Automated Feature Testing of Verilog Parsers using Fuzzing
(Registered Report)

Quentin Corradi
Imperial College London
London, United Kingdom

q.corradi22@imperial.ac.uk

Abstract

In this article we propose a methodology based on fuzzing to test
which features are supported by pasers and register an experiment
applying this methodology to SystemVerilog-consuming tools. Sys-
temVerilog is a hardware description, specification and verification
language widely used in hardware design, and with an active stan-
dard committee. Most SystemVerilog-consuming tools have incom-
plete support and support additional features. These tools do not
provide the list of features they support, so identifying commonly
supported SystemVerilog features is complicated. This hinders de-
sign portability and tool interoperability. We think current efforts
to test these tools’ feature support are insufficient. All of the previ-
ous points justify why SystemVerilog-consuming tools are a good
candidate for our methodology. We also provide the first (to our
knowledge) open-source parser and fuzzer for Verilog with full
support and compliance with the 2005 standard.

CCS Concepts

« Software and its engineering — Software testing and debug-
ging; Parsers; » Hardware — Hardware description languages
and compilation.

Keywords

Fuzz testing, Grammar-based fuzzing, Mutation testing, Verilog

ACM Reference Format:

Quentin Corradi, John Wickerson, and George A. Constantinides. 2024. Au-
tomated Feature Testing of Verilog Parsers using Fuzzing (Registered Re-
port). In Proceedings of the 3rd ACM International Fuzzing Workshop (FUZZING
"24), September 16, 2024, Vienna, Austria. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3678722.3685536

1 Introduction

In this article we propose a methodology based on fuzzing to test
which features are supported by parsers. We also propose an ex-
periment applying this methodology to test language support of
SystemVerilog-consuming tools. We think these tools are particu-
larly suited to test this methodology because SystemVerilog is still
a relevant language used in a fragmented ecosystem of tools.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

FUZZING °24, September 16, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1112-1/24/09

https://doi.org/10.1145/3678722.3685536

John Wickerson
Imperial College London
London, United Kingdom

j-wickerson@imperial.ac.uk

George A. Constantinides
Imperial College London
London, United Kingdom

g.constantinides@imperial.ac.uk

SystemVerilog is a widely used hardware description, specifica-
tion and verification language [4] with an active standardisation
committee. Most ASIC and FPGA designs on the market use some
Verilog or SystemVerilog [13]. Except in the previous sentence, in
this article SystemVerilog will refer to the language as a whole
whereas Verilog will specifically refer to the IEEE 1364-2005 [3]
standard of Verilog. The recent SystemVerilog standards are size-
able, and most SystemVerilog-consuming tools either do not sup-
port it entirely or support additional non-standard features. This
is not helped by the lack of available open-source SystemVerilog
designs reflecting industry practices. On top of that, most tools do
not provide the list of language features they support. Therefore,
identifying commonly supported language features is complicated.
This is a long-standing issue for design portability and tool inter-
operability, forcing some users to stick to outdated standards, as
underlined last year by the technical chair of the IEEE SystemVer-
ilog Working Group committee:

“Many users avoid adopting SystemVerilog because
feature support from different tools and vendors of
the rapidly changing LRM'] had been so inconsistent.
To this day, people continue using Verilog-1995 syn-
tax and avoid using features added by Verilog-2001
(e.g., ANSI-style ports and the power operator).” —
Dave Rich, Technical chair of the IEEE SystemVerilog
Working Group committee [29]

Knowing the state of support for SystemVerilog in widely used
commercial tools would make it possible to know a safe common
subset of supported language features. This safe common subset of
the language would have several benefits:

o It would make it easier for people to write hardware designs
in a subset of the language supported by most tools, and less
restrictive than the original IEEE 1364-1995 standard [2, 29].

e It could help to direct development effort of open-source
tools to reach feature parity with commercial tools.

o It would help choosing a feature set for bug-finding cam-
paigns [19, 36] and formalisation efforts [24].

o Awareness of the state of support of the language could help
tool developers make their tool be inter-operable with other
SystemVerilog-consuming tools.

Some efforts have already been made to document feature sup-
port of SystemVerilog-consuming tools. The only project we know
of is Sv-TEsTs [6] by CHIPS Alliance. It benchmarks many open-
source tools according to which features of the language they sup-
port. It is useful to track lacking features of existing open-source
parsers and to identify the most compliant available open-source

Language Reference Manual, called “standard” in this article.

https://orcid.org/0000-0003-4218-3987
https://orcid.org/0000-0001-6735-5533
https://orcid.org/0000-0002-0201-310X
https://doi.org/10.1145/3678722.3685536
https://doi.org/10.1145/3678722.3685536

FUZZING ’24, September 16, 2024, Vienna, Austria

parsers so that new tools can choose an existing parser to extend
or use as a reference to build their own. However the lack of any
systematic testing means they missed some bugs we were able to
quickly identify in a pilot experiment, even for the most compliant
parser they feature. This also includes non corner-case bugs in cat-
egories for which Sv-TEsTs reports full support, such as the follow-
ing bug we found in the escaped identifier support of Surelog [12].

Example. The following testcase:

module \monka$S ;
endmodule

should be accepted, but is rejected because of the capital ‘S’ at
the end of “\monkaS”. The cause of this bug is in the grammar
used by Surelog’s parser:

ESCAPED_IDENTIFIER: '\\' [WS\r\t\nl*? WS;
WS: [1+;
The problem is that instead of excluding white spaces from

the character-set after the backslash, the grammar excludes
the characters ‘W’ and ‘S’.

The lack of compliant parsers and the fact that the standard’s
BNF is difficult to interpret means that extending or using as refer-
ence another parser will lead to more parsers with compliance is-
sues. Therefore a fully compliant and open-source reference parser
like the one we implemented to run our pilot experiment could be
helpful to implement correct tools. This is especially true for tools
like linters, code transformation tools, and fuzzing tools, which
work with arbitrary code and require full language support.

In this study, we plan to partially automate feature testing of
many commercial and open-source SystemVerilog-consuming tools
using fuzzing. To that end, in Section 2 we explain how we plan to
use several fuzzing techniques on these tools’ parsers to test the
parsers’ accepted language constructs. Then in Section 3 we de-
scribe a pilot experiment which helped design and justify the fea-
sibility of the experiment we plan to run. Finally in Section 5 we
discuss about limitations of our experiments, potential solutions
and future directions we will not be exploring.

In summary, the contributions of this paper are:

(1) A way of using fuzzing to partially automate testing lan-
guages features supported by a parser for which expected
support differs significantly from a reference.

(2) A planned experiment in which we will apply this method-
ology on SystemVerilog-consuming tools.

(3) The first (to our knowledge) implementation of a fully com-

pliant open-source reference Verilog parser?.

