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ABSTRACT
Systems for rewriting arithmetic expressions play a crucial role in
several modern hardware and software toolchains, such as data-
path optimisers and peephole rewriting. Prior work has introduced
techniques for formally verifying rewrites that either fix a concrete
bitwidth or are parametrised by a single bitwidth. But many useful
rewrites, such as associativity rules, involve more than one bitwidth
parameter, making them conditional on these parameters, and prior
work cannot reason about them. We are developing a tool that
extends rewrite verification to multiple bitwidth parameters, lever-
aging e-graph term rewriting over uninterpreted functions. Our
preliminary results highlight cases where our approach successfully
verifies rewrites that other tools fail to prove. In the longer term,
we aim to build an automated, Alive-style, push-button verifier for
parametric hardware designs.

1 INTRODUCTION
Recent hardware optimisation tools have employed term rewriting
over bitvector expressions to discover optimisations in RTL design
at the arithmetic level [4, 5, 7, 19]. At the heart of these tools are
conditional rewrites, 𝑙ℎ𝑠 and 𝑟ℎ𝑠 expressions containing parametric
bitwidth terms which are equal if a condition is true. The rewrites
usually reflect mathematical identities, such as associativity or
distributivity of addition andmultiplication, or identities containing
shift operations. Consider the following circuit ((𝑎5 + 𝑏3)6 + 𝑐3)6,
where the subscript denotes the bitwidth of the term, an obvious
optimisation would be to apply associativity of addition to obtain
(𝑎5 + (𝑏3 + 𝑐3)4)6 reducing a 6-bit adder to a 4-bit one. This rewrite
is, in general, not always valid, and depends on the bitwidths of the
operators and operands.

Verifying the correctness of these conditional rewrites, defined
over parametric bitwidth terms, falls outside of the scope of current
solvers. Instead, [5, 7] rely on industrial equivalence checkers to
perform translation validation on the optimised RTL. Equivalence
checkers also rely on term rewriting [10] to discover equivalences
between arithmetic expressions in order to avoid bit-blasting and
the exponential runtime it incurs. Recent work [8] highlights the
limitations of this arithmetic rewriting, showing how a particular
equivalence could not be proved for non-uniform bitwidths, and
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hypothesizing the issue may stem from an overly restrictive con-
dition on a rewrite rule, possibly due to challenges in proving its
correctness.

Peephole optimisations, which are a form of term rewriting over
SSA IRs, lie at the core of modern software compilers, such as
LLVM. These optimisation passes, such as the ‘InstCombine’ pass,
have been at the centre of extensive formal verification efforts
[12, 13], which aim to provide formal guarantees on the correctness
of the rewrites. However, correctness is only guaranteed for specific
bitwidths by enumerating all parameters of interest, and recent
work in generalising these rewrites [14] highlights this challenge
and calls for a tool that supports parametric bitwidth reasoning.

Solving equalities for parametric width bitvectors is currently
being explored in the SMT solver domain, with some approaches
encoding bitvector expressions as non-linear integer arithmetic [15]
and others using dependently typed bitvectors in combination with
interactive theorem provers [2, 9, 11], requiring manual proofs in
some cases. These approaches are all based on the SMT-LIB theory
of fixed-sized bitvectors [1] which enforces bitwidths to be concrete
numbers, and by extension the tools allow for a single bitwidth
parameter, limiting their applicability to the hardware domain.

We propose an approach for proving bitvector equalities over
multiple parametric bitwidths based on term rewriting in e-graphs,
using a translation to non-linear integer arithmetic similar to [15],
and generating explainable proof certificates. In the following sec-
tions we describe the approach and present some preliminary re-
sults for a prototype implementation.

2 MODULO ARITHMETIC EQUIVALENCE
2.1 Equality Saturation for Verification
E-graphs and equality saturation naturally lend themselves to the
task of verifying equality between two expressions in a language,
as demonstrated in [8, 17, 18]. Given a 𝑙ℎ𝑠 and a 𝑟ℎ𝑠 , checking
their equivalence amounts to instantiating them in the e-graph and
saturating the e-graph using a set of rewrites; if the root nodes of
the expressions belong to the same equivalence class then the two
are equivalent. In this prototype, we use the egg [20] library to
implement e-graphs and equality saturation.

