
Parametric Bitwidth Rewrite Verification via Equality Saturation
(work in progress)

Luigi Rinaldi
Imperial College London

Yann Herklotz
EPFL

John Wickerson
Imperial College London

Samuel Coward
Intel Corporation

ABSTRACT
Systems for rewriting arithmetic expressions play a crucial role in
several modern hardware and software toolchains, such as data-
path optimisers and peephole rewriting. Prior work has introduced
techniques for formally verifying rewrites that either fix a concrete
bitwidth or are parametrised by a single bitwidth. But many useful
rewrites, such as associativity rules, involve more than one bitwidth
parameter, making them conditional on these parameters, and prior
work cannot reason about them. We are developing a tool that
extends rewrite verification to multiple bitwidth parameters, lever-
aging e-graph term rewriting over uninterpreted functions. Our
preliminary results highlight cases where our approach successfully
verifies rewrites that other tools fail to prove. In the longer term,
we aim to build an automated, Alive-style, push-button verifier for
parametric hardware designs.

1 INTRODUCTION
Recent hardware optimisation tools have employed term rewriting
over bitvector expressions to discover optimisations in RTL design
at the arithmetic level [4, 5, 7, 19]. At the heart of these tools are
conditional rewrites, 𝑙ℎ𝑠 and 𝑟ℎ𝑠 expressions containing parametric
bitwidth terms which are equal if a condition is true. The rewrites
usually reflect mathematical identities, such as associativity or
distributivity of addition andmultiplication, or identities containing
shift operations. Consider the following circuit ((𝑎5 + 𝑏3)6 + 𝑐3)6,
where the subscript denotes the bitwidth of the term, an obvious
optimisation would be to apply associativity of addition to obtain
(𝑎5 + (𝑏3 + 𝑐3)4)6 reducing a 6-bit adder to a 4-bit one. This rewrite
is, in general, not always valid, and depends on the bitwidths of the
operators and operands.

Verifying the correctness of these conditional rewrites, defined
over parametric bitwidth terms, falls outside of the scope of current
solvers. Instead, [5, 7] rely on industrial equivalence checkers to
perform translation validation on the optimised RTL. Equivalence
checkers also rely on term rewriting [10] to discover equivalences
between arithmetic expressions in order to avoid bit-blasting and
the exponential runtime it incurs. Recent work [8] highlights the
limitations of this arithmetic rewriting, showing how a particular
equivalence could not be proved for non-uniform bitwidths, and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LATTE ’25, March 30, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).

hypothesizing the issue may stem from an overly restrictive con-
dition on a rewrite rule, possibly due to challenges in proving its
correctness.

Peephole optimisations, which are a form of term rewriting over
SSA IRs, lie at the core of modern software compilers, such as
LLVM. These optimisation passes, such as the ‘InstCombine’ pass,
have been at the centre of extensive formal verification efforts
[12, 13], which aim to provide formal guarantees on the correctness
of the rewrites. However, correctness is only guaranteed for specific
bitwidths by enumerating all parameters of interest, and recent
work in generalising these rewrites [14] highlights this challenge
and calls for a tool that supports parametric bitwidth reasoning.

Solving equalities for parametric width bitvectors is currently
being explored in the SMT solver domain, with some approaches
encoding bitvector expressions as non-linear integer arithmetic [15]
and others using dependently typed bitvectors in combination with
interactive theorem provers [2, 9, 11], requiring manual proofs in
some cases. These approaches are all based on the SMT-LIB theory
of fixed-sized bitvectors [1] which enforces bitwidths to be concrete
numbers, and by extension the tools allow for a single bitwidth
parameter, limiting their applicability to the hardware domain.

We propose an approach for proving bitvector equalities over
multiple parametric bitwidths based on term rewriting in e-graphs,
using a translation to non-linear integer arithmetic similar to [15],
and generating explainable proof certificates. In the following sec-
tions we describe the approach and present some preliminary re-
sults for a prototype implementation.

2 MODULO ARITHMETIC EQUIVALENCE
2.1 Equality Saturation for Verification
E-graphs and equality saturation naturally lend themselves to the
task of verifying equality between two expressions in a language,
as demonstrated in [8, 17, 18]. Given a 𝑙ℎ𝑠 and a 𝑟ℎ𝑠 , checking
their equivalence amounts to instantiating them in the e-graph and
saturating the e-graph using a set of rewrites; if the root nodes of
the expressions belong to the same equivalence class then the two
are equivalent. In this prototype, we use the egg [20] library to
implement e-graphs and equality saturation.