2 Planned Experiment

2.1 Research Questions

For a feature to be supported it needs to be parsed, its semantics
interpreted correctly, and any processing done with it to not be
buggy. The first step is correct parsing and this can be tested with
fuzzing. In particular grammar based fuzzing seems fit for this pur-
pose. Testing any subsequent part in the support of a feature needs

Zhttps://github.com/ymherklotz/verismith

Quentin Corradi, John Wickerson, and George A. Constantinides

a purpose built tool which requires more effort. To avoid wasting
effort, testing that the feature is parsed is an obvious first step.
Therefore our first idea to test the SystemVerilog features of a tool
is to use fuzzing in a context-free grammar-based-like way. We are
not sure context-free grammar fuzzing will be sufficient because
the SystemVerilog language is not context-free.

RQ1: Is context-free grammar fuzzing suitable to test supported
features?

To answer this question we will run grammar based fuzzers to
provide inputs to several SystemVerilog-consuming tools. If the
fuzzing campaign is unable to find more bugs because the parsing
steps completes without any error related to parsing and the pars-
ing covered the whole input then context-free grammar fuzzing is
suitable. We consider the parsing covered the whole input if there
are signs of unsuccessful processing other than parsing (like typ-
ing errors) on the whole input, or without that, if mutating any
part of the input to make it invalid triggers a parsing error. On the
other hand if we reach a point in the fuzzing campaign at which,
to keep getting parser errors we need to add context awareness to
the fuzzing tool, then context-free grammar fuzzing is unsuitable.

Another promising method which may outperform fuzzing for
this task is systematic testing. The main advantage of systematic
testing is its ability to achieve high coverage of a grammar. The
choice of the coverage metrics is important as inputs are minimised
when no increase in coverage is expected.

RQ2: Is systematic testing suitable to test supported features?

To answer this question we will perform the same test as grammar-
based fuzzing using TRIBBLE [18], a grammar-based systematic test-
ing software using k-path coverage as its coverage metrics. We will
compare this solution to fuzzing in terms of bugs found.

Out of this fuzzing campaign we should be able to get a list of
unsupported inputs for each tool. We are interested in a subset
of SystemVerilog supported by all the tested tools. Deriving this
subset should be a matter of reducing the language grammar to
not describe any unsupported input:

RQ3: Is a list of non-compliances to the standard enough to
derive a useful subset of the language supported by all tools?

The empty input is valid SystemVerilog so there is always a com-
mon subset of the language supported by all tools. We are more
interested in knowing what can be expressed by this subset. This
subset should provide the ability to express sequential and combi-
national designs. In particular if the subset can be used to encode
and synthesise any finite-state machine then we will consider the
subset useful.

All of the grammar-based fuzzing methods described before should
only find valid inputs rejected by the tools’ parsers. To find invalid
but accepted inputs we need the ability to generate slightly invalid
inputs. This is a generally a hard task because for an invalid input
to be accepted, it needs to produce a valid sequence of tokens, and
changing some characters in this sequence would make the input
rejected. If the number of these characters is n then the probability
of finding such an input by random exploration is usually on the
order of #{characters}™". To avoid relying on this probability, cur-
rent approaches generally rely on mutating inputs with knowledge
such as coverage, input grammar or valid tokens.

https://github.com/ymherklotz/verismith

Automated Feature Testing of Verilog Parsers using Fuzzing (Registered Report)

One of these approaches is a recent work by Bendrissou et al. [20].
They try with their tool called GMUTATOR to generate slightly in-
valid inputs by mutating a reference grammar then using the mu-
tated grammar to generate inputs. These inputs are then also mu-
tated in a classical way to increase diversity. This approach is more
likely to succeed because differences between the accepted inputs
and the reference grammar often lies in human error, interpreta-
tion and relaxation of the grammar rules which is a part of what
GMUTATOR attempts. Other mutation they attempt is adding alter-
natives to terminals and non-terminals. This mutation is also likely
to succeed because it leads to token replacement and often lan-
guage extensions follow the logic of pre-existing rules but with
different keywords. This is especially relevant to us as they also
mutate the generated inputs so new keywords are likely to be dis-
covered and lead to accepted inputs. However this might not be suf-
ficient as finding new keywords by chance suffers from the same
unlikely probability problems as generating a correct invalid input.

RQ4: Is grammar mutation able to find significant non-standard
features supported by parsers?

To answer this question we will compare the log files produced by
a reference parser and the parser of the tool-under-test. We will
consider the answer to RQ3 positive if grammar mutation produces
an input which fulfils one of the following conditions:

(1) The input is rejected by the reference parser but accepted
by the tool’s parser.

(2) The input makes the tool’s parser leak in its log file a gram-
mar rule which is not compliant with the standard.

(3) The input contains a token which is rejected by the refer-
ence parser but accepted by the tool’s parser, which can be
detected by reading the log files.

2.2 Methodology

Our experiment will consist of two fuzzing campaigns, that we
call acceptance testing and rejection testing. In each of these cam-
paigns we will log all behaviour not conforming to the standard we
encounter and classify them as non-compliance if the behaviour
happens at the parsing stage. We will check whether the behaviour
is acknowledged as a deviation from the standard in the official
documentation, error message or code. If so the non-compliance
will be considered “flagged as not supported”, otherwise we will
report the behaviour. Additionally we will record time taken by
the campaigns except for the bug reduction time which will be
reported separately to not give an unfair advantage to later exper-
iments when comparing the different methodologies. We will also
report on developer’s willingness to fix the issues for all reported
behaviours and the frequent root causes of non-compliances if iden-
tified.

In both these fuzz-testing campaigns, deciding whether parsing
has been successful is complicated. One reason for that is most
tools do not provide a simple way to run only their parser. This is
especially true for closed-source tools for which there is no simple
way to insert code to interrupt file processing after parsing. The
other reason is that there might not be a clear-cut distinction be-
tween preprocessing, lexing, parsing and the rest of the processing
done on the input. (We consider context-dependent checks such as
definedness checks or type checking to not be part of parsing even

FUZZING ’24, September 16, 2024, Vienna, Austria

Input generator

failure l

Human
Unsupported features

Figure 1: Acceptance testing overview

Parser

if they are performed during the parsing phase.) Therefore the way
we decide if a parser succeeds is one of the following:

o Ifthe tool is open-source then we modify it so that its return
code indicates success when the parsing step is successful.
This involves for instance disabling definedness checks and
type checking performed at the parsing step, even if this
prevents the tool from building an AST.

e If a tool is closed-source and its parser can be run on its
own then we do the following. If the return code of that
parser indicates succeeds then parsing succeded. Otherwise
the same process as the one applied to closed-source tools
without standalone parsers is applied.

e If a tool is closed-source and its parser cannot be run on its
own, then a human inspects the log file and decides whether
the failure is due to the parsing step or other processing. We
do so without previous filtering or preprocessing because
only failure could be filtered and in case of failure the log
needs to be examined anyways to determine the root cause.

