary of constants (top) and variables (bot-
tom) for resource-constrained rational-II modulo scheduling

Constant/Variable Meaning

oi ∈ O Set of operations in the DFG
(oi, oj) ∈ E Set of edges in the DFG
dij ∈ N0 Dependence distance on edge oi → oj

R Set of resource-constrained operation types
Ǒ ⊆ O Set of resource-constrained operations
Ǒr ⊆ Ǒ Set of resource-constrained operations of type r ∈ R,

i.e.,
⋃
r∈R Ǒr = Ǒ

FUs(r) ∈ N No. of hardware instances of resource type r ∈ R
Di ∈ N0 Latency of operation oi ∈ O
M ∈ N No. of cycles before the modulo schedule repeats
S ∈ N No. of samples inserted every M cycles
S⊥, M⊥ Values for S, M that lead to II⊥Q
0 ≤ s ≤ S − 1 Range of sample indices
IIQ = M

S
Rational initiation interval

L ∈ N0 Maximal latency constraint
imax Number of iterations steps allowed

ti,s ∈ N0 Start time of oi on sample s
tv Virtual node
bi,s,τ True iff τ is the start time of oi ∈ Ǒ on sample s
〈II0 ... IIS−1〉 Latency sequence
Is ∈ N0 Insertion time of sample s

It follows that II⊥N = dII⊥Qe, and hence that rational-II sched-
ules will always attain a throughput that is at least as good
as integer-II schedules. When II⊥Q is already an integer, we
have II⊥Q = II⊥N , and switching to rational-II scheduling cannot
improve throughput (speedup = 1). This situation can be
identified quickly before scheduling, and standard integer-II
algorithms can be applied. The maximum speedup is obtained
when II⊥Q = 1+ε for small, positive ε. In this case, the speedup
is d1+εe

1+ε , which tends towards 2. Overall, we have:

1 ≤ speedup < 2 . (5)

In our experiments (Section VIII), we observe that potential
speedups are indeed widely spread from 1 up to 1.99.

B. Problem Specification

We consider the input to be a DFG (O,E) where operations
oi ∈ O that have a latency in clock cycles (Di) are connected
by directed edges (oi, oj) ∈ E. We write Ǒr for the set
of operations that require resource type r (adder, etc.). The
number of available functional units of type r is FUs(r).

As in most state-of-the-art integer-II modulo scheduling
formulations, we consider the II to be a constant input to the
ILP problem, calculated using (4). We write II in the form
M
S , where M is the number of cycles before the insertion

sequence repeats, and S is the number of samples inserted
every M cycles. Each operation oi gets assigned S different
clock cycles, ti,0, . . . , ti,S−1, where ti,s holds the cycle in
which operation oi is operating on sample s. Therefore, the
number of time variables and resource constraints increases
linearly with S. This makes ILP-based rational-II modulo
scheduling more complex than integer-II modulo scheduling

min(tv)

subject to

D1: ti,s̃ +Di − δ(S, s, di,j) ≤ tj,s ∀s, ∀i, j : (oi, oj) ∈ E

where s̃ = (s− di,j) mod S

D2: ti +Di ≤ tv ∀i : oi ∈ O

D3: tv ≤ L

R1:
∑

0≤τ<M

τ · bi,s,τ +M · ki,s = ti,s ∀r, ∀s, ∀i : oi ∈ Ǒr

R2:
∑

0≤τ<M

bi,s,τ = 1 ∀s,∀r, ∀i : oi ∈ Ǒr

R3:
∑

0≤s<S

∑
i:oi∈Ǒr

bi,s,τ ≤ FUs(r) ∀r, ∀τ < M

Fig. 3: An ILP for (non-uniform) rational-II scheduling

where the number of variables increases quadratically with the
number of time variables and resource constraints [18], [21].
In Section VII, we address this problem by picking small S
values, aiming to reduce the complexity of the ILP problem
while maintaining high throughput.

C. ILP Formulation

The general problem of rational-II modulo scheduling is
formulated in Figure 3.

Constraint D1 is a variation on the standard causality
constraint from integer-II modulo scheduling [20], [21]:

ti +Di − di,j · II ≤ tj ∀i, j : (oi → oj) ∈ E (6)

which states that the start time tj of operation oj must not
precede the end time of operation oi from di,j samples ago.
Note that for intra-sample dependency, we have di,j = 0. The
dependence distance di,j is multiplied by II because this is the
number of cycles between successive samples. As an example,
consider the integer-II schedule from Table I(a), and the edge
from o3 to o0 in Figure 1b. We have t3 = 3, t0 = 0, D3 = 1,
d3,0 = 2, and II = 2, so (6) holds in this instance.

Compared to the integer-II version, our D1 takes into
account the partial unrolling of the DFG, which causes con-
nections and dependence distances to change. The way we
model unrolling in our ILP formulation is described in the
following. The distance is calculated using:

δ(S, s, d) = max

(
0,

⌈
d− s
S

⌉)
(7)

which becomes 0 whenever causality can now be modelled
within the unrolled DFG (d − s ≤ 0). The origin of edges
(oi,s̃) is calculated according to the equation attached to D1. A
distance of 0 leads to s̃ = s, i.e., edges within their respective
samples connect the same vertices as in the original version.
After unrolling, weighted edges in the original DFG may have
a source vertex that represents other samples than the target
vertex. Section IV-D gives an example of this procedure.
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for (i=1; i<=100; i++) {
A[i] = r(C[i-1]); / / o0

B[i] = r(A[i]); / / o1

C[i] = r(B[i-1]); / / o2

}
(a) Source code

o0 o1 o2
1

1

(b) DFG of the loop body

for (i=1; i<=50; i++) {
A[2*i-1] = r(C[2*i-2]); / / o0,0
B[2*i-1] = r(A[2*i-1]); / / o1,0
C[2*i-1] = r(B[2*i-2]); / / o2,0
A[2*i] = r(C[2*i-1]); / / o0,1
B[2*i] = r(A[2*i]); / / o1,1
C[2*i] = r(B[2*i-1]); / / o2,1

}

(c) Partially unrolled source code

o0,0 o1,0 o2,0

o0,1 o1,1 o2,1

11

(d) DFG of the unrolled
loop body

Fig. 4: An example to motivate non-uniform scheduling

TABLE IV: Comparing integer-II and rational-II schedules for
the example in Figure 4 when FUs(r) = 2.

