
How can we avoid constructing C++ litmus tests that are racy
(and hence useless)? For example, these two executions are
both disallowed by C++ ...

... and give rise (respectively) to similar-looking litmus tests...

... but the left-hand test is racy! We avoid this problem by not
generating executions like the top-left one in the first place. We
achieve this by imposing an extra constraint, called deadness.
(See our paper for more details.)

Automatically Comparing
Memory Consistency Models

John Wickerson
Imperial College London

Mark Batty
University of Kent

Tyler Sorensen
Imperial College London

George A. Constantinides
Imperial College London

In the specification of languages and architectures, a memory
consistency model (MCM) defines what happens when threads
access shared memory locations, and the extent to which
different threads see consistent data. MCMs often take the form
of a set of axioms that characterise which of a program's
executions are allowed.

Multiprocessors (x86, ARM, Power), graphics processors
(Nvidia, AMD), and high-level languages (C, C++, OpenCL) all
define their own MCM.

Because MCMs take into account various optimisations
employed by compilers and architectures, they are often
complex and counterintuitive. This makes them challenging to
design and to understand. Indeed, many bugs have been traced
back to programmers, compiler-writers, and architects
misunderstanding MCMs.

In particular,
• it is hard to assess the impact of a proposed change to an

MCM's set of axioms,
• it is hard to ensure that a compiler mapping correctly

implements its source language's MCM using its target
language's MCM, and

• it is hard to ensure that a compiler optimisation is valid for a
given MCM.

Context

Problem

We use a constraint solver called Alloy to search for a program
execution within the 'diff' between two given MCMs, gradually
increasing the upper bound on execution size until one is found
or time runs out. We then construct a litmus test that can only
pass by taking this execution. (Getting Alloy to generate litmus
tests directly is computationally infeasible.)
• If we give Alloy two variants of the same MCM, then any

resultant litmus test is minimal for distinguishing them.
• If we give Alloy a source MCM, and a target MCM composed

with a compiler mapping, then any resultant litmus test is a
minimal example of a bug in the mapping.

• If we give Alloy the same MCM twice, the second copy
composed with a compiler optimisation, then any resultant
litmus test is a minimal example of a bug in the
optimisation.

Our solution

• We compared changes to the C++ MCM proposed by Batty et
al. (2016), Nienhuis et al. (2016), and Lahav et al. (2017)
against the original C++ MCM. The distinguishing litmus tests
that Alloy found automatically are simpler than or the same
as those found manually by the respective authors.

• We checked some compiler optimisations against the C++
MCM, and found bugs that are simpler than or the same as
those found manually by Vafeiadis et al. (2015).

• We checked compiler mappings from C++ to Power
multiprocessors and from OpenCL to AMD graphics
processors, and found bugs that are simpler than or the
same as those found manually by Lahav et al. (2016) and by
Wickerson et al. (2015).

• We used our technique to aid the development of a refined
MCM for Nvidia graphics processors that supports an
efficient mapping from OpenCL.

1. M. Batty, A. F. Donaldson, and J. Wickerson, Overhauling SC Atomics in C11 and
OpenCL, in POPL 2016.

2. K. Nienhuis, K. Memarian, and P. Sewell, An Operational Semantics for C/C++11
Concurrency, in OOPSLA 2016.

3. O. Lahav, N. Giannarakis, and V. Vafeiadis, Taming Release-Acquire
Consistency, in POPL 2017.

4. V. Vafeiadis, T. Balabonski, S. Chakraborty, R. Morisset, and F. Zappa Nardelli,
Common Compiler Optimisations are Invalid in the C11 Memory Model and what
we can do about it, in POPL 2015.

5. O. Lahav, V. Vafeiadis, J. Kang, C.-K. Hur, and D. Dreyer, Repairing Sequential
Consistency in C/C++11. Draft, 2016.

6. J. Wickerson, M. Batty, B. M. Beckmann, and A. F. Donaldson, Remote-Scope
Promotion: Clarified, Rectified, and Verified, in OOPSLA 2015.

Results

A thorny issue

x=1;
store(y,1,
 REL);

r0=load(y,
 ACQ);
r1=x;

sb sb
Wna x 1

Wrel y 1

Racq y 1

Rna x 0
rf sb sb

Wna x 1

Wrel y 1

Racq y 1

Rna x 0
rf

x=1;
store(y,1,
 REL);

r0=load(y,
 ACQ);
if(r0) r1=x;

cd

We gratefully acknowledge the financial support of a Research Fellowship from the Royal Academy of Engineering and the Lloyd’s Register Foundation (Batty), a Research Chair from the Royal Academy of
Engineering and Imagination Technologies (Constantinides), an EPSRC Impact Acceleration Award, EPSRC grants EP/I020357/1, EP/K034448/1, and EP/K015168/1, and a gift from Intel Corporation.