Acceptance testing is similar to a standard fuzzing campaign. It
is explained in Section 2.3 and illustrated in Figure 1. Its first goal
is to under-approximate the input grammar of the tool-under-test,
that is to describe all standard compliant inputs that the tool-under-
test accepts. To do that we find all standard compliant inputs the
tool is supposed to accept but rejects, and remove the part of a
standard compliant grammar describing them. After this fuzzing
campaign we will have a grammar describing the maximal subset
of the standard which is accepted by each tool. We will try to use
these grammars to deduce a common subset of Verilog supported
by all the tools and to make a list of common non-compliances.
The subset will be useful for the second goal of acceptance testing.
The second goal is to create a benchmark made of minimal test files
similarly to those of Sv-TEsTs to test which features are supported
by each tool. These test files will be minimal in the sense that the
grammar-coverage of each file should be minimal, and features out-
side the subset supported by all tool should be avoided unless they
are strictly necessary. We intend to contribute these files to Sv-
TEsTs to make them publicly available and so that the anonymised
tools’ benchmark can be reproduced.

Rejection testing is similar to the work of Bendrissou et al. on
Grammar Mutation [10]. It is explained in Section 2.4 and illus-
trated in Figure 2. Its goal is to find accepted inputs that the tool-
under-test is supposed to reject. This campaign has to be run af-
ter acceptance testing because their technique grows the set of in-
puts described by the grammar, so it has to start from an under-
approximation.

FUZZING ’24, September 16, 2024, Vienna, Austria

Quentin Corradi, John Wickerson, and George A. Constantinides

Table 1: Tools to test

Tool name

Tool category

Source availability

ANTLR4 SystemVerilog [8]
ANTLR4 Verilog [9]
ANTLR4_SystemVerilog_Parser [15]
Conformal

Diamond

Formalpro

Genus

hdlConvertor [1]

Icarus Verilog [35]

Jasper

Leonardo Spectrum

Moore [30]

Oasys-RTL

Quartus
Questasim/Modelsim
Surelog [12]

Slang [27]

sv-parser [16]

sv2v [32]
Tree-sitter-verilog [11]
Verible [23]

Verific

Verilator [33]

Verismith [19]

Vivado

Xcelium Parallel Logic Simulation
Yosys [31]

Grammar

Grammar

Grammar
Equivalence checker
FPGA synthesiser
Equivalence checker
ASIC synthesiser
Converter between several HDL
Simulator

Property checker
Generic synthesiser
Compiler

ASIC synthesiser
FPGA synthesiser
Simulator

Parser

Parser

Parsing library
SystemVerilog to Verilog converter
tree-sitter syntax file
Multitool

Parser

Simulator

Parser & Fuzzer
FPGA synthesiser
simulator

Generic synthesiser

Open-source
Open-source
Open-source
Proprietary (Cadence)
Proprietary (Lattice)
Proprietary (Siemens)
Proprietary (Cadence)
Open-source
Open-source
Proprietary (Cadence)
Proprietary (Siemens)
Open-source
Proprietary (Siemens)

Proprietary (Intel/Altera)

Proprietary (Siemens)
Open-source
Open-source
Open-source
Open-source
Open-source
Open-source
Proprietary
Open-source
Open-source

Proprietary (AMD/Xilinx)

Proprietary (Cadence)
Open-source

Verilog

GRAMMARINATOR

Mutant grammar

Mutant Verilog

GMUTATOR

Reference parsers Parser under test

1
Additional features

Figure 2: Rejection testing overview

We plan to test all tools listed in Table 1 unless we encounter
licensing issues. Most of these tools expect SystemVerilog as input
but some provide a Verilog mode that we will use. Indeed the fuzz-
testing campaigns will be based on the IEEE 1364-2005 version of
the standard but without the compiler directives that a preprocess-
ing step can eliminate. We chose this version because:

e it is a well-defined subset with an associated standard that

we can refer to,
e it is still widely used and relevant [13] even if superseded,

e it is almost a subset of the latest IEEE 1800-2023 [4] stan-
dard?, and

o its size still allows a single person to write a fully compliant
grammar within a reasonable time frame.

Inputs exposing a parser non-compliance in both fuzzing cam-
paigns are used to identify non-compliances in the tools-under-
test. This identification is done by a human using error message
guidance, source code inspection and input file reduction. We re-
duce inputs either by using C-Reduce [28] with a script to reject un-
interesting reduction candidates early, or by using Perses [34] with
the grammar used to generate the input. When using C-Reduce, un-
interesting candidates are rejected if we fail to parse them with the
grammar from which the failed test was generated or fail to parse
them with the Verismith parser, our fully compliant parser. This
helps speeding up the reduction with closed source programs by
avoiding their startup and licence checking time.

2.3 Acceptance Testing

The acceptance testing part of our experiment will be similar to
standard fuzz-testing campaigns. A fuzz-testing pass will consist

3There are exceptions such as the removed supply0 and supplyl wire types, and
planned for depreciation defparam statements.

Automated Feature Testing of Verilog Parsers using Fuzzing (Registered Report)

of the following steps illustrated in Figure 1: A Verilog input is gen-
erated for each Verilog-consuming tool using the Verismith fuzzer,
GRAMMARINATOR [20], a state of the art grammar based fuzzer, and
TRIBBLE [18], a grammar-based systematic testing input genera-
tor based on k-path coverage. The generated inputs are passed to
various Verilog consuming tools. The test fails if the parser fails.
Failed tests are checked by a human to determine what unsup-
ported feature caused the test to fail. This is a standard part of any
fuzzing campaign which claims to report bugs and can be tackled
as explained at the end of Section 2.2. The unsupported features
are logged and disabled for the specific tool not supporting them
in the input generation tools to prevent their generation in the
next passes. This is also a standard part of black-box fuzzing be-
cause fuzzer tend to trigger the same few bugs until the genera-
tion parameters are changed. In our case, disabling a feature can
be done by changing the configuration of probability distributions
and changing the grammar used for generation. If some context
awareness is needed, it can be added in Verismith and some may
be added in GRAMMARINATOR. In case it cannot be done in GRaM-
MARINATOR, and no grammar change can be used to work around
the unsupported feature, GRAMMARINATOR will be disabled for the
following passes. This fuzzing campaign will continue until no test
fails or until a feature cannot be disabled and further testing cannot
continue without it being disabled.

One reason to use a bespoke tool like Verismith is the flexibility
offered by a familiar code base. This familiarity allows us to quickly
modify the source code. We may modify the source code to work
around bugs and non-compliances, and to test new ideas. One idea
tested in Verismith is the use of different random distribution for
the choice made during random generation. Another advantage of
a bespoke tool is to implement tooling to help the fuzzing without
having to consider how the tool would have to work on general
grammars. We expect this to be useful to increase coverage to a
similar level to what is achievable by TRIBBLE.