FU1 FU2
0:o0 0:o2
0:o1
1:o0 1:o2
1:o1
2:o0 2:o2
2:o1
3:o0 3:o2
3:o1
4:o0 4:o2
4:o1

(a) Integer II = 2

.

.

.

.

FU1 FU2
0:o0 0:o2
0:o1 1:o0
1:o1 1:o2
2:o0 2:o2
2:o1 3:o0
3:o1 3:o2
4:o0 4:o2
4:o1

.

.

.

.

.

(b) Rational II = 3
2

0
1
2
3
4
5
6
7
8
9

clock
cycle

The objective of the ILP is to minimize the latency of each
sample. Following Cong and Zhang [28], we add a ‘virtual’
node v with a start time of tv . Constraints D2 and D3 ensure
that v is scheduled after all nodes have finished processing.
Minimising the start time of the virtual node is then the same
as minimising the latency of S samples produced.

To enforce that the number of FUs used does not exceed
FUs(r) we use binary variables. Following Eichenberger et
al. [20], bi,s,τ in R1 is true if and only if ti,s mod M = τ .
Constraint R2 ensures that one (and only one) bi,s,τ is true for
each ti,s. This information is then used in R3 to ensure that
the upper limit FUs(r) for each resource type r is respected.
The inner sum in R3 adds up all the uses of resource r in clock
cycle m mod M . This is done for all samples, thus forcing the
schedule to never use more than FUs(r) in any clock cycle.

D. The need for non-uniform scheduling

We now give an example that takes advantage of the non-
uniform schedules that the formulation given in this section
allows. In the next section, we will restrict our attention to
uniform schedules, and thus will not be able to find schedules
for examples like this one.

The DFG shown in Figure 4b describes the body of the for-
loop in Figure 4a. Operations o0, o1, and o2 require the same
resource r that has a latency of one cycle. Let FUs(r) = 2.

From (4), it follows that II⊥Q = max( 3
2 ,

3
2 ) = 3

2 . Figure 4c
shows the source after unrolling the loop by a factor of S = 2.
In Figure 4d, all vertices from Figure 4b are inserted twice
(S = 2). Edges are inserted using D1 in combination with
(7). The unweighted edge (o0, o1) generates two unweighted
edges (o0,0, o1,0) and (o0,1, o1,1). Weighted edges that have a
target vertex with s = 1 now originate from a source vertex
with s = 0 and have a distance of 0. Weighted edges that have
a vertex with s = 0 still carry a weight of 1, but they now
originate from a vertex with s = 1.

One integer-II solution for II⊥N = 2 is shown in Table IV,
together with the only solution for II⊥Q = 3

2 . In the integer-
II case, FU2 is only busy 50% of the time, while in the
rational-II case all FUs are occupied in every clock cycle.
The rational-II schedule is non-uniform, because on the first
sample, operations o0 and o2 are scheduled together, but on
the second sample, o1 and o2 coincide.

V. UNIFORM RATIONAL-II SCHEDULING

In the previous section, we introduced rational-II modulo
scheduling. It aims to find the optimal II by including in
its search space non-uniform schedules (in which operation
on different samples are scheduled independently). We now
describe an alternative that is simpler and demands fewer
variables, but misses some optimal solutions: uniform rational-
II modulo scheduling. This section is based on the approach
laid out in our conference paper [6].

A. Sequential Sample Insertion

From the motivating example in Section II, we learn that
optimal throughput using rational IIs can be achieved using
uniformly scheduled samples with alternating insertion times.
To model this, we assign every sample s, s < S, an insertion
time Is modulo M . In Table I, where II = 5

3 , we have I0 = 0,
I1 = 2, and I2 = 4. This means that for all n ≥ 0, we have
sample 3n inserted at cycle 5n, sample 3n+1 inserted at cycle
5n + 2, and sample 3n + 2 inserted at cycle 5n + 4. We fix
the first insertion time to 0.

The repeating sequence of insertions lets us calculate the
latency in clock cycles between successive samples. For this,
we use latency sequences [29], which take the form

〈II0 II1 ... IIS−1〉 (8)

where

IIs =

{
Is+1 − Is if s < S − 1

M − Is if s = S − 1
. (9)

For instance, the sample insertion times from the example
in Section II lead to a latency sequence of 〈2 2 1〉. This yields
a modulo-5 schedule where new samples will be inserted in
every 0, 2, 4, 5, 7, ... cycles. Note that integer IIs correspond
to latency sequences of length 1, such as 〈3〉.

B. Causality

The introduction of latency sequences means that the num-
ber of cycles between successive samples can vary, depending
on the sample index, s. In integer-II scheduling, this can be
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calculated as II · di,j since data insertion is spaced equally.
Assuming a latency sequence 〈II0 II1 ... IIS−1〉, the number
of cycles between sample s and s− d can be calculated as

∆s(d) =

d∑
n=1

II(s−n) mod S . (10)

Starting at sample s, the calculation steps backwards through
the latency sequence, adding up the last d latencies. Thus, the
causality constraint becomes

ti,s +Di −∆s(di,j) ≤ tj,s ∀s,∀i, j : (oi, oj) ∈ E . (11)

As an example, consider the rational-II schedule from
Table I(b), and the edge from o3 to o0. When s = 0, we
have t3,s = 3, t0,s = 1, D3 = 1, d3,0 = 2, and ∆s(2) = 3, so
(11) holds. It also holds for s = 1 and s = 2. However, with
the different latency sequence 〈1 1 3〉 obtained by shifting the
FU2 column in Table I(b) up by one cycle and the FU3 column
up by two, we would get ∆s(2) = 2, and hence (11) would
be violated – the third sample is being inserted too soon.

The smallest number of clock cycles between successive
samples imposes the strongest causality constraints for the
scheduler. We define this value as

∆min(d) = min
s∈S

(∆s(d)) (12)

and use it to determine feasible latency sequences before
scheduling to speed up solving. This is described next.

C. Determining latency sequences

We now show how feasible latency sequences can be
obtained. This significantly reduces the number of variables
and constraints required in the ILP formulation. The method
presented in this section will enable our novel rational-II
modulo scheduling heuristic that is described in Section VI.

