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Abstract—Lock-free algorithms, in which threads synchronise
not via coarse-grained mutual exclusion but via fine-grained
atomic operations (‘atomics’), have been shown empirically to
be the fastest class of multi-threaded algorithms in the realm
of conventional processors. This article explores how these
algorithms can be compiled from C to reconfigurable hardware
via high-level synthesis (HLS).

We focus on the scheduling problem, in which software
instructions are assigned to hardware clock cycles. We first
show that typical HLS scheduling constraints are insufficient
to implement atomics, because they permit some instruction
reorderings that, though sound in a single-threaded context,
demonstrably cause erroneous results when synthesising multi-
threaded programs. We then show that correct behaviour can be
restored by imposing additional intra-thread constraints among
the memory operations. In addition, we show that we can support
the pipelining of loops containing atomics by injecting further
inter-iteration constraints. We implement our approach on two
constraint-based scheduling HLS tools: LegUp 4.0 and LegUp
5.1. We extend both tools to support two memory models that
are capable of synthesising atomics correctly. The first memory
model only supports sequentially consistent (SC) atomics and the
second supports weakly consistent (‘weak’) atomics as defined by
the 2011 revision of the C standard. Weak atomics necessitate
fewer constraints than SC atomics, but suffice for many multi-
threaded algorithms. We confirm, via automatic model-checking,
that we correctly implement the semantics in accordance with
the C standard. A case study on a circular buffer suggests that
on average circuits synthesised from programs that schedule
atomics correctly can be 6x faster than an existing lock-based
implementation of atomics, that weak atomics can yield a further
1.3x speedup, and that pipelining can yield a further 1.3x
speedup.

Index Terms—High-Level Synthesis, HLS, Lock-Free Algo-
rithms, Atomic Operations, FPGA.

I. INTRODUCTION

In his comprehensive empirical study, Gramoli [1] demon-
strates that, when writing multi-threaded programs for conven-
tional multi-processors, the most efficient way to synchronise
threads is to use fine-grained atomic operations (‘atomics’) –
as opposed to, for instance, coarse-grained mutual exclusion
based on locks. In this article, we explore how lock-free
programs can be compiled from C to reconfigurable hardware
via high-level synthesis (HLS), and the performance benefits
of doing so.

We focus on the scheduling stage of synthesis, in which
software instructions are assigned to hardware clock cy-
cles. Typical HLS schedulers seek to maximise instruction-
level parallelism by allowing independent instructions to be

executed out-of-order or simultaneously. In particular, non-
aliasing memory accesses, or those that exhibit only read-
after-read dependencies (e.g. x=z; y=z), can be reordered.
These reorderings are invisible in a single-threaded context,
but in a multi-threaded context, they can introduce unexpected
behaviours. For instance, if another thread is simultaneously
writing to z, then reordering two instructions above may
introduce the behaviour where x is assigned the latest value
but y gets an old one.1

The implication of this is not that existing HLS tools are
wrong; these optimisations can only introduce new behaviours
when the code already exhibits a race condition, and races
are deemed a programming error in C [2, §5.1.2.4]. Rather,
the implication is that if these memory accesses are upgraded
to become atomic (and hence allowed to race), then existing
scheduling constraints are insufficient.

One approach for implementing atomics correctly is to
enclose each atomic operation in its own critical region, and
ensure that the surrounding lock() and unlock() calls
cannot be reordered. We show that this approach scales poorly
and inhibits loop pipelining. Instead, we frame the implemen-
tation of atomics as a scheduling problem: we treat atomic
accesses as regular memory accesses but impose additional
intra-thread dependencies when devising a schedule for each
thread.

By default, C atomics enforce sequential consistency (SC),
which means that all threads maintain a completely consistent
view of shared memory, and memory accesses always occur
in the order specified by the programmer [3]. Though simple
for programmers to understand, SC is an expensive guarantee
for language implementations to meet in the presence of
optimisations by compilers (such as constant propagation,
which can disrupt the order of memory accesses) and by
architectures (such as store buffering, which can delay the
propagation of writes to other threads).