2.4 Rejection Testing

The rejection testing part of our experiment will use the grammar
mutation technique from Bendrissou et al. [10]. A fuzz-testing pass
will consist of the following steps illustrated in Figure 2: For all
tools, mutant grammars are generated by GMUTATOR [10]. These
grammars are used by GRAMMARINATOR to generate big enough
inputs in sufficient number to try to exercise the mutated parts.
The inputs are passed to various Verilog-consuming tools. It is
also passed to a reference Verilog parser and several SystemVerilog
parsers to know whether it is supposed to be accepted or rejected.
A test is failed depending on which parsers accepted and rejected
the input. For each failed test the failure cause is investigated and
logged.

A test accepted by a tool can fall into three categories: valid
Verilog, valid SystemVerilog, invalid SystemVerilog. We are inter-
ested in invalid SystemVerilog inputs accepted by the tools, and
valid SystemVerilog if the tool provides a Verilog mode. To dis-
criminate tests in the first category we run a preprocessor then
the Verismith parser. Discriminating between the second and third
category is more complicated as no tool is fully compliant with Sys-
temVerilog and all of the tool we run are also tested. We therefore

FUZZING ’24, September 16, 2024, Vienna, Austria

Table 2: Pilot experiment short results

Tool name Fuzzing status
Conformal Abandoned (wrong setup)
Formalpro 3 non-compliances and 1 bug

Icarus Verilog 5 non-compliance

+ 2 flagged as not supported

Jasper Abandoned (uninformative log file)
Leonardo Spectrum 4 non-compliances
Oasys-RTL Abandoned (uninformative log file)
Quartus 2 non-compliances

Questasim/Modelsim 5 non-compliances

Surelog 5 non-compliances

Slang 3 non-compliances

sV2v 3 non-compliances

Verible 3 non-compliances

Verific Abandoned (uninformative log file)
Verilator 13 non-compliances

Vivado 4 non-compliances

Yosys 2 non-compliances
flagged as not supported

do differential-testing with two of the most compliant SystemVer-
ilog parsers we have available. The first parser is Verific, the most
compliant industrial SystemVerilog parser. We chose it because it
seems to be the most compliant SystemVerilog parser we know of.
The second parser is ANTLR with the open-source ANTLR Sys-
temVerilog Grammar. We chose it because it covers the full lan-
guage and is the easiest to modify. The ease to modify matters to be
able to quickly improve compliance when both reference parsers
disagree. If they both accept the input the input is considered valid
SystemVerilog, if they both reject the input the input is considered
invalid SystemVerilog, if they disagree a human is used to decide
after examining the log produced by all the parsers.

3 Pilot Experiment

We ran a pilot experiment to prepare the grounds and test the vi-
ability of our planned experiment. This pilot experiment used the
same methodology as acceptance testing with several key differ-
ences:

(1) inputs are generated only with the Verismith fuzzer,

(2) we tested a restricted set of tools listed in Table 2,

(3) open-source tools were not modified to stop after parsing,
and

(4) we used only C-Reduce to reduce test cases.

The reason we only used Verismith is that we already implemented
the grammar fuzzing part to test its parser and make sure it is fully-
compliant. The reasons we tested a limited set of tools are that we
did not yet gather a full list of tools, we did not install all of them,
and we did not want to put unnecessary effort if the experiment
would yield uninteresting results. The reason we did not modify
open source tools is because we did not want to put the effort if
the experiment would yield uninteresting results.
The goals we tried to achieve with this pilot experiment were:

FUZZING ’24, September 16, 2024, Vienna, Austria

(1) prepare an infrastructure to fuzz SystemVerilog-consuming
tools,

(2) test the compliance of some open-source Verilog grammars,

(3) ensure grammar-based fuzzing is able to find non-compliance,
and

(4) ensure the Verismith parser, AST and fuzzer are fully-compliant.

The steps to run this fuzzing fuzzing campaign and how we ap-
proached them are described in the rest of this section.

3.1 Preliminary Work

To prepare for the pilot experiment we had some preliminary work
on Verismith. We implemented its new Verilog parser, prettyprinter,
and AST with the goal of them being fully compliant.

The Verilog parser is able to parse all valid Verilog and reject all
invalid Verilog in strict mode. It is also able to accept some invalid
but commonly considered valid Verilog outside strict mode but we
will not be using it in our experiments. The parser produces an AST
which encodes all language constructs described in the input with-
out encoding which way these language constructs are expressed
in the output. For instance there are two way to express module
ports in Verilog but the AST type unifies both so the parser does
not record which one is used in the input.

The AST type is exactly able to encode all language constructs
described in the standard and no more. The prettyprinter is able
to print all AST, and by doing so it only produces valid Verilog.
These last two features are relevant for the pilot experiment as the
way out tool generates inputs is by randomly walking its AST type
and printing the generated AST. The random walk is controlled
by probability distributions, which are exposed as configuration
options. The probability distribution available provide flexibility
through several distribution families like geometric and Poisson
distributions.

Walking recursive AST node types can lead to non-termination
if not handled properly. To avoid non-termination and limit the
size of the generated input, instead of opting for a hard depth limit,
we opted for an attenuation factor which reduces the weight of
non-terminals. This attenuation factor is updated by a user-set con-
stant to the power of the number of children nodes. This ensures
that deeper recursive AST become exponentially unlikely, so it lim-
its depth like a hard depth limit. But unlike a hard depth limit it also
limits width by ensuring that wider recursive AST become expo-
nentially unlikely.

The prettyprinter cannot print every valid Verilog. In particu-
lar the prettyprinter cannot produce the compiler directives which
can be eliminated by a preprocessing step and therefore the gener-
ated inputs should not exercise the tool-under-test’s preprocessor.
To add variety to the prettyprinter output some command line flags
are available and, when different ways of printing an AST node are
available, the one which conditions are the most restrictive and sat-
isfied is chosen.

To disable the generation of features we provide a configuration
to change the probability distribution of the random walk in the
AST type. If the configuration is not available we can also modify
the code to add and expose the necessary configuration. On top
of that the prettyprinter provides flags to circumvent bugs in the
tools-under-test’s parsers.

Quentin Corradi, John Wickerson, and George A. Constantinides

3.2 Setup

Before being able to run the pilot experiment, some implementa-
tion work was necessary to setup the tools and infrastructure. The
setup for the tools consisted of installing all the tools, ensuring
their license are valid and accepted, setting-up an environment
in which they can run, writing a script to run their parser on a
file, and extracting an informative log file. The infrastructure coor-
dinates the execution of a fuzz testing pass while solving several
challenges:

(1) Process should be parallelised to save time, especially license
checking time.

(2) Parallelisation of that many tools requires limitation of re-
sources such as concurrent processes and run-time of a sin-
gle process.