The intuition of our approach is to generate latency se-
quences that are as ‘regular’ as possible. Consider an example
where II⊥Q = 18

5 and II⊥N = 4. Then intuitively, the latency
sequence a = 〈1 1 6 1 9〉 imposes stronger causality
constraints than our preferred sequence b = 〈4 4 3 4 3〉.
This is because for a we have ∆min(1) = 1 and for b we
have ∆min(1) = 3. The integer-II latency sequence c = 〈4〉 is
even more relaxed than b, but it has lower throughput. This
situation is displayed in Figure 5, which shows the indices of
samples inserted on the x-axis and their insertion clock cycle
on the y-axis. One can see that, at first, samples get inserted
more quickly using a, but b catches up every 5 samples. This
has to be the case, as both sequences support an II of 18

5 .
Figure 5 provides the intuition that obtaining regular latency

sequences is equivalent to generating a stepped line between
(0, 0) and (S,M) that is as straight as possible. Hence our
approach of generating these sequences, given as pseudocode
in Algorithm 1, is inspired by Bresenham’s algorithm [30].

To begin generating the desired latency sequence, we cal-
culate the ceiling (IIC) and the floor (IIF ) of M

S (line 1).
Using IIC , IIF , S and M , we calculate (line 2) how many
times IIC and IIF occur (#IIC and #IIF ). In our example,
we have S = 5, M = 18, IIC = 4, and IIF = 3. This means
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e IIQ: a = 〈1 1 6 1 9〉
IIQ: b = 〈4 4 3 4 3〉
IIN: c = 〈4〉

Fig. 5: Two latency sequences for IIQ = 18
5 . Both require

90 clock cycles to process 25 samples (whereas the integer-II
schedule requires 100 clock cycles), but b is more ‘regular’
and hence the causality constraint is easier to satisfy.

Algorithm 1 Generating regular latency sequences

Require: S, M
Ensure: One IIs that maximizes ∆min(d) ∀ d ∈ N≥0

1: IIC ← dM/Se; IIF ← bM/Sc
2: #IIF ← IIC · S −M ; #IIC ←M − IIF · S
3: s1, s2 ← IIF , IIC
4: kmin, kmax ← #IIC ,#IIF
5: if #IIF < #IIC then
6: s1, s2 ← IIC , IIF
7: kmin, kmax ← #IIF ,#IIC
8: E ← 0, IIs ← {}
9: for i← 1 to kmax do

10: IIs.append(s1)
11: E ← E + kmin
12: if E ≥ kmax then
13: IIs.append(s2)
14: E ← E − kmax
15: return IIs

that the latency sequence comprises three occurrences of IIC
(#IIC = 3) and two occurrences of IIF (#IIF = 2).

We then order the determined values such that ∆min(d) is
maximized for all d ≥ 0. This keeps the causality constraints
as relaxed as possible. The calculated values of #IIC and
#IIF allow us to store the latency that occurs more often in
the sequence in s1, and the other one in s2. We also need
the frequencies of IIC and IIF , which we store in the values
kmin and kmax (lines 3 to 7). In our example, we have s1 = 4,
s2 = 3, kmin = 2 and kmax = 3. In line 8, we instantiate E,
which indicates when the latency that appears less often (in
our example, II = 3) has to be inserted.

Finally, the for-loop in lines 9–14 appends the value of
IIC and IIF that appears more often to IIs. Meanwhile in
lines 11, 12 and 14, the threshold value E is used to check
whether the less frequent value is being appended to IIs. The
determined latency sequence is returned in line 15.

D. ILP Formulation

The problem of uniform rational-II modulo scheduling is
formulated in Figure 6. D1 enforces the causality constraint
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min(tv)

subject to

D1: ti +Di −∆min(di,j) ≤ tj ∀i, j : (oi, oj) ∈ E

D2: ti +Di ≤ tv ∀i : oi ∈ O

D3: tv ≤ L

R1:
∑

0≤τ<M

τ · bi,s,τ +M · ki,s = ti + Is ∀s, ∀r, ∀i : oi ∈ Ǒr

R2:
∑

0≤τ<M

bi,s,τ = 1 ∀s, ∀r, ∀i : oi ∈ Ǒr

R3:
∑

0≤s<S

∑
i:oi∈Ǒr

bi,s,τ ≤ FUs(r) ∀r, ∀τ < M

Fig. 6: An ILP for uniform rational-II scheduling

introduced in (10). Analogous to Section IV-C, the latency
of each sample is constrained by the user-specified value L,
which can be seen in D2 and D3. Sequential IIs and the
uniformity of schedules are enabled by R1: the variable Is
expresses that each of the S samples follows the same schedule
(and hence that every sample is fully processed within L cycles
of its insertion), except that each schedule is offset. Constraints
R2 and R3 are the same as in Figure 3.

VI. RATIONAL II SCHEDULING HEURISTIC

In Section V, we proposed an ILP formulation that can solve
the uniform rational-II modulo scheduling problem optimally
w.r.t. latency. In this section, we drop the ability to optimise
latency in order to solve larger problems optimally w.r.t. II.
Our heuristic approach is based on three ideas:
• We obtain valid start times for all operations in the

first sample s = 0 of the rational-II schedule. Then,
start times of operations in other samples directly follow
from applying a latency sequence that has been obtained
according to Section V-C.

• Analogous to [4], we cluster the DFG into cyclic and
acyclic parts by using strongly connected components
(SCCs) [5]. The cyclic parts of the graph are then sched-
uled. Note that this is faster than scheduling the complete
DFG. To obtain a valid schedule for the complete DFG,
the remaining acyclic parts are scheduled using an as
soon as possible (ASAP) method.

• We introduce a novel method for generating MRT shapes
to remove the contribution of S to the ILP’s complexity,
thus improving solving rates significantly. Although there
could be corner cases where this heuristic leads to solu-
tions being missed, we did not encounter any problem in
our experiments that could not be solved.