2.2 Mapping Hardware Operations to Integer
Arithmetic

We define a language which captures the semantics of a generic
hardware description language in terms of non-linear integer arith-
metic operations. A bitvector term of bitwidth 𝑝 is interpreted as
an integer modulo 2𝑝 , where 𝑝 is a symbolic constant assumed to
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Name Left-hand side Right-hand side Condition

add-1 (𝑎𝑞 + 𝑏𝑟 )𝑝 (𝑎𝑞 + 𝑏𝑟 ) 𝑞 < 𝑝 ∧ 𝑟 < 𝑝

add-2 (𝑎𝑞 + 𝑏)𝑝 (𝑎 + 𝑏)𝑝 𝑞 ≥ 𝑝

mul-1 (𝑎𝑞 × 𝑏𝑟 )𝑝 𝑎𝑞 × 𝑏𝑟 𝑝 ≥ 𝑟 + 𝑞
mul-2 (𝑎𝑞 × 𝑏)𝑝 (𝑎 × 𝑏)𝑝 𝑞 ≥ 𝑝

mul-pow2 (𝑎𝑝 × 2𝑏𝑞 )𝑠 𝑎𝑝 × 2𝑏𝑞 𝑠 ≥ 𝑝 + 2𝑞 − 1
reduce (𝑎𝑞)𝑝 (𝑎𝑞) 𝑝 ≥ 𝑞

div (𝑎𝑞 ÷ 𝑏)𝑝 (𝑎𝑞 ÷ 𝑏) 𝑝 ≥ 𝑞

Table 1: Modulo simplification rewrites

be strictly greater than 0, 𝑥𝑝 ≜ 𝑥 mod 2𝑝 . In this work we interpret
all variables as unsigned integers.

Bitvector arithmetic operators operating on 𝑞-many bits are
similarly translated to integers by applying modulo 2𝑞 to the re-
sulting expression. For example, the 9-bit addition of 4 and 5-bit
variables 𝑥 and 𝑦 is represented as (𝑥4 + 𝑥5)9, which is shorthand
for (𝑥 mod 24 + 𝑦 mod 25) mod 29.

Shift operations are expressed in terms of multiplication and
euclidean division (÷) of exponential terms in the form 2𝑡 . So, a left
shifting operation 𝑎 ≪ 𝑏 is defined as 𝑎× 2𝑏 and a right shift 𝑎 ≫ 𝑏

is defined as 𝑎 ÷ 2𝑏 , where 𝑎 ÷𝑏 = ⌊𝑎/𝑏⌋. We also define a constant
propagation analysis using the semantics described above.

2.3 Conditional Rewrite Rules
Equalities over parametric bitwidth variables and operators are
usually only true under some condition on the bitwidths. Consider a
simplified version of the previous example, associativity of addition
for bitwidths 𝑝, 𝑞 and 𝑟 : ((𝑎𝑝 +𝑏𝑝 )𝑞 +𝑐𝑝 )𝑟 = (𝑎𝑝 + (𝑏𝑝 +𝑐𝑝 )𝑞)𝑟 ; the
equality holds if 𝑞 > 𝑝 and 𝑟 > 𝑞 , i.e. the case where the adders
capture the full precision of the operands, including overflows, but
it also holds if 𝑞 ≥ 𝑟 since the 𝑟 -bit addition discards any extra bits
that might be introduced by the 𝑞-bit adder.

In order to discover equalities in the modular arithmetic domain
we introduce a set of conditional rewrites (Table 1) which allow for
removal of the modulo operator from an expression, allowing for a
further set of standard arithmetic rewrites, defined over integers,
to be applied, leading to equivalence. In order to apply the modulo-
removing rewrites a symbolic condition must be provided, this is
then used to symbolically evaluate the preconditions of Table 1,
and choose whether to apply the rewrite or not.