(3) Some of these tools do not allow several instances to run
at the same time so number of concurrent instances of the
same tool is also a resource to manage.

(4) Some processes can fail in a non fatal way, we should be
able to restart them.

(5) Our servers crashed many times in the weeks prior to the
experiment, so we should have checkpoints.

(6) All programs may not run on the same machine, so we should
be able to interrupt a run and continue it on a different ma-
chine.

Algorithm 1: Process forest scheduling

Input: forest, resc
running « 0
to_retry < 0
repeat
foreach (proc, tree) € running do
if proc is done then
running < running \ {{proc, tree)}
resc «— resc + resources(root(tree))
if return_code(proc) is special then
‘ to_retry « to_retry U {tree}
else if return_code(proc) is success then
forest «—
‘ forest U on_success(tree) Uon_end(tree)
else
forest «—
forest Uon_failure(tree) Uon_end(tree)

checkpoint (running, forest, to_retry)

foreach tree € forest do

if resources(root(tree)) < resc then

forest « forest \ {tree}

running < running U
{(launch(process(root(tree))),tree)}

resc «— resc — resources(root(tree))

wait_until_a_process_finishes(running)
until running = 0

Our solution to tackle these challenges is to express the tasks to
perform in a fuzzing pass as a forest of rooted trees. The algorithm

Automated Feature Testing of Verilog Parsers using Fuzzing (Registered Report)

we use to schedule and run the forest is similar to Algorithm 1.
The nodes of the trees are annotated with a process to run, the re-
sources necessary to run the process, and an optional timeout. A
node can have arbitrarily many children classified into three cate-
gories: run on success, run on failure, run on end. This way of ex-
pressing the fuzzing pass allows isolating critical parts requiring
limited or potentially unavailable resources, like an exclusive tool
license preventing several instances to run or a specific version
of libgec, from the parts which can be freely run and parallelised.
Therefore this tackles the first three challenges.

The fourth challenge is tackled by filtering special return codes
and adding the tree associated to the process of interest to a list of
trees to retry later. The fifth challenge is tackled by serialising* to a
file the forest left to run, the currently running trees, and the trees
to retry. The sixth challenge is tackled by changing the available
resources depending on which machine the algorithm is run and
by exiting when no process can be run anymore.

3.3 Applying Changes for the Next Pass

After each tool is run on a single input, a log file is recorded and
all other files are cleaned up. These log files are examined to de-
termine whether parsing was successful. If parsing failed the log
file is examined to list potential parsing errors. Each parsing error
is investigated in isolation to determine a root cause. This investi-
gation is helped with reducers and source-code examination. Re-
duction candidates are validated by the Verismith parser to ensure
compliance and avoid startup time before being passed to the tool-
under-test if the parsing succeeded. The reduced files are manually
checked for compliance as the root cause of the failure could lie in
Verismith not being fully-compliant. After the root cause of the
error under investigation is determined, we either fix Verismith or
are add an entry explaining the error to the list of non-compliances.
The list of non-compliances also records if there was some devel-
oper acknowledgement of the feature not being supported either
in the error message or in the source code.

The list of non-compliance is then used to disable the generation
of further test that would fail for the same reason. This can be done
because we identified the root cause of the issue and because the
fuzzing tool we use provides means to do it. There are several ways
our fuzzer allows disabling the generation of some files:

The first one is by setting to 0 the probability associated to the
generation of specific AST nodes. This method is very coarse grained
as the probability distribution are usually shared between all occur-
rences of an AST node type. If changing the probability distribu-
tion would disable the generation of files that would not trigger the
error then we try the second way. The second way is to duplicate
code and expose the necessary configuration to set the probabil-
ity of generating the AST node of concern to 0. This method is fine
grained but as the AST is not a concrete syntax tree, some language
constructs cannot be disabled this way and we have to try our third
option. The third way of disabling the generation of some inputs
is by adding a flag to change the code emitted by the prettyprinter
and working around the problematic generation when the flag is
present.

4Processes are specified as command lines, so they can be easily serialised.

FUZZING ’24, September 16, 2024, Vienna, Austria

We did not encounter non-compliances which required more
than these three methods to prevent triggering. We did find a bug
which requires context awareness to not be triggered. Adding some
context awareness can be done by changing the AST generation al-
gorithm. And if all previous methods fail, we can process and/or
filter inputs after their generation but before they are given to the
tool-under-test.

3.4 Preliminary Results

The results are summarised in Table 2. This table reports if the tool
didn’t get tested and the reason, or a number of bugs and non-
compliances and how many of these non-compliances were self-
reported as non supported (as defined in Section 3.3). We had to
give up testing some tools because the obtained log files were miss-
ing (Conformal) or did not allow us to pinpoint the unsupported
feature with our methodology (Jasper, Oasys-RTL, Verific).

A non-compliance represents a family of failing inputs which ac-
cording to the standard should be accepted. The counting of these
non-compliance is somewhat arbitrary as a family of inputs can
be arbitrary, but we tried to make these family focus on a part of a
rule in the Verilog BNF which can be distinguished from other non-
compliances. For instance the rule used by Surelog’s parser in the
example in the introduction contains two non-compliances. The
first one is explained in the introduction. The second one is that an
escaped identifier should be able to be followed by a space charac-
ter, a tabulation character, a newline character or a fromfeed char-
acter; whereas this rule only accepts space characters. These two
non-compliances are considered distinct because they are about
different parts of the same rule. The first one is about the charac-
ter class to which the Kleene star is applied, and the second one is
about the character(s) after the Kleene star.

As expected most tools do not support all features from a 20
years old standard. According to licensing terms we cannot publish
benchmark results for the closed source tools so we will not report
individual results. The most common non-compliances we found
were about escaped identifiers. Of these non-compliances, the two
common were the Kleene star replaced by a Kleene plus and the
preprocessor replacing what it considered a comment or a compiler
directives inside escaped identifiers.

These results points toward the ability of fuzzing to find non-
compliances in parsers. However some engineering work is still
needed to proceed with our planned experiment. This engineer-
ing work includes installing, interfacing and getting licenses for
all the missing tools, fixing and adapting the only Verilog grammar
we found to use with GRAMMARINATOR and GMUTATOR, and inter-
facing each open-source tool with a compatible coverage-guided
fuzzer.

Aside from the fuzzing campaign, we only found one candidate
grammar for Verilog and this candidate is not compliant either. We
did not find that out by running our fuzzer but by reading the gram-
mar itself. This read revealed that the grammar assumes all com-
piler directives can be eliminated by a processing step which is
not true: The standard specifies that some of compiler directives
do not impact the semantics, but also allows tools have a different
(unspecified) behaviour if they are used. We will therefore have to
adapt this grammar before running our planned experiment.