A. Worked Example

As an example of our heuristic, consider the DFG in
Figure 7a, where all vertices are of the same resource type r
that has a latency of one cycle, and assume that FUs(r) = 5.

o0 o1 o2 o3

o4 o5 o6

2

2

(a) An example data-flow graph

o0 o1 o2 o3

o4 o5 o6

2

2

SCC0
SCC123

SCC4 SCC56

(b) Partitioned into SCCs

Fig. 7: Example graph and its partitioning into SCCs

TABLE V: Final MRTs (M = 3, S = 2,FUs(r) = 5)

(a) heuristic

0 1 2

FU1 o1,0 o2,0 o3,0

FU2 o5,0 o6,0 o4,0

FU3 o0,0 - o1,1

FU4 o2,1 o3,1 o5,1

FU5 o6,1 o4,1 o0,1

(b) optimal

0 1 2

FU1 o0,0 o1,0 o2,0

FU2 o3,0 o5,0 o6,0

FU3 o4,0 o2,1 o0,1

FU4 o1,1 o6,1 o3,1

FU5 o5,1 - o4,1

This leads to II⊥Q = 3
2 due to the recurrence among o1, o2,

and o3. Algorithm 1 yields the latency sequence 〈2 1〉.
In Figure 7b, we see how the original DFG is partitioned

into SCCs. Following Dai and Zhang [4], we classify SCCs as
trivial, complex or basic. SCCs that contain only one vertex
are called trivial. SCCs that contain at least one vertex that
uses a limited resource are called complex. Other SCCs are
called basic. This partitioning yields two trivial SCCs (SCC0
and SCC4) and two complex SCCs (SCC123 and SCC56).

To obtain start times for one sample, we partition the MRT
of each limited resource into S parts. Such a partitioning is
shown in Table Va, where two samples use 14 of the 15 slots.
We call an MRT that contains operations of one sample an
intermediate MRT and one that contains all samples the final
MRT. Using the concept of intermediate MRTs, we first assign
start times for one sample in order to fill the final MRT later.
This requires two steps:

1) Obtain a ‘relative’ schedule for all operations in non-
trivial SCCs using the intermediate MRT. (To describe
such a schedule, we use t̂i for operation oi.)

2) Visit every vertex of the SCC-based DFG (see Figure 7b)
using breadth-first search. For trivial SCCs, insert the
operation into the intermediate MRT and commit the start
time to the final schedule (ASAP). Since modulo slots
for operations in non-trivial SCCs are fixed due to step
(1), time steps are committed to the final schedule by
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TABLE VI: Filling intermediate MRT slots (M = 3)

(a) 0 1 2

o1 o2 o3
o5 o6 -
- X X

(b) 0 1 2

o1 o2 o3
o5 o6 -
o0 X X

(c) 0 1 2

o1 o2 o3
o5 o6 o4
o0 X X

offsetting relative start times by multiples of M .
For our example, a valid solution to step 1 is: t̂1 = 0,

t̂2 = 1, t̂3 = 2, t̂5 = 0 and t̂6 = 1. These times lead to
the intermediate MRT in Table VIa, in which free (‘-’) and
unavailable (‘X’) slots are highlighted.

Topologically sorting the SCC graph (step 2) leads to the
order 〈SCC0, SCC4, SCC56, SCC123〉. SCC0 is trivial and is
scheduled ASAP. Vertex o0 does not have any incoming edges
and MRT slot 0 is free, so it is scheduled in time t0 = 0. The
intermediate MRT after scheduling o0 is in Table VIb. SCC4 is
also trivial. Vertex o4 also has no incoming edges but modulo
slots 0 and 1 are already full. It follows that o4 is scheduled
at time t4 = 2. The intermediate MRT after committing all
operations of one sample is in Table VIc.

SCC56 is non-trivial and operation o5 must start after o0.
This means that SCC56 cannot be scheduled with an offset
of 0 clock cycles. For this example, the minimum offset is 3
clock cycles, which leads to t5 = 3 and t6 = 4. Note that this
does not change the MRT because relative start times of the
vertices of SCC56 are shifted by an offset that is a multiple
of M = 3. Finally, SCC123 is scheduled in the same way as
SCC56. The minimum offset is 3 clock cycles, which leads to
t1 = 3, t2 = 4 and t3 = 5. The final MRT after committing
all operations to the intermediate MRT is shown in Table Va,
where oi,j stands for operation i of sample j. Table Vb shows
an example MRT for a latency-optimal schedule obtained by
the ILP formulation from Section V.

It is interesting that intermediate MRTs can be modelled
in many different ways as long as no more than FUs(r) are
committed to each time step modulo M . Different intermediate
MRT shapes may lead to different outcomes regarding latency,
resource usage and maximum frequency. Future work will
investigate other heuristic approaches as well as including
intermediate MRT shape generation into the ILP formulation.

The final schedule is shown in Table VIIa, which gives the
start times of 6 consecutive samples obtained by the heuristic
described in this section. Note that our heuristic does not
find a latency-optimal solution in this case. For comparison,
a latency-optimal schedule is given in Table VIIb (which
corresponds to the MRT in Table Vb).

B. General Procedure

We now discuss how our heuristic works in general. Pseu-
docode for our procedure is given in Algorithm 2. As input,
we have the DFG G, the number of available FUs for each
resource, the desired values for S and M , and a time value
after which scheduling should abort. First, a latency sequence
is determined using Algorithm 1 (Line 1). Partitioning of
the DFG into SCCs is done in Line 2 via Tarjan’s SCC
algorithm [5]. In line 3, non-trivial SCCs are combined to

TABLE VII: Comparing rational-II schedules for the example
graph in Figure 7a when FUs(r) = 5. The thick borders
highlight suboptimal (left) and optimal (right) sample latencies
that are obtained using the proposed heuristic from Section VI
and the proposed ILP from Section V, respectively.

FU1 FU2 FU3 FU4 FU5
0:o0

0:o4 1:o0
0:o1 0:o5 2:o0
0:o2 0:o6 1:o4
0:o3 2:o4 1:o1 1:o5 3:o0
2:o1 2:o5 4:o0 1:o2 1:o6
2:o2 2:o6 1:o3 3:o4
2:o3 4:o4 3:o1 3:o5 5:o0
4:o1 4:o5 3:o2 3:o6
4:o2 4:o6 3:o3 5:o4
4:o3 5:o1 5:o5

5:o2 5:o6
5:o3

(a) Sample latency = 6

.

.

.

.

.

.
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clock
cycle

FU1 FU2 FU3 FU4 FU5
0:o0 0:o4
0:o1 0:o5
0:o2 0:o6 1:o0 1:o4
2:o0 0:o3 2:o4 1:o1 1:o5
2:o1 2:o5 1:o2 1:o6
2:o2 2:o6 3:o0 1:o3 3:o4
4:o0 2:o3 4:o4 3:o1 3:o5
4:o1 4:o5 3:o2 3:o6
4:o2 4:o6 5:o0 3:o3 5:o4

4:o3 5:o1 5:o5
5:o2 5:o6

5:o3

(b) Sample latency = 4

.

