
Hardware.jl — An MLIR-based Julia HLS Flow (Work in Progress)
Benedict Short

Imperial College London
UK

Ian McInerney
Imperial College London

UK

John Wickerson
Imperial College London

UK

ABSTRACT
Co-developing scientific algorithms and hardware accelerators re-
quires domain-specific knowledge and large engineering resources.
This leads to a slow development pace and high project complexity,
which creates a barrier to entry that is too high for the majority
of developers to overcome. We are developing a reusable end-to-
end compiler toolchain for the Julia language entirely built on
permissively-licensed open-source projects. This unifies accelera-
tor and algorithm development by automatically synthesising Julia
source code into high-performance Verilog.

1 INTRODUCTION
Rising throughput and latency demands from scientific algorithms
mean that they can no longer rely on advancements in computer
architecture or fabrication processes for uplifts in performance.
Instead, they must take advantage of changes across the stack by
reallocating silicon budget to custom accelerators in both FPGA and
ASIC designs [17]. Resource-constrained environments, such as em-
bedded real-time control systems and signal processing algorithms,
have already adopted this approach to develop next-generation
electric motors and software-defined radios. This, however, comes
at the cost of developing and maintaining two separate implementa-
tions at different layers of abstraction known as the "two-language"
problem [3] — algorithms are developed using mathematically-
friendly languages like Julia or Matlab and the accelerators are
specified at the RTL level using Verilog or VHDL. Unifying the
development process with HLS tools results in faster prototyping,
lower development costs and makes this technology accessible to
engineers and researchers beyond the hardware domain.

1.1 Toolchain Objectives
The objectives of our toolchain are outlined below:

• Facilitate quick end-to-end accelerator design
• Be reusable and easy-to-maintain
• Enable direct hardware synthesis from pure Julia source code
• Support common hardware synthesis tools (extensibility)

1.2 Why Julia?
Julia [2] is an open-source, high-performance, dynamically typed
language built on top of the LLVM framework [15] aiming to solve
the "two-language" problem [3]. Its popularity in the scientific
community comes from its intuitive syntax, which closely resembles
mathematical notation. Julia’s extensible compiler infrastructure
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LATTE ’25, March 30, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).

has promoted the development of cross-compilation frameworks for
accelerators using different programming paradigms, such as GPUs
[1], TPUs [11] and GraphCore IPUs [12]. Another key advantage is
that the ecosystem mainly supports ‘pure Julia packages’ making it
more efficient to compile entire libraries to different targets, unlike
popular alternatives such as Python.

1.3 What about existing toolchains?
Existing HLS toolchains for high-level languages, such as Mat-
lab [19], are proprietary and generate poorly optimised designs
[8], while other HLS tools operate at low levels of abstraction not
used for algorithm development (e.g synthesising C/C++, Domain-
Specific Languages and RTL equivalents) [4, 9, 10, 14, 21].

In 2022, Biggs et al. [3] proposed a solution that successfully
compiled control-flow Julia programs into dynamically scheduled
VHDL, but noted that their tool suffered from a lack of hardware-
specific compiler optimisations and that future work would require
more program information to be extracted to support memory and
vector operations. Our work now solves this by implementing an
MLIR-based workflow to leverage reusable compiler infrastructure
and more powerful intermediate representations.

At JuliaCon 2024, Lounes posited the possibility of using Julia as
an MLIR front end to integrate with existing statically scheduled
HLS infrastructure [18], but we take this idea a step further and im-
plement a fully reusable HLS pipeline native to Julia that leverages
both static and dynamic scheduling.

2 MLIR-BASED FLOW
We use MLIR [16] to address fragmented HLS pipelines and reduce
the cost of developing a new domain-specific compiler by reusing
established dialects and interfaces. Standardised infrastructure also
makes our solution easy to maintain and allows for innovation at
higher levels of abstraction to avoid ‘reinventing the wheel’.

2.1 Extracting MLIR
Julia’s nominative, dynamic and parametric type system enables
quick prototyping and language-level polymorphism, but the in-
flexibility of statically compiled accelerators presents an inherent
challenge for this project. StandardMLIR dialects allow us to offload
this challenge to the front end and enforce type-stable IR code to
avoid exponentially increasing the overall design size. Lattner et
al. also describe premature lowering as "the root of all evil" [16],
emphasising the importance of extracting high-level dialects.