FUZZING ’24, September 16, 2024, Vienna, Austria

4 Related Work

Our work relies on several previous work: Acceptance testing re-
lies GRAMMARINATOR for input generation but we could have used
any other black-box grammar-based fuzzer [14, 17, 20, 21] and on
TRIBBLE [18] for the systematic input generation based on k-path
coverage. GRAMMARINATOR was chosen because it is considered a
state of the art grammar-based fuzzer and it is able to work with
ANTLR grammars. TRIBBLE was chosen because k-path coverage
is more general than production coverage, which is 1-path cover-
age. Even though TRIBBLE does not support ANTLR grammar, we
will try to use it because we found bugs in our preliminary experi-
ment that systematic testing based on production coverage would
be unable to find. Rejection testing relies on input mutation from
GMUTATOR [10].

The closest work to ours is Sv-TEsTs [6], a project by CHIPS
Alliance, which benchmarks many open-source tools according to
which features of the SystemVerilog standard they support. These
tests are come from several sources: some are extracted from the
language reference manual, some are taken from open-source tools’
test suites, some are open-source hardware designs, and some are
contributed by users. A great amount of manual work is required
to categorise them, minimise them, and ensure their compliance.
On top of that they lack any kind of systematic testing which is
our novelty compared to this work. In particular we were able to
quickly identify bugs that they missed with our pilot experiment,
even for the most compliant parser they feature.

Sv-TEsTs tests only a limited set of tools, all open-source, and
they do not attempt to exercise or list additional non-standard fea-
tures. In some contexts, non-standard features are not perceived
as an issue, but they do hinder design portability. On the other
hand, if there are widely-supported non-standard features, then
their identification can impact on future standardisation efforts.

Other SystemVerilog sources which can be used to perform fea-
ture testing include:

e SystemVerilog benchmark suites [5, 7, 25]. They are usually
realistic or challenging files which test what people actually
use and exercise the preprocessor. However they are not al-
ways standard compliant and use macros which values are
stored in an external and non portable manner. This pre-
vents these benchmark suites from being used for feature
testing.

o Test files from open source tools. They are minimised to test
specific features in a controlled manner. They usually cover
more features at the expense of having a single test for each
feature. They are not always standard compliant.

o Existing Verilog fuzzers [19, 36]. The existing ones are de-
signed to fuzz features that the tools are able to parse be-
cause finding parsing bugs is not their focus. Therefore they
are mostly useless for us.

To automate testing with existing inputs we need to know what
part of the SystemVerilog grammar they cover so a compliant Sys-
temVerilog grammar is still necessary. Grammar coverage give an
approximation the real inputs covered, but the gap can be closed by
existing mutation fuzzing tools. Even without mutation, we think

Quentin Corradi, John Wickerson, and George A. Constantinides

these sources are a valuable way of finding parser bugs and com-
pliance issues and used them to that end on a previous version of
the Verismith parser.

There are other work similar to ours but not focused on Verilog.
Kim et al. [22] build an input grammar by intercepting calls to C
string manipulation functions. Their grammar is way simpler than
the Verilog grammar and most tool use parser generator which
may not rely on string manipulation functions.

5 Discussion

We think rejection testing can be improved by adding a feature in
one of the tools we use. The main problem to overcome with rejec-
tion testing is that generating slightly invalid but accepted inputs
is unlikely. We chose to use GMUTATOR because it should focus on
producing likely accepted invalid inputs. To generate these inputs
it first generates a mutant grammar, but then there is no mecha-
nism to ensure that files produced with this grammar could not
have been generated with the original grammar. Such a mecha-
nism would avoid the generation of inputs which acceptance is
already known, which would save time and increase fuzzing effi-
ciency.

This feature could especially be useful because GRAMMARINA-
TOR is unlikely to reach a mutated rule under several uses of the
Kleene operator. The way Kleene operator are handled leads the
number of repetitions to follow a geometric distribution. The pro-
duction of 0 repetitions is more likely than any other number of
repetition which prevents the generation of an input featuring the
repeated rule. A rule under n uses of the Kleene operator will be
reached with probability (1 —p)" where p is the probability of
stopping generation at 0 repetitions. A workaround would be choos-
ing a small p at the expense of producing huge inputs because
the expected number of repetition is <. This issue could solved by
choosing other distributions for Kleene operators such as a Poisson
distribution. The Verismith fuzzer provides the ability to choose
the probability distribution of Kleene operators and many more
things between varied families of distributions.

The process of growing an under-approximation of the accepted
inputs could also be improved by using the messages in the log
files produced by parsers. Instead of relying on acceptance of an
input which is unlikely with mutations, messages such as “At line
X, column Y: invalid token Z” and “At line X, column Y: Expected
tokenA, tokenB, ..” can be exploited to know whether a mutation
is interesting. Even though they all indicate a failure, the position
of the failure is of prime interest because these parsers usually pro-
cess inputs in only one direction®. All the mutations that happened
before the point of failure were therefore successful. On top of that
token lists like in the second example message can be exploited
to discover new tokens which can be added to a dictionary. This
could be used for black-box fuzzing to improve automation pro-
vided token position from the parser can be exploited which can
be complicated because of tabulation characters. In the cases ex-
ploiting these error messages also require editing the parser’s code
then they would have no interest because it is no longer black-box
fuzzing, and coverage-guided techniques will likely be better.

Swith potential backtracking

Automated Feature Testing of Verilog Parsers using Fuzzing (Registered Report)

Full automation of feature testing might be achievable using
coverage-guided fuzzing. It is not a black-box fuzzing technique so
it is not applicable to closed source tools. Testing coverage-guided
fuzzing is still interesting as an experiment to increase automation
of the technique as much as possible. It would involve changing
the code of the tool-under-test to isolate the parsing step. Input on
which the tool’s parser fails but a fully-compliant parser succeeds
are inputs we are searching for in acceptance testing, while inputs
on which the tool’s parser succeeds but a fully-compliant parser
fails are inputs we are searching for in rejection testing. If from
these inputs we can edit a grammar to make it describe what the
tools accepts then we consider that feature testing can indeed be
automated fully with coverage-guided fuzzing. We know there is
work on deducing a grammar from a set of inputs but we do not
know if there is work on editing a approximation of a grammar
given a set of inputs.

A lot of effort put in our experiment goes into dealing with the
quirks of black-box fuzzing on closed-source tools with restrictive
licensing. We think there is still a lot of possible improvements
given enough engineering time. One area of improvement is the
glue between the fuzzing script and the tools. We settled with run-
ning tools in parallel to save on license checking time, but a better
solution might have been writing a software server which starts
the tool and performs an action to force a license check. This soft-
ware server would then run the tool on provided inputs while en-
suring it stays gets to a proper state before processing the next
input. This is feasible and could even be worth on unreliable physi-
cal servers like ours which crash from time to time and need these
software servers to be restarted.