.

.

.

.

.

min(tv)

subject to

D1: ti +Di −∆min(di,j) ≤ tj ∀i, j : (oi, oj) ∈ E

D2: ti +Di ≤ tv ∀i : oi ∈ O

D3: tv ≤ L

R1:
∑

0≤τ<M

τ · bi,τ +M · ki = ti ∀r, ∀i : oi ∈ Ǒr

R2:
∑

0≤τ<M

bi,τ = 1 ∀r, ∀i : oi ∈ Ǒr

R3:
∑

i:oi∈Ǒr

bi,τ − h(|Ǒr|,M, τ) ≤ 0 ∀r, ∀τ < M

Fig. 8: An ILP problem for scheduling SCCs

obtain a relative schedule that is determined using the ILP
formulation given in Figure 8.

We use D1–D3 for dependency and recurrence constraints.
Resource constraints are enforced by R1–R3. Following
Eichenberger [20], we use binary variables and MRTs.

However, we propose a heuristic that models intermediate
MRTs in order to reduce solving time. To do this, we use
non-rectangular intermediate MRTs (see Table VI). Intuitively,
the number of operations allowed per modulo slot in these
intermediate MRTs can be seen as the height. To calculate
this height for each 0 ≤ τ < M , we define an h function:

h(n,M, τ) =

{⌈
n
M

⌉
τ = 0

h(n−
⌈
n
M

⌉
,M − 1, τ − 1) τ > 0.

(13)

For our example (n = |Ǒr| = 7,M = 3, 0 ≤ τ < 3), we
get h(7, 3, 0) = 3, h(7, 3, 1) = 2 and h(7, 3, 2) = 2 which
is the number of operations that are allowed in the respective
modulo slots of the intermediate MRT shown in Table VI.
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Algorithm 2 Rational II scheduling heuristic

Require: G, FUs, S, M , time
Ensure: A schedule

1: IIs ← sequence(S,M) //Algorithm 1
2: partition G into SCCs
3: get relative schedule for non-trivial SCCs
4: fill MRT with start times of complex SCCs
5: SCCs ← topological sort of SCCs
6: for each SCC in SCCs do
7: if SCC is trivial then
8: schedule ASAP respecting intermediate MRT
9: insert vertex of SCC into intermediate MRT

10: else
11: scheduled← false
12: T ← 0
13: while scheduled = false do
14: scheduled← true
15: if time ≤ 0 then
16: return {}
17: for each vertex vi in vertices of SCC do
18: try scheduling vi in time slot ti + T
19: if dependency constraint violated then
20: scheduled← false
21: T ← T +M
22: break
23: return final schedule using IIs

In line 4 of Algorithm 2, modulo slots for operations inside
non-trivial SCCs are fixed. Relative start times are fixed, but
can be delayed by an offset that is an integer multiple of M .
Now, the partitioned graph can be scheduled in topological
order and relative start times can be offset and committed to
the final schedule. This is done in lines 5–22.

Trivial SCCs are handled in lines 7–9 and can be scheduled
as soon as possible, given a free MRT slot. Non-trivial SCCs
are committed to the final schedule (in lines 13–22) while
respecting the MRT slots that are already fixed. In line 15, we
check whether the user-specified timeout has been exceeded. If
that is the case, we return an empty schedule in line 16. Using
the relative schedule, the committing of non-trivial SCCs is
done by determining the minimal offset that fulfils dependency
constraints. In the first iteration of the while-loop in line 12
(T ← 0), the algorithm tries to commit the relative schedule of
the SCC to the final schedule without an offset. If this would
violate a dependency constraint (line 19), T is incremented by
M and in the next iteration the algorithm tries to commit all
operations in the SCC to the final schedule using the updated
offset. The final schedule of all samples is then determined
using the calculated latency sequence and returned in line 23.

VII. ITERATING OVER RATIONAL-IIS

The approaches proposed in the previous sections can be
used to find a schedule with the smallest-possible rational II.
However, since scheduling is an NP-hard problem, the ILP
solver may timeout before it finds a solution. Therefore, we
now present an algorithm for making repeated attempts with

0 1 2 3 4 5 6
0

2

4

6

8

10

12 II = II⊥N = 2
II = 7/4
II = 5/3
II = 3/2
II = 4/3
II = 5/4
II = II⊥Q = 6/5

S

M

Fig. 9: Possible values for S and M when II⊥Q = 6
5

increasing IIs, which can be used by any scheduler that accepts
rational candidate IIs. The larger the II, the less constrained
the problem becomes; the drawback is that the further we
deviate from the ideal II⊥Q , the lower the throughput will be.
For the specific case of rational IIs, which we write in the form
M/S, we have already noted that the number of constraints
and variables in the ILP problem increases with S. So the
aim of our iterative process is not only to gradually increase
M/S, but also to keep S small. To indicate the minimum II,
we write II⊥Q = M⊥/S⊥.

In Figure 9, we show the design space of a scheduling
problem where II⊥Q = 6

5 . The large black point at (5, 6)
represents the starting point, and the smaller black points
represent all the other IIs that we use as fallbacks. In all cases,
we pick S and M such that the resulting II lies between II⊥Q
and II⊥N . We also only pick IIs where S ≤ 5, because we
judge that if scheduling fails when S = 5, then setting S > 5
is unlikely to make it more feasible, since increasing S relates
to increasing variables and constraints. Thus we restrict our
attention to the IIs within the grey triangle. We try these IIs
in ascending order of their value (i.e. their slope in Figure 9).
Note that IIs with the same value lie on the same line through
the origin, as shown by the dotted lines in Figure 9. We omit
IIs whose fractions are not fully reduced, such as the hollow
dot in Figure 9 which represents an II of 6

4 , because a solution
to that scheduling problem would give the same II as if 3

2 has
been solved.