In fact, many multi-threaded algorithms do not need all
threads to share a completely consistent view of shared mem-
ory, and hence can tolerate weakly consistent atomics, which
do not provide this guarantee in general. These ‘weak atomics’
include the acquire/release and relaxed atomics provided by
the 2011 revision of the C standard (‘C11’) [2, §7.17.3],
and later incorporated into OpenCL [4, §3.3.4]. The exact
guarantees provided by these operations are specified by each

1Throughout this article, we use thread to refer both to software threads
and to the hardware modules synthesised from them.
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language’s memory consistency model; the rough idea is that
while SC forbids all reorderings, acquire loads cannot be
executed later, release stores cannot be executed earlier, and
relaxed accesses can be moved freely. We show that C11’s
acquire/release and relaxed consistency can be implemented
using fewer dependencies than SC, and hence offer the po-
tential for more efficient scheduling. We also show how we
can enable loop pipelining – an optimisation that is inhibited
in the presence of locks but becomes available in our lock-
free setting – by selectively imposing constraints between the
memory operations in successive iterations of a loop.

Unfortunately, weak atomics are notoriously hard to im-
plement correctly. A failure to anticipate their complex and
counterintuitive behaviours has been the root cause of bugs
in compilers [5], language specifications [6], and vendor-
endorsed programming guides [7]. To build confidence that
our work implements C11 atomics correctly, we use the Alloy
model checker [8], first to debug our implementation during
development, and then to verify automatically that any C11
program (with a bounded number of memory accesses) will
be synthesised correctly.

We implement our approach on two versions of the LegUp
HLS framework [9]. We treat these two versions as separate
tools for memory-related optimisations, as discussed in §V-B.
We evaluate our approach in the context of both these tools
via a case study: an application in which threads communicate
via lock-free circular buffers. On average, we show that using
SC atomics yields a 6x speedup compared to lock-based
implementation of atomics, that switching from SC atomics
to weak atomics (where safe to do so) yields a further 1.3x
speedup, and that enabling loop pipelining of weak atomics
can yield a further 1.3x speedup.

In summary,
• we show that traditional HLS schedulers cannot (in gen-

eral) synthesise multi-threaded algorithms without relying
on locks, because some instruction reorderings permit-
ted by standard dependence-based schedulers that only
consider aliasing memory dependencies can introduce
erroneous behaviours, and we illustrate this using the
open-source tool LegUp (§III);

• we extend the schedulers to impose extra intra-thread
dependencies to support sequentially-consistent atomics
provided by the C11 standard, thus ensuring correct inter-
thread communication (§IV-A);

• we further modify the schedulers to support weak atom-
ics, also part of the C11 standard, which suffice for many
algorithms despite requiring fewer dependencies (§IV-B);

• we further extend the schedulers to support loop pipelin-
ing of atomics by injecting appropriate inter-iteration
dependencies (§IV-C and IV-D); and

• we confirm automatically, using the Alloy model checker,
that our revised scheduler correctly implements strong
and weak atomics as defined by the C11 standard (§IV-E).

This article builds on results first presented in a conference
paper [10]. The key additional results that this article reports
are that support for loop pipelining has been added and
evaluated via a new series of experiments, and that scheduling
rules for strong and weak atomics have been implemented and

evaluated in a second HLS tool (which shows that the speedups
we obtain are not limited to a single tool). Experimental data,
source code, and Alloy model files are available online [11].

II. BACKGROUND

This section summarises existing HLS support for multi-
threaded programming (§II-A), explains how HLS tools per-
form scheduling (§II-B), and introduces the C11 memory
consistency model (§II-C).