2.2 Mapping Hardware Operations to Integer
Arithmetic

We define a language which captures the semantics of a generic
hardware description language in terms of non-linear integer arith-
metic operations. A bitvector term of bitwidth 𝑝 is interpreted as
an integer modulo 2𝑝 , where 𝑝 is a symbolic constant assumed to



LATTE ’25, March 30, 2025, Rotterdam, Netherlands Luigi Rinaldi, Yann Herklotz, John Wickerson, and Samuel Coward

Name Left-hand side Right-hand side Condition

add-1 (𝑎𝑞 + 𝑏𝑟 )𝑝 (𝑎𝑞 + 𝑏𝑟 ) 𝑞 < 𝑝 ∧ 𝑟 < 𝑝

add-2 (𝑎𝑞 + 𝑏)𝑝 (𝑎 + 𝑏)𝑝 𝑞 ≥ 𝑝

mul-1 (𝑎𝑞 × 𝑏𝑟 )𝑝 𝑎𝑞 × 𝑏𝑟 𝑝 ≥ 𝑟 + 𝑞
mul-2 (𝑎𝑞 × 𝑏)𝑝 (𝑎 × 𝑏)𝑝 𝑞 ≥ 𝑝

mul-pow2 (𝑎𝑝 × 2𝑏𝑞 )𝑠 𝑎𝑝 × 2𝑏𝑞 𝑠 ≥ 𝑝 + 2𝑞 − 1
reduce (𝑎𝑞)𝑝 (𝑎𝑞) 𝑝 ≥ 𝑞

div (𝑎𝑞 ÷ 𝑏)𝑝 (𝑎𝑞 ÷ 𝑏) 𝑝 ≥ 𝑞

Table 1: Modulo simplification rewrites

be strictly greater than 0, 𝑥𝑝 ≜ 𝑥 mod 2𝑝 . In this work we interpret
all variables as unsigned integers.

Bitvector arithmetic operators operating on 𝑞-many bits are
similarly translated to integers by applying modulo 2𝑞 to the re-
sulting expression. For example, the 9-bit addition of 4 and 5-bit
variables 𝑥 and 𝑦 is represented as (𝑥4 + 𝑥5)9, which is shorthand
for (𝑥 mod 24 + 𝑦 mod 25) mod 29.

Shift operations are expressed in terms of multiplication and
euclidean division (÷) of exponential terms in the form 2𝑡 . So, a left
shifting operation 𝑎 ≪ 𝑏 is defined as 𝑎× 2𝑏 and a right shift 𝑎 ≫ 𝑏

is defined as 𝑎 ÷ 2𝑏 , where 𝑎 ÷𝑏 = ⌊𝑎/𝑏⌋. We also define a constant
propagation analysis using the semantics described above.

2.3 Conditional Rewrite Rules
Equalities over parametric bitwidth variables and operators are
usually only true under some condition on the bitwidths. Consider a
simplified version of the previous example, associativity of addition
for bitwidths 𝑝, 𝑞 and 𝑟 : ((𝑎𝑝 +𝑏𝑝 )𝑞 +𝑐𝑝 )𝑟 = (𝑎𝑝 + (𝑏𝑝 +𝑐𝑝 )𝑞)𝑟 ; the
equality holds if 𝑞 > 𝑝 and 𝑟 > 𝑞 , i.e. the case where the adders
capture the full precision of the operands, including overflows, but
it also holds if 𝑞 ≥ 𝑟 since the 𝑟 -bit addition discards any extra bits
that might be introduced by the 𝑞-bit adder.

In order to discover equalities in the modular arithmetic domain
we introduce a set of conditional rewrites (Table 1) which allow for
removal of the modulo operator from an expression, allowing for a
further set of standard arithmetic rewrites, defined over integers,
to be applied, leading to equivalence. In order to apply the modulo-
removing rewrites a symbolic condition must be provided, this is
then used to symbolically evaluate the preconditions of Table 1,
and choose whether to apply the rewrite or not.