More generally, if the minimum rational II is II⊥Q =
M⊥/S⊥ in its lowest form, then we search for fallback IIs of
the form M/S that satisfy:

II⊥Q ≤ M
S < II⊥N and S ≤ S⊥ (14)

and are also in their lowest form.
Our algorithm builds on Rau’s iterative modulo scheduling

algorithm [2], but has one crucial complication: Rau’s algo-
rithm uses integer IIs, so it can simply increment that integer
for each successive scheduling attempt. In the following, we
propose a straightforward method of ‘incrementing’ a rational
number for rational-II modulo scheduling.
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Algorithm 3 Generating rational-II sequences

Require: S⊥,M⊥, Smax
Ensure: A sequence of rational IIs

1: II⊥N ←
⌈
M⊥/S⊥

⌉
2: queue ← {}
3: if S⊥ ≤ Smax then
4: queue.insert(S⊥,M⊥)
5: for S ← 2 to Smax do
6: for M ←

⌈
II⊥Q · S

⌉
to II⊥N · S do

7: if irreducible(S,M) then
8: queue.insert(S,M)
9: ratIISort(queue)

10: return queue

Algorithm 4 Iterative Rational-II scheduling

Require: G, FUs, imax, Smax, time
Ensure: A schedule S

1: S⊥,M⊥ ← minQII(G, FUs) //Equ. 4
2: q ← getQueue(S⊥,M⊥, Smax) //Alg. 3
3: S← {} //schedule times container
4: i← 0
5: while i < imax and S.empty and !q.empty do
6: S←sched(G, FUs, q.front, time) //e.g. Alg. 2
7: queue.pop_front()
8: i← i+ 1
9: return S

We describe how rational numbers for iterative rational-
II modulo scheduling are determined in Algorithm 3. The
required inputs are S⊥,M⊥ and Smax. By default, Smax is
set to S⊥, but by making it a distinct parameter, we allow the
possibility of capping S at smaller values. As we shall show
in our experiments, better results can often be obtained by
keeping S small. Using S⊥ and M⊥, II⊥N is calculated in line
1. A container that collects all pairs of M and S that combine
to candidate rational IIs is initiated in line 2. Then, whenever
S⊥ ≤ Smax, our iterative algorithm considers II⊥Q as a starting
point by inserting it into the queue of rational IIs in lines 3–4.

Our proposal for enumerating rational numbers can be seen
in lines 5–8. We enumerate the rational numbers that satisfy
(14) using the for-loops in lines 5 and 6. Reducible fractions
are skipped in line 7; the others are inserted into the queue
in line 8. Finally, the queue is sorted to prepare the iteration
over rational-IIs in line 9 and returned in line 10.

Our procedure that performs iterative rational-II modulo
scheduling is given in Algorithm 4. The main idea is to find
a valid schedule for the problem description (G, FUs) in imax
iteration steps using an upper bound Smax within a specified
time frame. At first, S⊥,M⊥ are calculated in line 1. Then,
the queue of rational IIs is generated in line 2.

The iteration is controlled by the while-loop in lines 5–8.
The loop terminates if either the maximum number of allowed
iteration steps is reached, a schedule has been found or no
more candidate IIs are in the queue. An attempt to solve the
scheduling problem using the first element of the candidate
II queue is made in line 6. In lines 7–8, the first element

is removed from the queue in order to proceed to the next
candidate II and the iteration counter is incremented. A valid
schedule or an empty container is returned in line 9.

Algorithms 3 and 4 can be controlled by the user through the
Smax and imax values. The impact of varying Smax and imax on
scheduling results regarding throughput achieved is examined
on large problems in Section VIII-D.

VIII. EXPERIMENTS

We now evaluate the proposed methods. First, we analyze
how much speedup w.r.t. II can be obtained using rational-
II modulo scheduling. Then, we show that our non-uniform
scheduler performs the best in terms of optimal rational-II
scheduling and that our SCC-based heuristic increases solving
rate significantly. We do this by examining how many of the
encountered problems can be solved within a fixed time limit
by (1) the proposed approaches, (2) the Fimmel–Müller (FM)
rational-II formulation, and (3) the unrolling approach using
three different state-of-the-art integer-II schedulers: MV [21],
MSDC [13] and ED97 [20]. Also, sample latency achieved is
discussed. Then, the proposed iterative method for rational II
modulo scheduling is evaluated and discussed. Finally, we
show how rational-II scheduling can improve Pareto-frontiers
regarding throughput and area after place & route.

A. Experimental Setup

We have evaluated the various scheduling approaches on
a set of 16 test instances from digital signal processing and
embedded computing. The vanDongen benchmark was used
by Fimmel and Müller [3]; we include it because it is the
only example we could find where their assumption of II⊥rec >
II⊥res can actually be met. We have used 13 of the remaining
benchmarks before [6]. The remaining two, iir [37] and r-
2 FFT [40], which are larger problems in terms of number
of operations and II⊥rec, are new. The source code of all our
benchmarks is available online [7], [12]. Gurobi 8.1 (in single-
threaded mode) was used as the solver.

All problems were solved on a server system with an
Intel Xeon E5-2650v3 2.3 GHz CPU with 128 GB RAM. The
hardware description after scheduling was generated using
Origami HLS [12] which itself uses FloPoCo [11] for VHDL
generation. The examined hardware implementations were
synthesized, placed, and routed using Vivado v2018.1 for a
Xilinx Virtex7 xc7v2000t g1925-2G targeting 250 MHz.

B. Analysing Potential Speedups

First, we analyse the potential speedup for rational-II
scheduling by evaluating II⊥rec and II⊥res for all possible re-
source allocations (#FUs) for each problem. The results of
this experiment are displayed in Table VIII. To provide a sense
of the complexity, the number of operations that have to be
performed per loop iteration (#ops) and the II⊥rec are given.
Resources are shared only within loops. Every operation of the
same type is implemented using homogeneous FUs. For each
benchmark, we enumerate all possible resource allocations
(#allocs). The ‘avg. II⊥res’ column reports the average value
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TABLE VIII: Analysing the speedup that can be potentially obtained by using rational IIs rather than integer IIs.