A. High-level synthesis for multi-threaded programs

Several HLS tools only accept sequential input,
deriving parallelisation opportunities either automatically
(e.g. ROCCC [12]) or with the aid of synthesis
directives (e.g. Vivado HLS [13]). Other tools accept
multi-threaded input but only allow threads to synchronise
via locks (e.g. LegUp [9] and Kiwi [14]) or via execution
barriers (e.g. SDAccel [15]). Some HLS tools also support the
OpenMP programming standard, which defines an atomic
directive that enables lock-free programming. Leow et al. [16]
transform OpenMP to Handel-C for hardware synthesis and
Cilardo et al. [17] generate heterogeneous hardware/software
systems with OpenMP. Neither of these works support the
explicit multi-threading constructs defined by the Pthreads
standard, so a direct comparison with the present work is
difficult. Altera’s SDK for OpenCL [18] supports lock-free
programming via SC atomics [19], though the commercial
nature of the tool makes it difficult to ascertain exactly how
these operations are implemented. LEAP facilitates parallel
memory access through its provision of memory hierarchies
that potentially can be shared among Pthreads in a lock-free
manner [20].

The most important point of comparison between the tools
reviewed above and the present work is that this is the first to
synthesise hardware from software that features weak atomics
(as defined by C11 [2] and OpenCL 2.x [4]). Efficient im-
plementations of weak atomics have been extensively studied
in the conventional processor domain, with one study sug-
gesting that they can yield average whole-program speedups
of 1.13x on x86 (Core i7) CPUs [21, Fig. 5] over their SC
counterparts. Sinclair et al. [22] suggest that weak atomics
can achieve up to 1.5x speedup and 1.4x energy reduction
on conventional GPU and integrated CPU-GPU systems. The
authors also highlight that the benefits of weak atomics can
vary between applications and inputs. Our circular buffer case
study suggests that on FPGAs, weak atomics can yield a 1.3x
average speedup. Our average speedup in this article differs
from the speedup reported in our conference paper [10], since
our results include long-latency experiments (division) and
also a second HLS tool (LegUp 5.1). We also observe that
our speedups in this article can vary between 1.2x to 1.6x
depending on the experiment and tool.

Finally, Huang et al. [23] and Cong et al. [24] have shown
that compiler optimisations can affect the quality of HLS-
generated hardware. Our work shows that in a multi-threaded
context, some optimisations (as manifested through relaxed
scheduling constraints) can even be unsound.
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B. HLS Scheduling

An HLS front-end typically first converts source code into
a control/data flow graph (CDFG) [25]. A CDFG is a directed
graph where each vertex is a basic block (BB) and each edge
represents a control-flow path. Each BB is a data-flow graph
(DFG) with operations as vertices (Vop) and dependencies as
edges (Ed ⊆ Vop×Vop×N). Each edge is a triple comprising
a source operation, a target operation, and a dependence
distance, which is a natural number representing the number
of loop iterations between those operations.

Scheduling determines the start and end cycles of each
operation in a CDFG, taking into account the control-flow
and data dependencies as well as additional constraints such
as latency and resources. Scheduling is performed alongside
the allocation of resources and the binding of operations and
memory locations to these resources [25].

One of the most common scheduling techniques, used by
Vivado HLS [13] and LegUp [9], expresses a CDFG schedule
as a solution to a system of difference constraints (SDC) [26].
Various objectives, such as as-soon-as-possible (ASAP) and
as-late-as-possible (ALAP) scheduling, can be obtained by
reformulating the objective function. Modulo scheduling [27],
which is a well-known technique for loop pipelining, can also
be implemented within an SDC framework [28].

In this work, we focus on the constraint that captures data
dependencies, which is formulated as [29]:

∀(v, v′, dist) ∈ Ed : end(v)− start(v′) ≤ II × dist .

That is, for every edge (v, v′, dist) where operation v′

depends on v, the number of cycles between the end of
operation v and the start of operation v′ must be at the least the
loop initiation interval (II ) multiplied by the loop dependence
distance (dist), where II is the number of cycles between the
initiations of two consecutive loop iterations. A dependence is
intra-iteration when dist = 0, and is otherwise inter-iteration.