To illustrate this, take the previous example with the 𝑞 ≥ 𝑟

condition, the prototype produces the following chain of rewrites,
showing how the lhs and rhs are rewritten to a common expression;
the arrow shows the direction the rewrite (in brackets) is applied
to the expression on that line:

𝑙ℎ𝑠 = ((𝑎𝑝 + 𝑏𝑝 )𝑞 + 𝑐𝑝 )𝑟 ↓ (add-2)
= ((𝑎𝑝 + 𝑏𝑝 ) + 𝑐𝑝 )𝑟

(associativity) ↑ = (𝑎𝑝 + (𝑏𝑝 + 𝑐𝑝 ))𝑟
(commutativity) ↑ = ((𝑏𝑝 + 𝑐𝑝 ) + 𝑎𝑝 )𝑟

(add-2) ↑ = ((𝑏𝑝 + 𝑐𝑝 )𝑞 + 𝑎𝑝 )𝑟
(commutativity) ↑ = (𝑎𝑝 + (𝑏𝑝 + 𝑐𝑝 )𝑞)𝑟 = 𝑟ℎ𝑠

(1)

We formally prove each rewrite in Table 1 using the Isabelle [16]
proof assistant, providing a robust guarantee of the correctness of
the overall equivalence. Having found equivalence, the individual
steps that led to it can be extracted and used to generate an inter-
pretable proof certificate in the Isabelle/HOL language, this is left
as future work.

3 PRELIMINARY RESULTS
As a benchmark, we take the set of conditional rewrites defined
in [6]; these are used to automate RTL datapath optimisation. Out
of the 27 conditional rewrites, we consider 16, excluding those
which contain operators not implemented yet: the ternary operator,
negation, concatenation and more complex merging operators. The
prototype is able to automatically verify all 16 conditional equiv-
alences using the set of rewrites defined above and a set of basic
arithmetic identities.

3.1 Comparison
All equivalences were manually proven in Isabelle using lemmas
corresponding to the prototype’s rewrites, relying on automated
techniques like Sledgehammer[3] to assess the advantage of our cus-
tom e-graph solver. While Sledgehammer employs an SMT solver
that also uses an e-graph approach for satisfiability, we observed
four caseswhere proof automation fails, timing out after oneminute,
demonstrating the advantage of our prototype. For example, Isabelle
failed to automatically prove the following equality:

𝑡 > 1 ∧ 𝑡 > 𝑝 ∧ 𝑠 ≥ 𝑝 + 𝑞 =⇒
((𝑎𝑝 × 𝑏𝑞)𝑠 + 𝑏𝑞)𝑟 = ((𝑎𝑝 + 11)𝑡 × 𝑏𝑞)𝑟 (2)

The other 3 cases are shift-merging operations and the (𝑎𝑝 + (𝑏𝑡 ≫
𝑐𝑢 )𝑞)𝑟 = (((𝑎𝑝 ≪ 𝑐𝑢 )𝑠 + 𝑏𝑡 )𝑣 ≫ 𝑐𝑢 )𝑟 conditional rewrite.

Another interesting point of comparison is with [15], where
authors use the Alive [13] test-suite as a benchmark for parametric
bitwidth bitvector equalities and they are unable to prove any of
the ‘InstCombineShift’ optimisations. This tool is able to prove the
following equality:

(𝑠 ≥ 𝑟 ∨ 𝑠 > max(𝑝, 𝑞)) ∧ 𝑢 ≥ 𝑟 =⇒
((𝑎𝑝 ≪ 𝑐𝑡 )𝑢 + (𝑏𝑞 ≪ 𝑐𝑡 )𝑢 )𝑟 = ((𝑎𝑝 + 𝑏𝑞)𝑠 ≪ 𝑐𝑡 )𝑟 (3)

which is a much more general case of the ‘InstCombineShift:497d’
optimisation (𝑥 ≪ 𝐶) + (𝐶2 ≪ 𝐶) = (𝑥 + 𝐶2) ≪ 𝐶 , where the
variable 𝑥 and constants 𝐶,𝐶2 are of the same bitwidth.