DFG properties Allocation info (sweep over all possible resource allocations) Potential speedup

instance #ops II⊥rec #allocs avg. II⊥res #(II⊥res > II⊥rec) rational II avg. max.

vanDongen [31] 10 5.33 10 2.93 1 9 (90%) 1.13× 1.13×
dlms [32] 16 4 15 2.71 3 0 (0%) – –
gen [32] 15 1 15 2.71 14 7 (47%) 1.3× 1.6×
gm [33] 16 1 24 3.04 23 5 (21%) 1.47× 1.67×
hilbert [34] 14 1 18 2.42 17 3 (17%) 1.33× 1.33×
lms [32] 15 18 15 2.71 0 0 (0%) – –
linear phase [35] 29 1 91 4.11 90 71 (78%) 1.25× 1.87×
srg [32] 17 1 8 2.29 7 1 (13%) 1.5× 1.5×
sam [36] 121 1 1770 6.77 1769 1403 (79%) 1.21× 1.97×
biquad [37] 14 10 16 2.69 0 0 (0%) – –
rgb [38] 24 1 64 3.07 63 7 (11%) 1.5× 1.5×
spline [38] 26 1 64 3.78 63 26 (41%) 1.3× 1.75×
ycbcr [38] 22 1 32 2.78 31 3 (9%) 1.5× 1.5×
iir [37] 194 14 4096 7.16 496 123 (3%) 1.03× 1.03×
cholesky [39] 266 1 113386 9.31 113385 100235 (88%) 1.15× 1.98×
r-2 FFT [40] 576 1 2408448 12.07 2408447 1978795 (82%) 1.15× 1.99×

average 85.94 3.9 – 4.41 – – (36%) 1.24× 1.49×

of II⊥res over these allocations. We then report how many of
the possible resource allocations lead to II⊥res > II⊥rec. In test
instances biquad and lms, we find that II⊥rec always dominates
II⊥res, and since II⊥rec is an integer in both cases, no speedup
can be obtained using rational-II scheduling.

We then report how many of the remaining resource al-
locations have a minimum II that is not an integer (column
‘rational II’). For example, test instance dlms has II⊥res > II⊥rec

in three out of its 15 possible resource allocations, but still the
minimum II in each case is an integer. This can be explained
by the fact that the resource type with the largest number of
operations is mult, with five instances. No allocation can lead
to a rational II between 4 and 5 and, thus, no speedup can
be obtained using rational-II scheduling. Note that this can
always be determined quickly before attempting scheduling
(see Section IV-A) and an integer-II scheduler can be used
instead. In all other cases, there exist resource allocations
where the minimum II is not an integer.

On average, 36% of all resource allocations show speedup
potential for rational-II scheduling (see bottom row of Ta-
ble VIII). Of those, the average potential speedup is 1.24×. In
the larger models (r-2 FFT, cholesky), the maximum speedup
potential reaches 1.99× which is consistent with the range we
derived in Section IV-A.

C. Measuring Actual Speedups

Now, we analyze the performance of uniform and non-
uniform rational-II modulo scheduling formulations in terms
of II and latency achieved. To reduce the number of scheduling
experiments for the large sam, iir, cholesky, and r-2 FFT
benchmarks, only resource allocations with a potential speedup
of II⊥N /II⊥Q ≥ 1.05 were considered.

We solved all problems using the proposed SCC-based, the
proposed uniform, and the proposed non-uniform approach,
and compared the performance achieved to four state-of-the-
art approaches: the FM formulation [3] and, after partially
unrolling the problem, three integer-II formulations: MV [21],
MSDC [13] and ED97 [20]. For each experiment, a solver
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Fig. 10: Average latency achieved by four different schedulers.
For each benchmark, we give in parentheses the number of
resource allocations where all four schedulers could find a
solution; the latency is averaged over these allocations. The
absent benchmarks are those where no allocations led to all
four schedulers finding a solution.

timeout of 300 seconds, no iteration (imax = 1) and no
variation of Smax was used. Benchmarks dlms, lms and
biquad do not appear because there were no allocations with
a non-integer minimum II.

Results of all scheduling experiments are in Table IX. The
first and seventh schedulers use heuristics so we cannot tell
which of their solutions are optimal. The most solutions (83%)
were found by the heuristic SCC-based uniform rational-II
scheduling approach. Although the overall solving rate of
the proposed ILP-based formulation (10%) is relatively low,
almost all problems (111/120) among the smaller benchmarks
(fewer than 100 vertices) were solved optimally w.r.t. la-
tency. The only problems where the solver reported infeasible
were encountered using the vanDongen instance for uniform
schedulers. In fact, no uniform schedule can exist (see Sec-
tion IV-D). All other missing solutions are due to timeouts.
In Section VIII-D, we investigate how the proposed iterative
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TABLE IX: Comparing the performance of rational-II schedulers. Each instance (first column) gives rise to several
scheduling problems (second column), one per resource allocation. For each scheduler we give the number of problems
solved (with a 5-minute timeout), and how many of those solutions are latency-optimal.

prop. SCC-based

prop. uniform

prop. non-uniform

FM [3]
unroll+MV [21]

unroll+MSDC [13]

unroll+ED97 [20]

instance #p
ro

b.

#s
ol

.

op
t.

#s
ol

.

op
t.

#s
ol

.

op
t.

#s
ol

.

op
t.

#s
ol

.

op
t.

#s
ol

.

op
t.

#s
ol

.

op
t.

vanDongen 9 0 - 0 0 9 9 9 9 9 9 9 - 9 9
gen 7 7 - 7 7 7 7 7 7 7 7 7 - 7 7
gm 5 5 - 5 5 5 5 5 5 5 4 5 - 5 5
hilbert 3 3 - 3 3 3 3 3 3 3 3 3 - 3 3
srg 1 1 - 1 1 1 1 1 1 1 1 1 - 1 1
rgb 7 7 - 7 7 7 7 7 7 7 4 7 - 7 7
spline 26 26 - 26 24 26 26 26 7 22 20 26 - 26 26
ycbcr 3 3 - 3 3 3 3 3 3 3 3 3 - 3 3
linear phase 71 71 - 61 61 71 71 71 9 39 34 71 - 71 71
sam 500 500 - 9 4 500 106 80 0 1 0 29 - 140 136
iir 123 122 - 0 0 84 82 0 0 0 0 0 - 18 17
cholesky 197 135 - 2 2 18 9 0 0 0 0 13 - 13 12
r-2 FFT 232 108 - 1 1 5 1 0 0 0 0 5 - 6 2

avg. - 83% - 10% 9% 62% 27% 17% 4% 8% 7% 15% - 26% 25%
total 1184 988 - 125 118 739 330 212 51 97 85 179 - 309 299
total in ≤ 1 min 1184 983 - 109 109 242 242 46 46 75 75 164 - 191 191