1) Memory dependencies for sequential programs: Mem-
ory dependencies (Emem), which hold between memory op-
erations, Vmem ⊆ Vop, are a subset of data dependencies
(Emem ⊆ Ed). C-based HLS tools perform alias analysis
on an sequential C program and preserve read-after-write
(RAW), write-after-write (WAW) and write-after-read (WAR)
dependencies between aliasing memory locations.

These dependencies are preserved within a single loop
iteration as follows:

Eintra-iter = {(v, v′, 0) | sb(v, v′) ∧ sloc(v, v′) ∧
(v ∈ Vst ∨ v′ ∈ Vst)}

(1)

where Vst ⊆ Vmem is the set of store operations (and
elsewhere, Vld ⊆ Vmem is the set of load operations), sb
is the ‘sequenced before’ relation (as determined from the
order of instructions in the original program), and sloc is the
‘same location’ relation (as determined by the alias analysis).
Eintra-iter expresses that there is a dependency from memory
operation v to every memory operation v′ that is sequenced
after v in the same iteration, providing v and v′ alias and at
least one of them is a store.

In the absence of loop pipelining, we define Emem as
follows:

Emem = Eintra-iter ∪ Enopipe (2)

where Enopipe inhibits any overlap between successive itera-
tions:

Enopipe = {(v, v′, 1) | v ∈ Vmem ∧ v′ ∈ Vmem}.

To obtain loop pipelining, we replace Emem with Epipe
mem,

which imposes inter-iteration dependencies only between
aliasing operations:

Epipe
mem = Eintra-iter ∪ Einter-iter (3)

where

Einter-iter = {(v, v′, 1) | sloc(v, v′) ∧ (v ∈ Vst ∨ v′ ∈ Vst)}.

Einter-iter expresses that there is a dependency from memory
operation v to every memory operation v′ that occurs in the
next iteration, providing v and v′ alias and at least one of them
is a store.

The dependencies in (2) and (3) define memory consistency
models (MCMs) that do not enforce ordering between memory
instructions that have only read-after-read (RAR) dependen-
cies, or that are non-aliasing. The omission of these orderings
allows the potential for out-of-order or overlapping execution
of memory accesses. Such optimisations are legal in a single-
threaded context and can lead to more efficient schedules.

2) Synthesising multi-threaded programs: The general
method that HLS tools adopt to synthesise multi-threaded
programs is to map each thread to a CDFG, each of which
is scheduled independently. Scheduling a thread is treated
as scheduling a sequential C program which means that
each thread’s memory dependencies are defined by Emem or
Epipe

mem and that these dependencies are within the thread. We
demonstrate, in §III, that Emem and Epipe

mem are insufficient
for the correct synthesis of multi-threaded programs that use
atomic operations. One must either rely on locks, as LegUp
does [30], or else strengthen the intra-thread constraints, which
we show how to do in §IV.

Although locks guarantee correct memory behaviour, mu-
tual exclusion of shared memory stifles the benefits of explicit
parallelism provided by multi-threaded programs. In this work,
we embrace fine-grained concurrency by strengthening Emem

and Epipe
mem to support atomics, instead of resorting to using

locks.

C. The C11 memory consistency model

The 2011 revision of the C and C++ languages, ‘C11’, de-
fines a suite of instructions called ‘atomics’, for loading from
and storing to shared memory without the need for locks [2,
§5.1.2.4, §7.17]. Co-existing with these atomics are ordinary
(non-atomic) memory loads and stores. Each atomic can be
assigned a consistency mode (also known as a memory order).
The available modes include: relaxed (for loads and stores),
acquire (for loads), release (for stores), and SC (for loads
and stores).2 Non-SC atomics can be more efficient than SC

2There exists also a little-used consume mode that is similar to acquire.
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atomics, but do not guarantee that all threads have a consistent
view of the memory they share. Each consistency mode can
be roughly understood by assuming that all threads do share
a consistent view of memory, but that some instructions can
take effect out of order:
• an atomic load or store cannot be reordered with another

atomic load or store that accesses the same location (this
property is called coherence);

• a relaxed atomic places no additional restrictions on
reordering;

• an acquire atomic load cannot be reordered with loads or
stores that are sequenced after it in program order;

• a release atomic store cannot be reordered with loads or
stores that are sequenced before it; and

• an SC atomic load or store cannot be reordered with any
other load or store.