2.2 Converting MLIR to Verilog
We leverage the open-source CIRCT [7] framework to deterministi-
cally generate syntactically correct Verilog and keep our end-to-end
compilation stack within the MLIR ecosystem. CIRCT directly ac-
cepts a selection of standard MLIR dialects and provides a library of



LATTE ’25, March 30, 2025, Rotterdam, Netherlands Benedict Short, Ian McInerney, and John Wickerson

hardware-specific dialects and passes, allowing us to develop a fully
customisable HLS back end that not only supports both dynamic
and static scheduling, but also targets a wide range of existing
synthesis tools. We also considered using other MLIR-based back
ends such as Dynamatic [14] and ScaleHLS [21], but they are too
restrictive to be used in a stand-alone fashion as they only support
either dynamic or static scheduling respectively. Instead, they could
be integrated as part of a larger back end that combines these tools
in a hybrid manner, similar to the Dynamic and Static Scheduling
(DASS) toolchain proposed by Cheng et al. [5].

3 SYSTEM ARCHITECTURE
The toolchain architecture is inspired by the Bambu HLS frame-
work [10]. It is split into three separate components to promote
maintainability and modularity, as shown in Fig 1.

Figure 1: Tool Architecture

3.1 Front End
Our front end differs from other tools by mapping Julia constructs
to hardware-friendly MLIR instead of focussing entirely on high-
level concepts. The Core.Compiler package allows us to create
an AbstractInterpreter that uses a custom inlining policy and
then lowers source-code into type-stable Julia SSA-form IR. The
AbstractInterpreter also allows us to implement method table
overlays to integrate directly with Julia’s JIT interpreter and sup-
port the notion of ‘world age’. We take advantage of Julia’s built-in
type inference to support compile-time polymorphism and reuse
standard high-level optimisations, such as converting dynamic dis-
patch into static dispatch. In the majority of cases, this approach
enables a one-to-one mapping between the Julia typed IR and its
standard MLIR equivalent, similar to the Brutus.jl project [6].
The custom inlining policy allows us to overcome the inherent lack
of call and invoke to generate MLIR that is suitable for hardware
synthesis. The end of the pipeline applies lifting passes to raise
source code to higher levels of abstraction.

3.2 Back End
Currently, the back end supports both static and dynamic schedul-
ing by incrementally lowering standardMLIR to the handshake and
calyx dialects. This is then further lowered to the SystemVerilog
dialects and used to generate synthesisable Verilog. The current
architecture and lowering routes are inspired by the HLS tool pro-
vided with the CIRCT library. Communication with the back end is
implemented using a standardised interface, making it a seamless
process to integrate additional back ends into our toolchain.

4 THE ROADMAP
This project is currently under continuous development and will be
made open-source with permissive licensing. The planned future
steps are as follows.

4.1 Front End
The first aim will be to incorporate a larger subset of the Julia lan-
guage to synthesise a wide range of existing Julia packages and
libraries. We will also create a custom dialect to avoid a monolithic
architecture and produce a standard interface for complex language
constructs, such as arrays, that cannot be trivially mapped to their
MLIR equivalents. The end goal is to take advantage of statically
known program information to make unsupported constructs syn-
thesisable, for example, exploiting knowledge that dynamic arrays
will never be larger than a given size to convert them into static
arrays. Another aim is to raise Julia directly to Polyhedral MLIR
to avoid premature lowering and allow for greater optimisation
opportunities, similar to the Polygeist project for C/C++ [20].

4.2 Back End
We will write a wrapper for the CIRCT library to bring the en-
tire HLS back end to Julia. This will provide a platform for HLS
research that will allow tools to be prototyped without needing
to build LLVM, CIRCT or C++ projects and consequently speed
up development time. In future, this could be extended further by
implementing advanced identification of static and dynamic islands
[5] to produce highly optimised HLS designs.

4.3 Evaluation
The compiler toolchain will be evaluated against a set of standard
benchmarks to determine performance and design correctness, sim-
ilar to existing Julia GPU compilation frameworks. The benchmarks
shipped with Julia are very limited, and so a wide range of test pro-
grams need to be written to provide a quantitative evaluation of the
performance of this compiler stack. The tool will also be evaluated
against the high-level ideology to ensure that it is user-friendly and
integrates well into the existing Julia ecosystem.

4.4 Testing the compilation stack
First, we plan to take advantage of CIRCT’s formal verification
tooling and built-in logical equivalence checker to verify the cor-
rectness of the lowering passes. Concerns have been raised about
the reliability of HLS toolchains [13] and we will overcome this by
using a simple Julia fuzzer to automatically generate synthesisable
designs and check for equivalence.

5 LONG-TERM VISION
The AMD Vitis HLS tool supports source-level testbench cosimula-
tion to test the correctness of generated designs against a golden
model. Integrating this into the Hardware.jl compiler toolchain
would significantly increase the implicit trust that end-users have in
the tool. The ESI dialect within CIRCT provides the cosim endpoint,
which could be used as a starting point for this work.

