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Abstract
T-diagrams (or ‘tombstone diagrams’) are widely used in teaching for explaining how compilers and
interpreters can be composed together to build and execute software. In this Pearl, we revisit these
diagrams, and show how they can be redesigned for better readability. We demonstrate how they
can be applied to explain compiler concepts including bootstrapping and cross-compilation. We
provide a formal semantics for our redesigned diagrams, based on binary trees. Finally, we suggest
how our diagrams could be used to analyse the performance of a compilation system.

2012 ACM Subject Classification Software and its engineering → Compilers

Keywords and phrases compiler networks, graphical languages, pedagogy

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.1

1 Introduction

In introductory courses on compilers across the globe, students are taught about the inter-
actions between compilers using ‘tombstone diagrams’ or ‘T-diagrams’. In this formalism,
a compiler is represented as a ‘T-piece’. A T-piece, as shown in Fig. 1, is characterised by
three labels: the source language of the compiler, the target language of the compiler, and
the language in which the compiler is implemented.

Complex networks of compilers can be represented by composing these basic pieces in
two ways. Horizontal composition means that the output of the first compiler is fed in as the
input to the second. Diagonal composition means that the first compiler is itself compiled
using the second compiler. Figures 2 and 3 give examples of both forms.
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tgt

Figure 1 A com-
piler from source lan-
guage ‘src’ to target
language ‘tgt’ imple-
mented in language
‘imp’.
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Figure 2 Horizontal composition of
T-pieces. Haskell is compiled to C using
a compiler written in Java, and thence to
ARM assembly using another compiler
that is also written in Java.
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Figure 3 Diagonal composi-
tion of T-pieces. An OCaml-to-
x86 compiler written in C is being
compiled using a C-to-x86 com-
piler written in x86 assembly.

In this paper, we investigate the foundations of these diagrams. What are the rules
that govern how they can be composed (§2)? Can we redesign them to make them more
understandable (§3)? What do they mean in general (§4)? And what do they tell us about
the compilers they depict (§5)?
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1:2 Diagrams for Composing Compilers

Figure 4 A precursor to the T-diagram [8].
An UNCOL-to-704 compiler (top left) running
on an IBM 704 machine (middle) is used to com-
pile an OTN-to-UNCOL compiler implemented in
UNCOL (bottom left), which results in an OTN-
to-UNCOL compiler implemented in 704 machine
code (right).

Figure 5 The first T-diagram [1]. This T-
diagram depicts the same information as Fig. 4.
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these languages
must match . . .

. . . but these
need not

Figure 6 Only one of the two joining interfaces
requires its languages to match (Problem 1)

Figure 7 This form of composition
looks legal but is not (Problem 3)

2 Background

The usefulness of diagrams for explaining the connectivity between compilers can be traced
back at least as far as the UNCOL project in the 1950s [8], which was an early effort to
provide a ‘Universal Computer-Oriented Language’ that could interface with many different
front-ends and back-ends. Diagrams such as the one reproduced in Fig. 4 were used to show
how compilers producing UNCOL could be composed with those that consume it. Shortly
thereafter, T-diagrams were proposed by Bratman [1] as an improvement on the UNCOL
diagrams. As an example, Fig. 5 shows Bratman’s reimagining of Fig. 4.

Three problems with T-diagrams are immediately apparent.

Problem 1 When two T-pieces are diagonally composed, they meet at two interfaces, and it
is not clear that only one of these interfaces is required to have matching languages. As
shown in Fig. 6, diagonal composition only requires the ‘implementation’ language of the
left piece to match the ‘source’ language of the right piece. (There are, of course, ways
around this. For instance, McKeeman et al. [5] draw their T-pieces with an additional
grey banner showing the name of the compiler, as illustrated later in Fig. 21a.)

Problem 2 T-diagrams typically do not distinguish the operands to the composition from
the result of the composition. For example, in Fig. 5, the right T-piece is actually the
result of composing the left T-piece with the middle T-piece, but this relationship is not
made clear by the diagram – all three pieces appear on an equal footing. Figure 21a
suffers from the same problem to such an extent that it becomes almost unreadable. (Of
course, the obvious way to avoid this problem is simply not to show the result of the
composition in the same diagram.)
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Figure 8 A Rosin diagram [6]. The input data
is written in the ‘PI’ language; this is compiled
to the ‘PO’ language by a compiler implemented
in IBM 360 machine code. That compiler is run-
ning in a interpreter for 360 machine code that is
implemented in 2065 machine code, which itself
is running on an IBM 2065 machine.