However, it is important to note that the explanations
given above convey only a rough understanding of the C11
memory consistency model. The official C11 standard defines
the semantics of atomics not in terms of which individual
instructions can or cannot be locally reordered, but instead in
terms of which executions of the entire program are allowed.
More specifically, it works by first mapping a given program
to a set of ‘candidate’ executions under the assumption of
a completely non-deterministic memory system, and then
rejecting candidates that exhibit certain prohibited patterns of
memory accesses [6]. As a result of this discrepancy, some
of the reorderings forbidden above are actually allowed under
certain conditions. (To give an arcane example: an acquire load
can be reordered with a subsequent non-atomic load providing
it is immediately preceded by another non-atomic load [31,
§7.2].) This means that a program may actually exhibit more
behaviours than a programmer following the rules above can
anticipate.

In order to ensure that our simple reordering rules are strong
enough to enforce the complicated C11 memory consistency
model, it is worthwhile to invest in formal verification – which
we do in §IV-E.

III. MOTIVATING EXAMPLES

In this section, we provide two simple multi-threaded pro-
grams that could demonstrate unexpected behaviours as a
result of the standard approach to high-level synthesis schedul-
ing described as Emem in (2). In both cases, the unexpected
behaviour only arises when particular instruction sequences
are carefully contrived, but we argue that similar sequences
could easily occur in ‘realistic’ programs too.

To make our examples concrete, we present actual LegUp
schedules demonstrating these behaviours occurring in practice
(and make our source code available online [11]). However,
our examples are relevant to any HLS tool that performs
constraint-based scheduling on a per-thread basis in the ab-
sence of locks.

We emphasise that the unexpected behaviours discussed in
this section do not mean that LegUp’s scheduler is wrong,
because LegUp does not claim to provide support for C11
atomics. Rather, we use these examples to demonstrate how

atomic_int x=0;
T1() { T2() {

1.1 int r0=0,r1=0; 2.1 st(&x,1);
1.2 r0=ld(&x); }
1.3 r1=ld(&x);
}

assert(r0 = 1⇒ r1 6= 0)

(a) A minimal example of a coherence violation. The assertion
failing indicates a coherence violation, where the second load of
x (r1) happens before the first load of x (r0).

volatile int x=0; volatile int y=0;
T1(int a) { T2() {

1.1 int r0=0,r1=0,r2=0; 2.1 x=1;
1.2 r0=y+y+y+y+y+y; }
1.3 r1=x;
1.4 r2=x/a;
}

assert(r1 = 1⇒ r2 6= 0)

(b) A program that can exhibit a coherence violation when compiled
using LegUp, if atomics are treated as non-atomics (thread T1 is
launched with a = 1).

Cycle: 1 2 3 4 5 6 7 · · · 36

1.2 ld y
1.2 ld y
1.2 ld y
1.2 ld y
1.2 ld y
1.2 ld y
1.3 ld x
1.4 ld x
1.4 divide

2.1 st x
(c) Schedules for threads T1 (top) and T2 (bottom) that allow the
program in (b) to exhibit a coherence violation.

Fig. 1. An example of how treating atomics as non-atomics can lead to
coherence violations.

the scheduling rules need to be altered to handle atomics cor-
rectly, and thereby avoid the problematic cases demonstrated
in this section.

a) Coherence: A multi-threaded program conforms to
sequential consistency (SC) if all memory accesses appear
to occur instantaneously and in the same order as the corre-
sponding instructions in each thread [3]. One of the simplest
violations of SC is a coherence violation [32, §8], as illustrated
in Fig. 1a. The atomic variable x, initially zero, is shared be-
tween two pthreads, T1 and T2, that are synthesised as parallel
hardware executing concurrently. A coherence violation occurs
when the first load (Line 1.2) observes x’s new value but the
second load (Line 1.3) observes x’s old value. This is detected
by the failure of the final-state assertion. The reason for this
violation of coherence is the absence of the read-after-read
(RAR) edges in Eintra-iter in (1).