Another area of improvement is the adequacy of closed-source
parser with our definition of parsing. Even though their license for-
bid reverse engineering, a judgement of the Court of Justice of the
European Union [26] clarifies that for the purpose of fixing bugs
and interoperability we can reverse engineer and modify the code
of these tools. So we are allowed to insert breakpoints in binaries
and disable functions like we would do for open-source tools®’.
This would allows greater automation of our technique, and other
previously non black-box fuzzing methodology to be significantly
improved.

Acknowledgments

We thank Europractice for providing tools and licenses, Michalis
Pardalos for installing some of the tested tools, Bachir Bendrissou
for helping us with using GRAMMARINATOR, Alastair Donaldson
for suggesting this conference and helping fleshing out the angle
used to structure this article, and the reviewers for giving valuable
feedback and suggestions such as the comparison to systematic
testing.

References

[1] [n.d.]. hdlConvertor. Retrieved June 20, 2024 from https://github.com/Nic30/
hdlConvertor

®However bypassing license checks might also not be allowed even with this ruling.
"This is not legal advice. We are not lawyers. This document has not been reviewed
by a lawyer.

FUZZING ’24, September 16, 2024, Vienna, Austria

1996. IEEE Standard Hardware Description Language Based on the Verilog(R)
Hardware Description Language. IEEE Std 1364-1995 (1996), 1-688. https://doi.
org/10.1109/IEEESTD.1996.81542

2006. IEEE Standard for Verilog Hardware Description Language. IEEE Std
1364-2005 (Revision of IEEE Std 1364-2001) (2006), 1-590. https://doi.org/10.1109/
IEEESTD.2006.99495

2024. IEEE Standard for SystemVerilog-Unified Hardware Design, Specification,
and Verification Language. IEEE Std 1800-2023 (Revision of IEEE Std 1800-2017)
(2024), 1-1354. https://doi.org/10.1109/IEEESTD.2024.10458102

Christoph Albrecht. 2005. IWLS 2005 Benchmarks. (2005). https://iwls.org/
iwls2005/benchmark_presentation.pdf

CHIPS Alliance. [n.d.]. SystemVerilog Report. Retrieved May 24, 2024 from
https://chipsalliance.github.io/sv-tests-results/

Luca Amaru, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. 2015. The
EPFL Combinational Benchmark Suite. Proceedings of the 24th International
Workshop on Logic & Synthesis (IWLS). http://infoscience.epfl.ch/record/207551
Mustafa Said Agca. 2022. ANTLR4 SystemVerilog grammar. Retrieved
June 20, 2024 from https://github.com/antlr/grammars-v4/tree/master/verilog/
systemverilog

Mustafa Said Agca. 2022. ANTLR4 Verilog grammar. Retrieved June 20, 2024
from https://github.com/antlr/grammars-v4/tree/master/verilog/verilog

Bachir Bendrissou, Cristian Cadar, and Alastair F. Donaldson. 2023. Grammar
Mutation for Testing Input Parsers (Registered Report). In Proceedings of the 2nd
International Fuzzing Workshop (Seattle, WA, USA) (FUZZING 2023). Association
for Computing Machinery, New York, NY, USA, 3-11. https://doi.org/10.1145/
3605157.3605170

Aliaksei Chapyzhenka. [n. d.]. Tree-sitter-verilog. Retrieved June 20, 2024 from
https://github.com/tree-sitter/tree-sitter-verilog

Alain Dargelas and Henner Zeller. 2020. Universal Hardware Data Model
(WOSET 2020). https://woset-workshop.github.io/WOSET2020.html#article-10
Harry D. Foster. 2022. The 2022 Wilson Research Group Functional Verification
Study. Technical Report. https://blogs.sw.siemens.com/verificationhorizons/
2022/10/10/prologue-the-2022-wilson-research- group- functional-verification-
study

Andrew Fryer, Thomas Dean, and Brian Lachine. 2023. Input Output Gram-
mar Coverage in Fuzzing. In MILCOM 2023 - 2023 IEEE Military Communica-
tions Conference (MILCOM). 937-943. https://doi.org/10.1109/MILCOM58377.
2023.10356308

Miguel Guerrero. [n.d.]. ANTLR4_SystemVerilog_Parser. ~Retrieved June 20,
2024 from https://github.com/miguel-guerrero/antlr4_system_verilog_parser
Naoya Hatta. [n.d.]. Sv-parser. Retrieved June 20, 2024 from https://github.
com/dalance/sv-parser

Nikolas Havrikov and Andreas Zeller. 2019. Systematically Covering Input
Structure. In 2019 34th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). 189-199. https://doi.org/10.1109/ASE.2019.00027
Nikolas Havrikov and Andreas Zeller. 2020. Systematically covering input struc-
ture. In Proceedings of the 34th IEEE/ACM International Conference on Automated
Software Engineering (San Diego, California) (ASE ’19). IEEE Press, 189-199.
https://doi.org/10.1109/ASE.2019.00027

Yann Herklotz and John Wickerson. 2020. Finding and Understanding Bugs
in FPGA Synthesis Tools. In Proceedings of the 2020 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (Seaside, CA, USA) (FPGA °20).
Association for Computing Machinery, New York, NY, USA, 277-287. https:
//doi.org/10.1145/3373087.3375310

Renéita Hodovan, Akos Kiss, and Tibor Gyiméthy. 2018. Grammarinator: a
grammar-based open source fuzzer. In Proceedings of the 9th ACM SIGSOFT In-
ternational Workshop on Automating TEST Case Design, Selection, and Evaluation
(Lake Buena Vista, FL, USA) (A-TEST 2018). Association for Computing Machin-
ery, New York, NY, USA, 45-48. https://doi.org/10.1145/3278186.3278193
Hossein Keramati and Seyed-Hassan Mirian-Hosseinabadi. 2015. Generating se-
mantically valid test inputs using constrained input grammars. Information and
Software Technology 57 (2015), 204-216. https://doi.org/10.1016/j.infsof.2014.09.
007

Su Yong Kim, Sungdeok Cha, and Doo-Hwan Bae. 2013. Automatic and light-
weight grammar generation for fuzz testing. Computers & Security 36 (2013),
1-11. https://doi.org/10.1016/j.cose.2013.02.001

Google LLC, David Fang, Sergey Sokolov, Jonathan Mayer, Jeremy Colebrook-
Soucie, Cameron Korzecke, Carissa Kathuria, and Henner Zeller. [n.d.]. Verible.
Retrieved June 20, 2024 from https://chipsalliance.github.io/verible

Andreas L66w and Magnus O. Myreen. 2019. A Proof-Producing Translator for
Verilog Development in HOL. In 2019 IEEE/ACM 7th International Conference on
Formal Methods in Software Engineering (FormaliSE). 99-108. https://doi.org/10.
1109/FormaliSE.2019.00020