Figure 9 A Burkhardt diagram [2] of a com-
piler that accepts programs in language ‘N’, gen-
erates programs in language ‘SPS’, and is imple-
mented in IBM 709 machine code.

Figure 10 A diagram by Sklansky et al. [7].
Step 1 shows an algorithm q written in language L
( q

L
) being compiled by an L-to-M compiler imple-

mented in M ( L
MM

) on a machine M , to produce
an implementation of q inM ( q

M
). In Step 2, this

implementation is executed on machine M with
data δ, to produce the result q(δ).

Figure 11 An Earley–Sturgis diagram [3]. The
f function is written in Lisp, then translated to
machine language (ML) by a compiler written in
Lisp. That compiler is running inside a Lisp inter-
preter written in ML. The dashed line seems to
be an attempt to clarify that the right-hand piece
is the result of the composition (cf. Problem 2).

Problem 3 The symmetric shape of the T-pieces invites a third mode of composition,
presented in Fig. 7, that is not actually meaningful. (Note that this form of composition
does seem to appear in Fig. 5, but this is only because the operands and the result of
composition are being conflated, as a result of Problem 2.)

Over the next couple of decades, several other diagrammatic systems were proposed. For
example, Burkhardt [2] proposed replacing Bratman’s T-pieces with X-shaped pieces (Fig. 9),
Sklansky et al. [7] suggested D-shaped pieces (Fig. 10), Rosin [6] used pieces with a variety
of shapes (Fig. 8), and Earley and Sturgis [3] extended Bratman’s T-pieces with I-pieces
that represent interpreters (Fig. 11). However, none of them satisfactorily resolved all three
problems identified above.
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Figure 12 Horizontal composition of J-pieces
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Figure 13 Diagonal composition of J-pieces

src

imp

Figure 14 An I-piece

src tgt

Figure 15 A tube

src

Figure 16 A stopper

3 Our proposal: J-diagrams

We propose a redesign in which the basic piece has the shape of a backwards ‘J’:

src

imp

tgt

This design makes it clear that there are two (and only two) modes of composition, as
shown in Fig. 12 and Fig. 13 respectively. Thus Problem 1 and Problem 3 are immediately
addressed. To address Problem 2, we simply propose that J-pieces that are the result of
the composition are not shown in the same diagram.

We also propose two special cases of the J-piece that omit one interface. An I-piece (Fig. 14)
omits the ‘target’ interface; it represents an interpreter, following Earley and Sturgis [3].
A ‘tube’ (Fig. 15) omits the ‘implementation’ interface; it represents a compilation step
that does not require an implementation, such as compiling Clight [4] to its superset, C. A
‘stopper’ (Fig. 16) omits both the ‘target’ and ‘implementation’ interface; it represents a
machine that can directly execute programs in the ‘source’ language.

Over the next few pages, we illustrate J-diagrams using several examples: Java compilation
(Fig. 17), verified C compilation using CompCert (Fig. 18), a compiler testing framework
(Fig. 19), cross-compilation (Fig. 20), and the history of the XPL programming language
(Fig. 21). In each case, we argue that the J-diagram is intuitive and clear, especially when
compared to an equivalent T-diagram or ad-hoc diagram.
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Figure 17 Java compilation as a J-diagram. A Java program is compiled to Java Bytecode using
the javac compiler, which is written in Java. The JVM is an interpreter for Java Bytecode written
in C++. The JVM itself is compiled using a C++ compiler such as gcc. Both javac and gcc must
themselves be compiled somehow, but this diagram elects to leave those steps unspecified.
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OCaml

Clight

unverified part

Clight

Coq

x86

verified part

Coq

OCaml

OCaml

Coq

Figure 18 A J-diagram showing the high-level architecture of the CompCert compiler [4]. The
initial translation from C into the Clight sublanguage is not verified, but the rest of the compiler is
written in Coq. The Coq tool is used to extract executable OCaml code.
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C++

x86

x86

g++ (compiled)

MIPS

C
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C

x86
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gcc (compiled)

Figure 19 A J-diagram showing how compilers written by students are assessed. Students submit
a C-to-MIPS compiler implemented in C++, which is built using g++. The output of this compiler
is tested by running it on the qemu MIPS emulator, which is implemented in C and built using gcc.
In this diagram, we assume that g++ and gcc have both been compiled for an x86 machine.
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(a) A diagram from Wikipedia explaining cross-compiling (https://en.wikipedia.org/wiki/Cross_
compiler).