We can observe a coherence violation in LegUp by first
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making some innocuous transformations to the source code, as
shown in Fig. 1b. We have replaced the atomic loads and stores
(written ld and st) with their volatile counterparts, in order
to simulate atomic operations being treated as unoptimised
regular loads and stores. LegUp does not understand atomic
variables and operations but can synthesise volatile variables,
which ensures that no memory accesses are optimised away.
The key transformation in Fig. 1b is to increase the priority
of the second load of x compared to the first one in an ASAP
scheduling context. We do so by feeding the second load’s
value into a division operation (whose denominator is set to 1
at run-time to avoid compiler optimisations) and also injecting
extra loads of y that are part of an addition chain.

These transformations result in the schedule shown in
Fig. 1c.3 Because of the high latency of the division operation ,
the scheduler seeks to schedule the second read of x as early
as possible. It determines that Line 1.4 depends neither on
Line 1.3 (there is only a read-after-read (RAR) dependency
on x) nor on Line 1.2, and hence can be executed first in its
thread. The repeated reads of y cause a delay between the two
reads of x, and it is during this gap (cycle 3) that thread T2
updates x. The resultant execution shows that the second load
of x reads stale data because the first load of x reads the latest
value.

b) Message-passing: Another example of an SC vi-
olation is illustrated by a failure of the message-passing
paradigm [32, §3], which is illustrated in Fig. 2a. This example
involves two shared locations, x and y, where x represents a
message being passed from thread T1 to thread T2, and y is
used as a ‘ready’ flag. A message-passing violation occurs if
T2 observes that y has been set (Line 2.3) but then goes on
to observe that x is still 0. The reason for this violation is the
absence of dependency edges between non-aliasing accesses
in Eintra-iter in (1).

As before, some innocuous code transformations are re-
quired to coax the ASAP scheduler into revealing this be-
haviour, as shown in Fig. 2b. As before, we replace the atomic
variables and operations with their volatile counterparts, in
order for the example to be synthesised by LegUp. This
time, we simply arrange that the value being stored to x is
obtained by a division operation. As shown in the resultant
schedule (Fig. 2c), this high-latency operation delays the store
to x. Because lines 1.1 and 1.2 are deemed independent,
the schedule permits them to execute simultaneously, and
the result is that y is written first. In the reading thread
(T2), both loads are scheduled simultaneously having used
if-conversion [33] to replace the control flow with predicated
statements (slt). By carefully launching the reading thread
after the writing thread, we can observe the new value of y
but the old value of x – a violation of message passing.

IV. METHOD

This section describes how we extend HLS scheduling to
support sequentially consistent (SC) and weakly consistent
C11 atomics, both in standard C synthesis and also in the loop
pipelining context. We have implemented our method both via

3The schedule is constrained by dual-ported memory access.

int x=0; atomic_int y=0;
T1() { T2() {

1.1 x=1; 2.1 int r0=0,r1=0;
1.2 st(&y,1); 2.2 r0=ld(&y);
} 2.3 if(r0==1) r1=x;

}
assert(r0 = 1⇒ r1 = 1)

(a) A minimal example of a message-passing violation. The assertion
failing indicates a message-passing violation, where the flag is set (r0 = 1)
but the data is stale (r1 = 1).

int x=0; volatile int y=0;
T1(int a) { T2() {

1.1 x=a/3; 2.1 int r0=0,r1=0;
1.2 y=1; 2.2 r0=y;
} 2.3 if(r0==1) r1=x;

}
assert(r0 = 1⇒ r1 = 1)

(b) A program that can exhibit a message-passing violation when
compiled using LegUp, if atomics are treated as non-atomics (thread
T1 is launched with a = 3).