Alternative use cases of CIRCT’s formal verification framework
would be greatly beneficial to this project and would allow the
HLS developers to provide guarantees on design correctness or
performance. This would also be entirely reusable across all CIRCT
projects.



Hardware.jl — An MLIR-based Julia HLS Flow (Work in Progress) LATTE ’25, March 30, 2025, Rotterdam, Netherlands

REFERENCES
[1] Tim Besard, Christophe Foket, and Bjorn De Sutter. 2019. Effective Extensible

Programming: Unleashing Julia on GPUs. IEEE Transactions on Parallel and
Distributed Systems 30, 4 (2019), 827–841. https://doi.org/10.1109/TPDS.2018.
2872064

[2] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. 2017. Julia:
A fresh approach to numerical computing. SIAM Review 59, 1 (2017), 65–98.
https://doi.org/10.1137/141000671

[3] Benjamin Biggs, Ian McInerney, Eric C. Kerrigan, and George A. Constantinides.
2022. High-level Synthesis using the Julia Language. In Proceedings of the 2nd
Workshop on Languages, Tools, and Techniques for Accelerator Design (LATTE’22)
(Lausanne, Switzerland). arXiv:2201.11522 https://capra.cs.cornell.edu/latte22/
paper/7.pdf

[4] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Tomasz Czajkowski, Stephen D. Brown, and Jason H. Anderson. 2013. LegUp:
An open-source high-level synthesis tool for FPGA-based processor/accelerator
systems. ACM Trans. Embed. Comput. Syst. 13, 2, Article 24 (Sept. 2013), 27 pages.
https://doi.org/10.1145/2514740

[5] Jianyi Cheng, Lana Josipović, George A. Constantinides, Paolo Ienne, and John
Wickerson. 2022. DASS: Combining Dynamic and Static Scheduling in High-Level
Synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 41, 3 (2022), 628–641. https://doi.org/10.1109/TCAD.2021.3065902

[6] Valentin Churavy, Leon Shen, McCoy R. Becker, and Stephen Neuendorffer. 2020.
Brutus.jl. https://github.com/JuliaLabs/brutus Accessed: January 28, 2025.

[7] CIRCT Contributors. 2020. CIRCT. https://github.com/llvm/circt Accessed:
January 28, 2025.

[8] Serena Curzel, Michele Fiorito, Patricia Lopez Cueva, Tiago Jorge, Thanassis
Tsiodras, and Fabrizio Ferrandi. 2023. Exploration of Synthesis Methods from
Simulink Models to FPGA for Aerospace Applications. In Proceedings of the 20th
ACM International Conference on Computing Frontiers (Bologna, Italy) (CF ’23).
Association for Computing Machinery, New York, NY, USA, 243–249. https:
//doi.org/10.1145/3587135.3592766

[9] John Demme and Aaron Landy. 2022. Using CIRCT for FPGA Physical Design.
In Proceedings of the 2nd Workshop on Languages, Tools, and Techniques for Accel-
erator Design (LATTE’22) (Lausanne, Switzerland). https://capra.cs.cornell.edu/
latte22/paper/10.pdf Accessed 28 January 2025.

[10] Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi,
Michele Fiorito, Marco Lattuada, Marco Minutoli, Christian Pilato, and An-
tonino Tumeo. 2021. Invited: Bambu: an Open-Source Research Framework
for the High-Level Synthesis of Complex Applications. In 2021 58th ACM/IEEE
Design Automation Conference (DAC) (San Francisco, CA, USA). IEEE, 1327–1330.
https://doi.org/10.1109/DAC18074.2021.9586110

[11] Keno Fischer and Elliot Saba. 2018. Automatic Full Compilation of Julia Programs
and ML Models to Cloud TPUs. arXiv:1810.09868 [cs.PL] https://arxiv.org/abs/
1810.09868

[12] Mosè Giordano. 2023. Heterogeneous computing with the Julia language:
from A64FX to the IPU. Barcelona Supercomputing Center Research Semi-
nar. https://www.bsc.es/research-and-development/research-seminars/sors-
heterogeneous-computing-the-julia-language-a64fx-the-ipu Accessed 28 Janu-
ary 2025.