C++

C++

ARM

g++

C++

C++

x86_64

g++

C++

C++

IA-32

g++

C++

IA-32

IA-32

msvc (compiled)

(b) A J-diagram explaining cross-compiling (best read right-to-left).

Figure 20 Explaining cross-compilation using (a) an ad-hoc diagram and (b) a J-diagram. The
aim here is to use one machine (say, running Windows on an IA-32 processor) to build a compiler
that can execute on another machine (say, running Mac OS on an x86_64 processor) and whose
output that be executed on a third machine (say, running Android on an ARM processor). In both
cases, the sequence is as follows. We first use the native Microsoft Visual C++ (msvc) compiler on
the Windows machine to build the native g++ compiler for that machine. We then use this compiler
to build a g++ compiler that targets the Mac. This compiler, in turn, is used to build the final
compiler, which will execute on the Mac but will generate programs that execute on the Android
device.

https://en.wikipedia.org/wiki/Cross_compiler
https://en.wikipedia.org/wiki/Cross_compiler
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(a) The history of the XPL language as a T-diagram [5]. The large number of T-pieces, together with the
ambiguity about which connections are meaningful, mean that this diagram is hard to understand.

User’s language

XPL

User’s ML

User’s compiler

XPL

XPL

360

XCOM III

XPL

XPL

360

XCOM II

XPL

ALGOL

360

XCOM I

ALGOL

B5500

B5500

B5500 ALGOL compiler

(b) As a J-diagram, the history of the XPL language becomes much easier to read than in Fig. 21a.
The first XPL compiler (XCOM I) targeted IBM 360 machine code, and was written in ALGOL, which
itself was compiled and executed on a Burroughs B5500 computer (far right). The second XPL compiler
(XCOM II) was written in XPL, and was compiled using XCOM I, via a bootstrapping process. Similarly,
the third version (XCOM III) was compiled using XCOM II. At the far left of the diagram, we see XPL
being used to produce a compiler for a new user.

Figure 21 Explaining the history of the XPL language using (a) a T-diagram and (b) a J-diagram.
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Figure 22 Interpreting J-pieces, I-pieces, tubes, and stoppers as vertex-labelled binary trees.
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Figure 23 The J-diagram in Fig. 19 interpreted as a tree.

4 Interpreting J-diagrams

Our J-diagrams can be interpreted as vertex-labelled binary trees. As shown in Fig. 22,
each J-piece represents a tree with three vertices, with each vertex labelled either with a
language or with the distinguished ‘•’ symbol. Composition of pieces corresponds to gluing
trees together so that a leaf of the first tree has the same label as the root of the second tree.
Figure 23 provides an example of a tree obtained in this way.

We claim that interpreting a J-diagram as a tree in this way is natural. At the root of the
tree is the ‘source’ language we wish to execute. At the leaves of the tree are all the languages
that we need to be able to execute in order to be able to execute the language at the root of
the tree. There is actually no particular need to distinguish between the ‘implementation’
language and the ‘target’ language – both are simply languages that we need to be able to
execute. In other words, a compiler can be seen as a scheme for reducing the problem of
executing programs in its ‘source’ language into two different problems:

the problem of executing programs in its ‘target’ language (the compiler’s output) and
the problem of executing programs in its ‘implementation’ language (the compiler itself).

For example, Fig. 19 can be thought of as a method for executing C programs that depends
upon a method for executing x86 programs.

We now provide some more details about how J-diagrams can be interpreted as trees.
The (two-dimensional) syntax of J-diagrams is defined by the following grammar.

J ::= ε
src

imp

tgt J

J

src

imp J
src tgt J src

For every J-diagram J except ε, we define root(J) as the language at its root. We are
then in a position to define well-formed J-diagrams; that is, those where the languages at
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put(L, •) = L

put(L,
L′

T1 T2

) =
L

T1 T2

Figure 24 The semantics of J-diagrams

each interface match. A J-diagram is well-formed if and only if for every J-piece

src

imp

tgt J1

J2

that it contains, we have both root(J1) = tgt (or J1 = ε) and root(J2) = imp (or J2 = ε).
Well-formedness of I-pieces and tubes is defined similarly.