Kevin E. Murray, Scott Whitty, Suya Liu, Jason Luu, and Vaughn Betz. 2015.
Timing-Driven Titan: Enabling Large Benchmarks and Exploring the Gap be-
tween Academic and Commercial CAD. ACM Trans. Reconfigurable Technol. Syst.
8, 2, Article 10 (mar 2015), 18 pages. https://doi.org/10.1145/2629579

https://github.com/Nic30/hdlConvertor
https://github.com/Nic30/hdlConvertor
https://doi.org/10.1109/IEEESTD.1996.81542
https://doi.org/10.1109/IEEESTD.1996.81542
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2024.10458102
https://iwls.org/iwls2005/benchmark_presentation.pdf
https://iwls.org/iwls2005/benchmark_presentation.pdf
https://chipsalliance.github.io/sv-tests-results/
http://infoscience.epfl.ch/record/207551
https://github.com/antlr/grammars-v4/tree/master/verilog/systemverilog
https://github.com/antlr/grammars-v4/tree/master/verilog/systemverilog
https://github.com/antlr/grammars-v4/tree/master/verilog/verilog
https://doi.org/10.1145/3605157.3605170
https://doi.org/10.1145/3605157.3605170
https://github.com/tree-sitter/tree-sitter-verilog
https://woset-workshop.github.io/WOSET2020.html#article-10
https://blogs.sw.siemens.com/verificationhorizons/2022/10/10/prologue-the-2022-wilson-research-group-functional-verification-study
https://blogs.sw.siemens.com/verificationhorizons/2022/10/10/prologue-the-2022-wilson-research-group-functional-verification-study
https://blogs.sw.siemens.com/verificationhorizons/2022/10/10/prologue-the-2022-wilson-research-group-functional-verification-study
https://doi.org/10.1109/MILCOM58377.2023.10356308
https://doi.org/10.1109/MILCOM58377.2023.10356308
https://github.com/miguel-guerrero/antlr4_system_verilog_parser
https://github.com/dalance/sv-parser
https://github.com/dalance/sv-parser
https://doi.org/10.1109/ASE.2019.00027
https://doi.org/10.1109/ASE.2019.00027
https://doi.org/10.1145/3373087.3375310
https://doi.org/10.1145/3373087.3375310
https://doi.org/10.1145/3278186.3278193
https://doi.org/10.1016/j.infsof.2014.09.007
https://doi.org/10.1016/j.infsof.2014.09.007
https://doi.org/10.1016/j.cose.2013.02.001
https://chipsalliance.github.io/verible
https://doi.org/10.1109/FormaliSE.2019.00020
https://doi.org/10.1109/FormaliSE.2019.00020
https://doi.org/10.1145/2629579

FUZZING ’24, September 16, 2024, Vienna, Austria

[26] Court of Justice of the European Union. 2021. Case C-13/20: Judgment of
the Court (Fifth Chamber) of 6 October 2021 (request for a preliminary rul-
ing from the Cour d’appel de Bruxelles — Belgium) — Top System SA v Bel-
gian State (Reference for a preliminary ruling — Copyright and related rights
— Legal protection of computer programs — Directive 91/250/EEC — Article 5
— Exceptions to the restricted acts — Acts necessary to enable the lawful pur-
chaser to correct errors — Concept — Article 6 — Decompilation — Conditions).
https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:62020CJ0013
Michael Popoloski. [n.d.]. Slang. Retrieved June 20, 2024 from https://sv-
lang.com
[28] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun
Yang. 2012. Test-Case Reduction for C Compiler Bugs. In Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and Implementation
(Beijing, China) (PLDI ’12). Association for Computing Machinery, New York,
NY, USA, 335-346. https://doi.org/10.1145/2254064.2254104
[29] Dave Rich. 2023. What’s Next for SystemVerilog in the Upcoming IEEE 1800
standard (DVCon 2023). https://dvcon-proceedings.org/document/whats-next-
for-systemverilog-in-the-upcoming-ieee-1800-standard
Fabian Schuiki, Andreas Kurth, Tobias Grosser, and Luca Benini. 2020. LLHD:
a multi-level intermediate representation for hardware description languages.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language

[27

[30

[31

[35

[36

Quentin Corradi, John Wickerson, and George A. Constantinides

Design and Implementation (London, UK) (PLDI 2020). Association for Comput-
ing Machinery, New York, NY, USA, 258-271. https://doi.org/10.1145/3385412.
3386024

David Shah, Eddie Hung, Claire Wolf, Serge Bazanski, Dan Gisselquist, and Mio-
drag Milanovic. 2019. Yosys+nextpnr: An Open Source Framework from Ver-
ilog to Bitstream for Commercial FPGAs. In 2019 IEEE 27th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM). 1-4.
https://doi.org/10.1109/FCCM.2019.00010

Zachary Snow. [n.d.]. Sv2v. Retrieved June 20, 2024 from https://github.com/
zachjs/sv2v

Wilson Snyder. [n.d.]. Verilator. Retrieved June 20, 2024 from https://www.
veripool.org/verilator

Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su. 2018.
Perses: Syntax-Guided Program Reduction. In Proceedings of the 40th Interna-
tional Conference on Software Engineering. Association for Computing Machin-
ery, 361-371. https://doi.org/10.1145/3180155.3180236

Stephen Williams. [n.d.]. Icarus Verilog. Retrieved June 20, 2024 from https:
//steveicarus.github.io/iverilog

Claire Wolf. 2019. VlogHammer. Retrieved May 24, 2024 from https://github.
com/YosysHQ/VIogHammer

Received 2024-06-21; accepted 2024-07-22

https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:62020CJ0013
https://sv-lang.com
https://sv-lang.com
https://doi.org/10.1145/2254064.2254104
https://dvcon-proceedings.org/document/whats-next-for-systemverilog-in-the-upcoming-ieee-1800-standard
https://dvcon-proceedings.org/document/whats-next-for-systemverilog-in-the-upcoming-ieee-1800-standard
https://doi.org/10.1145/3385412.3386024
https://doi.org/10.1145/3385412.3386024
https://doi.org/10.1109/FCCM.2019.00010
https://github.com/zachjs/sv2v
https://github.com/zachjs/sv2v
https://www.veripool.org/verilator
https://www.veripool.org/verilator
https://doi.org/10.1145/3180155.3180236
https://steveicarus.github.io/iverilog
https://steveicarus.github.io/iverilog
https://github.com/YosysHQ/VlogHammer
https://github.com/YosysHQ/VlogHammer

	Abstract
	1 Introduction
	2 Planned Experiment
	2.1 Research Questions
	2.2 Methodology
	2.3 Acceptance Testing
	2.4 Rejection Testing

	3 Pilot Experiment
	3.1 Preliminary Work
	3.2 Setup
	3.3 Applying Changes for the Next Pass
	3.4 Preliminary Results

	4 Related Work
	5 Discussion
	Acknowledgments
	References