4 CONCLUSIONS AND FUTUREWORK
We describe a method for finding equivalences between bitvector
expressions with multiple parametric bitwidths and we present a
prototype which is currently able to solve such equivalences given a
condition, succeeding in case where other approaches currently fail.
We are working on automatic formalisation of the proof, to generate
a certificate, extending the language to be able to reason about
signed integers and we are also exploring techniques for axiomizing
bitwise operations in terms of integer arithmetic, similar to [15]. In
the longer term, we aim to introduce a SystemVerilog front-end to
allow for push-button verification of parametric modules, inspired
by the online Alive2 rewrite verifier1.
1https://alive2.llvm.org/

https://alive2.llvm.org/


Parametric Bitwidth Rewrite Verification via Equality Saturation (work in progress) LATTE ’25, March 30, 2025, Rotterdam, Netherlands

REFERENCES
[1] [n.d.]. SMT-LIB The Satisfiability Modulo Theories Library. https://smt-

lib.org/theories-FixedSizeBitVectors.shtml
[2] Siddharth Bhat, Alex Keizer, Chris Hughes, Andrés Goens, and Tobias Grosser.

2024. Verifying Peephole Rewriting in SSA Compiler IRs. LIPIcs, Volume 309, ITP
2024 309 (2024), 9:1–9:20. https://doi.org/10.4230/LIPICS.ITP.2024.9 Artwork Size:
20 pages, 836196 bytes ISBN: 9783959773379 Medium: application/pdf Publisher:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[3] Sascha Böhme and Tobias Nipkow. 2010. Sledgehammer: Judgement Day. In
Automated Reasoning, Jürgen Giesl and Reiner Hähnle (Eds.). Springer, Berlin,
Heidelberg, 107–121. https://doi.org/10.1007/978-3-642-14203-1_9

[4] Chen Chen, Guangyu Hu, Dongsheng Zuo, Cunxi Yu, Yuzhe Ma, and Hongce
Zhang. 2024. E-Syn: E-Graph Rewriting with Technology-Aware Cost Functions
for Logic Synthesis. https://doi.org/10.48550/arXiv.2403.14242 arXiv:2403.14242
[cs].

[5] Jianyi Cheng, Samuel Coward, Lorenzo Chelini, Rafael Barbalho, and Theo Drane.
2024. SEER: Super-Optimization Explorer for High-Level Synthesis using E-
graph Rewriting. In Proceedings of the 29th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume
2. ACM, La Jolla CA USA, 1029–1044. https://doi.org/10.1145/3620665.3640392

[6] Samuel Coward, George A. Constantinides, and Theo Drane. 2022. Automatic
DatapathOptimization using E-Graphs. In 2022 IEEE 29th Symposium on Computer
Arithmetic (ARITH). 43–50. https://doi.org/10.1109/ARITH54963.2022.00016 ISSN:
2576-2265.

[7] Samuel Coward, Theo Drane, and George A. Constantinides. 2024. ROVER: RTL
Optimization via Verified E-Graph Rewriting. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (2024), 1–1. https://doi.org/10.
1109/TCAD.2024.3410154

[8] Samuel Coward, Emiliano Morini, Bryan Tan, Theo Drane, and George A. Con-
stantinides. 2023. Datapath Verification via Word-Level E-Graph Rewriting.
In 2023 Formal Methods in Computer-Aided Design (FMCAD). 92–100. https:
//doi.org/10.34727/2023/isbn.978-3-85448-060-0_17 ISSN: 2708-7824.

[9] Burak Ekici, Arjun Viswanathan, Yoni Zohar, Cesare Tinelli, and Clark Barrett.
2023. Formal Verification of Bit-Vector Invertibility Conditions in Coq. In Fron-
tiers of Combining Systems, Uli Sattler and Martin Suda (Eds.). Springer Nature
Switzerland, Cham, 41–59. https://doi.org/10.1007/978-3-031-43369-6_3

[10] Alfred Koelbl, Reily Jacoby, Himanshu Jain, and Carl Pixley. 2009. Solver tech-
nology for system-level to RTL equivalence checking. In Automation & Test in
Europe Conference & Exhibition 2009 Design. 196–201. https://doi.org/10.1109/
DATE.2009.5090657 ISSN: 1558-1101.

[11] Hanna Lachnitt, Mathias Fleury, Leni Aniva, Andrew Reynolds, Haniel Barbosa,
Andres Nötzli, Clark Barrett, and Cesare Tinelli. 2024. IsaRare: Automatic Verifica-
tion of SMT Rewrites in Isabelle/HOL. In Tools and Algorithms for the Construction
and Analysis of Systems, Bernd Finkbeiner and Laura Kovács (Eds.). Vol. 14570.
Springer Nature Switzerland, Cham, 311–330. https://doi.org/10.1007/978-3-
031-57246-3_17 Series Title: Lecture Notes in Computer Science.