Next, for representing vertex-labelled binary trees, we require the following simple syntax:

T ::= • L
L

T T

where L is any language.
Ultimately, we can define the semantics of (well-formed) J-diagrams as shown in Fig. 24.

I Remark 1 (An alternative diagrammatic system). Having interpreted our diagrams as trees,
another way to draw our diagrams presents itself, which we present as an alternative. The
basic piece, shown in Fig. 25, returns to the original ‘T’ shape, but loses the ‘blockiness’
of the original diagrams. Composition is then done by matching the bottom or right-hand
vertex of the first tree with the left-hand vertex of the second tree. Figure 26 gives a larger
example of this alternative style of diagram.

src tgt

imp

Figure 25 An alternative
representation of a compiler.

C MIPS

C++ x86

x86

C x86

x86

Figure 26 An alternative to the J-diagram in Fig. 19.
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LISP
LLVM IR

Java Bytecode
JavaScript

Clasp Emscripten

ABCL TeaVM

Figure 27 A graph of possible compilation strategies from LISP to JavaScript.

LISP

Java

Java BC

ABCL

Java BC

Java

Javascript

TeaVM

(a) First option: LISP is compiled to Javascript via
Java Bytecode using ABCL (https://abcl.org)
and TeaVM (http://teavm.org), both of which
are implemented in Java.

LISP

C++

LLVM IR

Clasp

LLVM IR

C++

Javascript

Emscripten

(b) Second option: LISP is compiled to Javascript
via LLVM IR using Clasp (https://github.com/
clasp-developers/clasp) and Emscripten (http:
//emscripten.org), both implemented in C++.

Figure 28 Designing a compilation strategy from LISP to JavaScript with the help of J-diagrams.

5 Using J-diagrams to analyse compilers

In this section, we suggest how J-diagrams can be used to aid the analysis and comparison
of compilation strategies.

5.1 Comparing compilation strategies using J-diagrams
Figure 27 shows a graph of possible compilation strategies from LISP to JavaScript. This
is the kind of graph generated by Akram’s tool for discovering all ways – whether direct
or indirect – of compiling between any two given languages (https://akr.am/languages).
Each vertex represents a language, and each edge represents a compiler from one language
to another.

What is missing from this graph is information about how each compiler is implemented,
and hence which further compilers may be needed in order to build them. To address this
shortcoming, Fig. 28 shows both possible compilation strategies as a pair of J-diagrams. By
using this representation, it becomes clear that if we compile via Java Bytecode we shall also
need the ability to execute Java code, and if we compile via LLVM IR we shall also need the
ability to execute C++ code. Thus, more information is made available for the designer to
make an informed choice.

5.2 Performance analysis using J-diagrams
If we have additional information about each J-piece beyond simply the languages involved,
then we can use J-diagrams as an aid for reasoning about the performance of compilation
strategies, as outlined in this subsection.

For any single J-piece, it is natural to ask:

How good is the generated output? Or, to coin a phrase, how well-targeted is the compiler?
As a simple example, a compiler that inserts unnecessary sleep() instructions into its
generated output is probably not well-targeted.

https://abcl.org
http://teavm.org
https://github.com/clasp-developers/clasp
https://github.com/clasp-developers/clasp
http://emscripten.org
http://emscripten.org
https://akr.am/languages
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How long does it take to run? Or, to coin another phrase, how well-implemented is
the compiler? As a simple example, a compiler whose source code includes unnecessary
sleep() instructions is probably not well-implemented.

Then, for a J-diagram with source language S, it is natural to ask: if I use this compilation
strategy to execute programs in language S, how quickly will I get the result?

A straightforward answer is that it depends upon how well-targeted and well-implemented
all the compilers in the network are, since all of the compilers must be run before the final
result can be obtained. For instance, in Fig. 18, in order to calculate the result of running
the input C program, we need to run Coq to obtain an OCaml implementation of the verified
compiler, then we need to run both the unverified compiler and the verified compiler. If the
Coq compiler is well-targeted, then the verified compiler will be well-implemented.