total time - 80.41 min 5098.95 min 4359.35 min 3948.54 min 3578.10 min 2521.13 min 3417.21 min
avg. time per sol. - 0.07 min 0.53 min 3.19 min 3.89 min 0.94 min 0.26 min 1.27 min

method can increase solving rate.
Regarding non-uniform rational-II scheduling, our proposed

formulation performed the best and solved 62% of all prob-
lems. The FM formulation solved 17%, but only 51 of the
212 solutions are optimal. For all the other approaches, the
optimal II was always achieved whenever a solution was
found, since the II is an input not the objective. For the
unrolling approaches, ED97 performs the best with 26% of
problems solved. The proposed heuristic that achieved the best
solving rate does not minimise latency. The last two rows of
Table IX show the total time taken (including timeouts) and
the average time per solved instance (i.e., excluding timeouts).
We see that the SCC-based heuristic finds the most solutions
and also does so in the shortest time.

We now analyse average latency achieved in Figure 10.
Since it solved the most problems and almost all solutions
were optimal w.r.t. latency, we compare our approaches to
ED97. For all benchmarks, ED97 achieved the shortest and the
SCC-based heuristic the longest latency on average. Latency
was increased by a factor of 1.33× on average and 2.21×
at most. Since it is not obvious how latency impacts the final
hardware costs in the context of rational-II modulo scheduling,
we plan to investigate this in future work.

D. Evaluating our Iterative Scheduler
The experiments in the previous subsection were carried

out without applying iterative rational-II modulo scheduling
and adapting Smax. At best only 18 out of 197 and 6 out
of 232 problems from the cholesky and r-2 FFT benchmark
were solved, respectively. We investigate how the solving
rate can be improved using the above-mentioned methods.
By using Algorithm 3, the candidate II deviates from II⊥Q .
Therefore, we use the quotient (II⊥Q/IIa) of II achieved (IIa)

and the theoretical minimum II for comparison. A schedule
that achieves IIa = II⊥Q is rated with a quality of 1, decreasing
when IIa becomes larger. If no solution in the given time limit
was found, we logged an II quality of 0.

To examine our iterative approach, we now focus on the
cholesky benchmark. In our experiments, the r-2 FFT bench-
mark showed the same characteristics. Figure 11 shows the
average II quality achieved for all 197 rational-II scheduling
problems using different settings for imax and Smax. The
average II quality of integer-II scheduling is shown as a dashed
line. For imax = 10, we can see that 3 ≤ Smax ≤ 20
outperforms the integer-II baseline in terms of II quality. The
results show stability in the range of 6 ≤ Smax ≤ 14 and peak
at 13 (II quality of 0.93). It is interesting to observe that for
smaller values of imax = 2 and imax = 4, we observe that the
II quality follows the trend of imax = 10 at first and gets worse
earlier the smaller the value of imax.

Close to optimal II quality results that outperform integer-
II scheduling for the cholesky benchmark using the proposed
iterative rational-II modulo scheduling approach with the non-
uniform ILP formulation were achieved using imax = 10 and
Smax = 13. Since a new solving process is started for each
iteration, this does not necessarily mean that more solving
time is required. Moreover, it indicates that the identification
of small values for Smax before solving the ILP may speed
up the solving process. Larger values for imax led to better
results, which is expected as a general behaviour, since the
iteration process attempts to solve the scheduling problem
under increasingly relaxed conditions.

E. Design-Space Exploration

To understand hardware overhead after place & route,
we studied all 71 resource allocations of the linear phase
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Fig. 12: Exploring Pareto-optimal implementations of the
linear phase benchmark after place & route [6].

benchmark model. We focus on linear phase as it is large
enough to show interesting tradeoffs, but small enough to
be solved for all Pareto-optimal resource allocations; other
benchmarks showed similar patterns. We define resource usage
as

RU = slicesUsed +N ·DSPsUsed ,

where N denotes the slice-to-DSP ratio of the given FPGA
device; in our experiments, N = 142. The Pareto frontier
for II and resource usage is shown in Figure 12. The Pareto-
optimal implementations that were found using integer-IIs are
displayed as crosses. Four new Pareto-optimal designs are
revealed using our proposed rational-II formulation. These can
be achieved because rational IIs fill the gaps between integers.

Note that all implementations are able to support the de-
manded 250 MHz, and implementing rational-II scheduling
does not affect the operating frequency of the final hardware.
Note also that, at least on this benchmark, rational-II schedul-
ing does not change the fact that the best possible II is still
1 (top-left point), and the best possible resource usage is still
provided by the bottom-right point; the value here is the finer-
grained control over the design-space exploration. This ‘fine-
grained control’ is highlighted by the area (highlighted in grey)
between the two Pareto frontiers.

IX. CONCLUSION & FUTURE WORK

We show that in 35% of the encountered scheduling prob-
lems, speedups w.r.t. II of 1.24× on average and up to 1.99×
are possible compared to integer-II modulo scheduling. To
take advantage of this potential, we have presented novel ILP
formulations for uniform and non-uniform rational-II modulo
scheduling that are able to determine optimal rational IIs
whenever the number of operations in the DFG does not
exceed about 150. We have proposed the first heuristic for
rational-II modulo scheduling that is able to solve 83% of the
encountered problems with an average II quality of 0.86.

We have proposed the first framework for iterative rational-
II scheduling. By doing this we achieve two things; first, a
fallback strategy that iterates to easier-to-solve problems in
case of solver timeout is introduced. Optimality w.r.t. II is
sacrificed, but this is better than no solution at all. Second,
we show that using the proposed iteration procedure with
‘good’ values for imax and Smax enables us to solve rational-
II benchmark problems with up to 266 vertices with an II
quality of 0.93. Tuning of imax and Smax will be investigated
in future work. Finally, Pareto frontiers after place & route can
be improved using our approach, thus enabling a more fine-
grained control over the design-space. Complete enumeration
of the design-space is not feasible; identification of resource
allocations that actually contribute to the Pareto frontier will be
addressed in future work. In addition, the theoretical analysis
of the minimum II in combination with synthesis results from
Section VIII-E indicate that it is possible to identify resource
allocations that lead to the Pareto frontier before scheduling
and synthesis. We envision reducing the overall design time
for multi-objective optimisation in custom hardware design by
our approach significantly.
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