[13] Yann Herklotz, Zewei Du, Nadesh Ramanathan, and John Wickerson. 2021. An
empirical study of the reliability of high-level synthesis tools. In 2021 IEEE
29th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM) (Orlando, FL, USA). IEEE, 219–223. https://doi.org/10.1109/
FCCM51124.2021.00034

[14] Lana Josipović, Andrea Guerrieri, and Paolo Ienne. 2020. Invited Tutorial: Dy-
namatic: From C/C++ to Dynamically Scheduled Circuits. In Proceedings of the
2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(Seaside, CA, USA) (FPGA ’20). Association for Computing Machinery, New York,
NY, USA, 1–10. https://doi.org/10.1145/3373087.3375391

[15] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International symposium on code
generation and optimization, 2004. CGO 2004. (San Jose, CA, USA). IEEE, 75–86.
https://doi.org/10.1109/CGO.2004.1281665

[16] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Arnaud Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache,
and Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Do-
main Specific Computation. In 2021 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO) (Seoul, Korea (South)). IEEE. https:
//doi.org/10.1109/CGO51591.2021.9370308

[17] Charles E. Leiserson, Neil C. Thompson, Joel S. Emer, Bradley C. Kuszmaul,
Butler W. Lampson, Daniel Sanchez, and Tao B. Schardl. 2020. There’s plenty
of room at the Top: What will drive computer performance after Moore’s law?
Science 368, 6495 (2020), eaam9744. https://doi.org/10.1126/science.aam9744

[18] Gaëtan LOUNES. 2024. Julia meets Field Programmable Gate Array (FPGA).
https://pretalx.com/juliacon2024/talk/RJEPZY/. Accessed: 2025-01-25.

[19] MathWorks. 2024. High-Level Synthesis. Online. https://uk.mathworks.com/
discovery/high-level-synthesis.html Accessed: 2024-01-28.

[20] William S. Moses, Lorenzo Chelini, Ruizhe Zhao, and Oleksandr Zinenko. 2021.
Polygeist: Raising C to Polyhedral MLIR. In 2021 30th International Conference
on Parallel Architectures and Compilation Techniques (PACT) (Atlanta, GA, USA).
IEEE, 45–59. https://doi.org/10.1109/PACT52795.2021.00011

[21] Hanchen Ye, Cong Hao, Jianyi Cheng, Hyunmin Jeong, Jack Huang, Stephen
Neuendorffer, and Deming Chen. 2022. ScaleHLS: A New Scalable High-Level
Synthesis Framework on Multi-Level Intermediate Representation. In 2022 IEEE
International Symposium on High-Performance Computer Architecture (HPCA)
(Seoul, Korea, Republic of). IEEE, 741–755. https://doi.org/10.1109/HPCA53966.
2022.00060

https://doi.org/10.1109/TPDS.2018.2872064
https://doi.org/10.1109/TPDS.2018.2872064
https://doi.org/10.1137/141000671
https://arxiv.org/abs/2201.11522
https://capra.cs.cornell.edu/latte22/paper/7.pdf
https://capra.cs.cornell.edu/latte22/paper/7.pdf
https://doi.org/10.1145/2514740
https://doi.org/10.1109/TCAD.2021.3065902
https://github.com/JuliaLabs/brutus
https://github.com/llvm/circt
https://doi.org/10.1145/3587135.3592766
https://doi.org/10.1145/3587135.3592766
https://capra.cs.cornell.edu/latte22/paper/10.pdf
https://capra.cs.cornell.edu/latte22/paper/10.pdf
https://doi.org/10.1109/DAC18074.2021.9586110
https://arxiv.org/abs/1810.09868
https://arxiv.org/abs/1810.09868
https://arxiv.org/abs/1810.09868
https://www.bsc.es/research-and-development/research-seminars/sors-heterogeneous-computing-the-julia-language-a64fx-the-ipu
https://www.bsc.es/research-and-development/research-seminars/sors-heterogeneous-computing-the-julia-language-a64fx-the-ipu
https://doi.org/10.1109/FCCM51124.2021.00034
https://doi.org/10.1109/FCCM51124.2021.00034
https://doi.org/10.1145/3373087.3375391
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1126/science.aam9744
https://pretalx.com/juliacon2024/talk/RJEPZY/
https://uk.mathworks.com/discovery/high-level-synthesis.html
https://uk.mathworks.com/discovery/high-level-synthesis.html
https://doi.org/10.1109/PACT52795.2021.00011
https://doi.org/10.1109/HPCA53966.2022.00060
https://doi.org/10.1109/HPCA53966.2022.00060

	Abstract
	1 Introduction
	1.1 Toolchain Objectives
	1.2 Why Julia?
	1.3 What about existing toolchains?

	2 MLIR-based flow
	2.1 Extracting MLIR
	2.2 Converting MLIR to Verilog

	3 System Architecture
	3.1 Front End
	3.2 Back End

	4 The roadmap
	4.1 Front End
	4.2 Back End
	4.3 Evaluation
	4.4 Testing the compilation stack

	5 Long-term Vision
	References