A more nuanced answer involves distinguishing the time taken to obtain an executable
(“compilation time”) from the time taken to run that executable (“running time”). In fact,
there are several compilation times here: the time taken to compile the source program, the
time taken to compile that compiler, the time taken to compile that compiler, and so on.
Traditionally, one is more concerned with improving the running time than the compilation
time, since an executable can be compiled once and then run many times. In turn, the time
taken to compile the executable tends to be more important than the time taken to compile
the compiler, since a compiler can be compiled once and then used many times.

These various compilation times correspond to the different rows of a J-diagram. The
running time depends upon how well-targeted the top row of J-pieces are, and how efficient
is the machine or interpreter that runs this executable. The time taken to obtain this
executable, on the other hand, depends upon how well-implemented the top row of J-pieces
are, which in turn depends upon how well-targeted are the J-pieces (in the second row) that
compile them. The time taken to obtain the compiler that obtains this executable depends
upon how well-implemented the second row of J-pieces are, which in turn depends upon how
well-targeted are the J-pieces in the third row, and so on.

For instance, in Fig. 18, the time taken to obtain the CompCert compiler depends
upon how well-implemented the Coq compiler is. The time taken to use CompCert obtain
an executable from a user-provided C program depends upon how well-implemented the
unverified and verified compilers are, and how well-targeted the Coq compiler is. The running
time of this executable depends upon how well-targeted the unverified and verified compilers
are.

We can formalise this using the runningTime and compileTime functions defined in
Fig. 29, which operate on the formal syntax for J-diagrams laid out in §4. As an example,
we can see by unfolding those definitions that the ‘compile time’ for the J-diagram in Fig. 19
depends upon well-implementedness(Student compiler) and well-targetedness(g++), and that
the ‘running time’ for that J-diagram depends upon well-targetedness(Student compiler),
well-implementedness(qemu), and well-targetedness(gcc), all of which is as expected.

6 Conclusion

We have investigated the foundations of diagrams that describe how compilers can be
composed. To conclude, let us return to the four questions posed in the introduction. First,
we explained in §2 that existing graphical systems, chiefly T-diagrams, are unsatisfactory
because the rules about how compilers can be composed are not intuitive; for instance, one
form of diagonal composition is legal (cf. Fig. 3) but the symmetric one is not (cf. Fig. 7).
Second, we presented in §3 a new visual language, based on ‘backwards J’-shaped pieces, that

ECOOP 2020
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runningTime(ε) :− (no dependencies).

runningTime

 src

imp

tgt
name

J1

J2

 :− well-targetedness(name), runningTime(J1)

runningTime

 src

imp

name

J

 :− well-implementedness(name), runningTime(J).

runningTime

 src tgt
name

J

 :− runningTime(J).

runningTime

 src
name

 :− well-implementedness(name).

compileTime(ε) :− (no dependencies).

compileTime

 src

imp

tgt
name

J1

J2

 :− well-implementedness(name), runningTime(J2)

compileTime

 src

imp

name

J

 :− (no dependencies).

compileTime

 src tgt
name

J

 :− compileTime(J).

compileTime

 src
name

 :− (no dependencies).

Figure 29 How the running time and compile time of a program depend upon the well-
implementedness and well-targetedness of the various compilers involved. Following a Prolog-like
notation, we write ‘:−’ to mean ‘depends upon’. Compared to the formal syntax for J-diagrams laid
out in §4, we have added a ‘name’ label to each piece so we can easily refer to it.
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addressed the shortcomings of previous systems. Third, in answer to the question of what
these diagrams ‘mean’, we showed in §4 how they can be interpreted quite straightforwardly
as binary trees. A J-diagram can thus be thought of as a strategy for problem-reduction: it
describes how the problem of executing programs in the language at its root vertex can be
reduced to the problems of executing programs in all the languages at its leaf vertices. Fourth,
in answer to the question of what these diagrams tell us about the compilers they depict,
we suggested in §5 how they could be a useful aid when comparing different compilation
strategies, or when analysing which parts of the compilation process are on the ‘critical path’
regarding compiling time or running time.

Ultimately, we expect J-diagrams will prove most valuable in teaching settings, because
they are – we believe – an improvement upon the T-diagrams that are already in widespread
use.
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