[12] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr.
2021. Alive2: bounded translation validation for LLVM. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation. ACM, Virtual Canada, 65–79. https://doi.org/10.1145/3453483.
3454030

[13] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. 2015.
Provably correct peephole optimizations with alive. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’15). Association for Computing Machinery, New York, NY, USA, 22–32.
https://doi.org/10.1145/2737924.2737965

[14] Manasij Mukherjee and John Regehr. 2024. Hydra: Generalizing Peephole Op-
timizations with Program Synthesis. Proceedings of the ACM on Programming
Languages 8, OOPSLA1 (April 2024), 725–753. https://doi.org/10.1145/3649837

[15] Aina Niemetz, Mathias Preiner, Andrew Reynolds, Yoni Zohar, Clark Barrett,
and Cesare Tinelli. 2021. Towards Satisfiability Modulo Parametric Bit-vectors.
Journal of Automated Reasoning 65, 7 (Oct. 2021), 1001–1025. https://doi.org/10.
1007/s10817-021-09598-9

[16] Tobias Nipkow, Markus Wenzel, Lawrence C. Paulson, Gerhard Goos, Juris Hart-
manis, and Jan Van Leeuwen (Eds.). 2002. Isabelle/HOL. Lecture Notes in Com-
puter Science, Vol. 2283. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-
540-45949-9

[17] Michael Stepp, Ross Tate, and Sorin Lerner. 2011. Equality-Based Translation
Validator for LLVM. In Computer Aided Verification, Ganesh Gopalakrishnan and
Shaz Qadeer (Eds.). Springer, Berlin, Heidelberg, 737–742. https://doi.org/10.
1007/978-3-642-22110-1_59

[18] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality
saturation: a new approach to optimization. SIGPLAN Not. 44, 1 (Jan. 2009),
264–276. https://doi.org/10.1145/1594834.1480915

[19] Ecenur Ustun, Ismail San, Jiaqi Yin, Cunxi Yu, and Zhiru Zhang. 2022. IMpress:
Large Integer Multiplication Expression Rewriting for FPGA HLS. In 2022 IEEE
30th Annual International Symposium on Field-Programmable Custom Computing

Machines (FCCM). 1–10. https://doi.org/10.1109/FCCM53951.2022.9786123 ISSN:
2576-2621.

[20] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tat-
lock, and Pavel Panchekha. 2021. egg: Fast and Extensible Equality Saturation.
Proceedings of the ACM on Programming Languages 5, POPL (Jan. 2021), 1–29.
https://doi.org/10.1145/3434304 arXiv:2004.03082 [cs].

https://smt-lib.org/theories-FixedSizeBitVectors.shtml
https://smt-lib.org/theories-FixedSizeBitVectors.shtml
https://doi.org/10.4230/LIPICS.ITP.2024.9
https://doi.org/10.1007/978-3-642-14203-1_9
https://doi.org/10.48550/arXiv.2403.14242
https://doi.org/10.1145/3620665.3640392
https://doi.org/10.1109/ARITH54963.2022.00016
https://doi.org/10.1109/TCAD.2024.3410154
https://doi.org/10.1109/TCAD.2024.3410154
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_17
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_17
https://doi.org/10.1007/978-3-031-43369-6_3
https://doi.org/10.1109/DATE.2009.5090657
https://doi.org/10.1109/DATE.2009.5090657
https://doi.org/10.1007/978-3-031-57246-3_17
https://doi.org/10.1007/978-3-031-57246-3_17
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/2737924.2737965
https://doi.org/10.1145/3649837
https://doi.org/10.1007/s10817-021-09598-9
https://doi.org/10.1007/s10817-021-09598-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-642-22110-1_59
https://doi.org/10.1007/978-3-642-22110-1_59
https://doi.org/10.1145/1594834.1480915
https://doi.org/10.1109/FCCM53951.2022.9786123
https://doi.org/10.1145/3434304

	Abstract
	1 Introduction
	2 Modulo arithmetic equivalence
	2.1 Equality Saturation for Verification
	2.2 Mapping Hardware Operations to Integer Arithmetic
	2.3 Conditional Rewrite Rules

	3 Preliminary Results
	3.1 Comparison

	4 Conclusions and Future work
	References