To illustrate this, take the previous example with the 𝑞 ≥ 𝑟

condition, the prototype produces the following chain of rewrites,
showing how the lhs and rhs are rewritten to a common expression;
the arrow shows the direction the rewrite (in brackets) is applied
to the expression on that line:

𝑙ℎ𝑠 = ((𝑎𝑝 + 𝑏𝑝 )𝑞 + 𝑐𝑝 )𝑟 ↓ (add-2)
= ((𝑎𝑝 + 𝑏𝑝 ) + 𝑐𝑝 )𝑟

(associativity) ↑ = (𝑎𝑝 + (𝑏𝑝 + 𝑐𝑝 ))𝑟
(commutativity) ↑ = ((𝑏𝑝 + 𝑐𝑝 ) + 𝑎𝑝 )𝑟

(add-2) ↑ = ((𝑏𝑝 + 𝑐𝑝 )𝑞 + 𝑎𝑝 )𝑟
(commutativity) ↑ = (𝑎𝑝 + (𝑏𝑝 + 𝑐𝑝 )𝑞)𝑟 = 𝑟ℎ𝑠

(1)

We formally prove each rewrite in Table 1 using the Isabelle [16]
proof assistant, providing a robust guarantee of the correctness of
the overall equivalence. Having found equivalence, the individual
steps that led to it can be extracted and used to generate an inter-
pretable proof certificate in the Isabelle/HOL language, this is left
as future work.

3 PRELIMINARY RESULTS
As a benchmark, we take the set of conditional rewrites defined
in [6]; these are used to automate RTL datapath optimisation. Out
of the 27 conditional rewrites, we consider 16, excluding those
which contain operators not implemented yet: the ternary operator,
negation, concatenation and more complex merging operators. The
prototype is able to automatically verify all 16 conditional equiv-
alences using the set of rewrites defined above and a set of basic
arithmetic identities.

3.1 Comparison
All equivalences were manually proven in Isabelle using lemmas
corresponding to the prototype’s rewrites, relying on automated
techniques like Sledgehammer[3] to assess the advantage of our cus-
tom e-graph solver. While Sledgehammer employs an SMT solver
that also uses an e-graph approach for satisfiability, we observed
four caseswhere proof automation fails, timing out after oneminute,
demonstrating the advantage of our prototype. For example, Isabelle
failed to automatically prove the following equality:

𝑡 > 1 ∧ 𝑡 > 𝑝 ∧ 𝑠 ≥ 𝑝 + 𝑞 =⇒
((𝑎𝑝 × 𝑏𝑞)𝑠 + 𝑏𝑞)𝑟 = ((𝑎𝑝 + 11)𝑡 × 𝑏𝑞)𝑟 (2)

The other 3 cases are shift-merging operations and the (𝑎𝑝 + (𝑏𝑡 ≫
𝑐𝑢 )𝑞)𝑟 = (((𝑎𝑝 ≪ 𝑐𝑢 )𝑠 + 𝑏𝑡 )𝑣 ≫ 𝑐𝑢 )𝑟 conditional rewrite.

Another interesting point of comparison is with [15], where
authors use the Alive [13] test-suite as a benchmark for parametric
bitwidth bitvector equalities and they are unable to prove any of
the ‘InstCombineShift’ optimisations. This tool is able to prove the
following equality:

(𝑠 ≥ 𝑟 ∨ 𝑠 > max(𝑝, 𝑞)) ∧ 𝑢 ≥ 𝑟 =⇒
((𝑎𝑝 ≪ 𝑐𝑡 )𝑢 + (𝑏𝑞 ≪ 𝑐𝑡 )𝑢 )𝑟 = ((𝑎𝑝 + 𝑏𝑞)𝑠 ≪ 𝑐𝑡 )𝑟 (3)

which is a much more general case of the ‘InstCombineShift:497d’
optimisation (𝑥 ≪ 𝐶) + (𝐶2 ≪ 𝐶) = (𝑥 + 𝐶2) ≪ 𝐶 , where the
variable 𝑥 and constants 𝐶,𝐶2 are of the same bitwidth.

4 CONCLUSIONS AND FUTUREWORK
We describe a method for finding equivalences between bitvector
expressions with multiple parametric bitwidths and we present a
prototype which is currently able to solve such equivalences given a
condition, succeeding in case where other approaches currently fail.
We are working on automatic formalisation of the proof, to generate
a certificate, extending the language to be able to reason about
signed integers and we are also exploring techniques for axiomizing
bitwise operations in terms of integer arithmetic, similar to [15]. In
the longer term, we aim to introduce a SystemVerilog front-end to
allow for push-button verification of parametric modules, inspired
by the online Alive2 rewrite verifier1.
1https://alive2.llvm.org/

https://alive2.llvm.org/
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