Cycle: 1 2 3 4 5 · · · 35 36

1.2 ld a
1.2 divide
1.2 st x
1.3 st y

2.1 ld y
2.2 ld x
2.2 slt y==1?

x:null

(c) Schedules for threads T1 (top) and T2 (bottom) that allow the program
in (b) to exhibit a message violation.

Fig. 2. An example of how treating atomics as non-atomics can lead to
message-passing violations.

the Pthread flow of LegUp 4.0 and LegUp 5.1. Our method
is generally applicable to HLS tools that use SDC-based
scheduling because we simply inject extra ordering edges
as SDC data dependency constraints. We first compile C11
atomics into LLVM IR. From the LLVM IR, we can extract
all memory operations and identify the atomic operations and
their consistency modes. We use this information to inject the
ordering edges into the scheduler.

In this work, we focus on atomic loads and stores and
do not consider atomic read-modify-write (RMW) instructions
(such as compare-and-swap). Realising atomic loads and stores
only requires extending the scheduling constraints on LegUp
and reusing the load and store primitives provided by LegUp.
In contrast, atomic RMWs are not supported on LegUp and
implementing them not only requires scheduling extensions
but, more importantly, requires RTL changes to LegUp’s
underlying RTL backend to support this new primitive, thus
we have reserved it for future work. We also can handle fences
since implementing them only requires scheduling-level exten-
sion, similar to atomic loads and stores. We do not discuss
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them in this article for brevity but we provide verification
details of fences in our supplementary material [11].

We strengthen Emem and Epipe
mem, the MCMs discussed

in §II-B1, to support atomic operations by defining two
MCMs that implement SC atomics (§IV-A) and weak atomics
(§IV-B). Our SC MCM implements all atomic operations as
sequentially-consistent atomic operations, which is the default
for C11 atomic operations when the consistency mode is
left unspecified. This MCM represents the strongest-possible
implementation of C atomics, and is the simplest to implement,
since it requires the fewest additional rules.

The second MCM we implement considers the consistency
mode of each atomic operation. This allows us to exploit
further relaxations afforded by the C11 standard for non-
SC atomics, potentially leading to better performance. This
MCM requires more rules, which adds to the implementation
complexity and increases the vulnerability to bugs – a risk
that we mitigate using formal verification (§IV-E). We support
relaxations for three consistency modes: acquire, release and
relaxed atomics.4

Additionally, we extend both these MCMs to support loop
pipelining by adding inter-iteration dependencies. The number
of rules required to implement loop pipelining for weak
atomics (§IV-D) is greater than for SC atomics (§IV-C).

To help visualise the scheduling implications of the various
MCMs we propose, we provide a running example: a single
thread that loads from three different memory locations. The
second load is atomic with the acquire (ACQ) consistency
mode; the rest are non-atomic (na). We assume that these
three loads are the body of a loop that can be pipelined. The
dark shade in the schedule represents the first iteration of a
loop and the lighter shade represents the second iteration. We
also assume ASAP scheduling and an unconstrained number
of memory ports, for simplicity of exposition.

Cycle: 1 2 3 4
r1=x; ldna x ldna x
r2=ld(&y,ACQ); ldACQ y ldACQ y
r3=z; ldna z ldna z

The schedule above shows our running example implemented
using the existing Emem MCM from §II-B1. The scheduler
treats atomic operations as ordinary operations, and since these
memory accesses do not alias, all three memory operations
within a single iteration are free to be scheduled simultane-
ously. The schedule is the same for Epipe

mem, because the three
loads in the second iteration must execute after their respective
aliasing loads from the first iteration, as specified by Einter-iter.

A. Exploring SC atomics

We now define an MCM that injects additional intra-thread
memory dependencies for the atomic operations within each
thread, Vat ⊆ Vmem. In this MCM, all atomics are treated
as SC atomics. By doing so, we provide a conservative but
simple MCM that support atomics. To do this, we augment

4Consume atomics can be implemented as acquire atomics. Acquire-release
atomics, that are only applicable to read-modify-writes and fences, can be
implemented as sequentially-consistent atomics.

the original scheduling constraints (Emem) with two additional
rules, Eat9 and Eat 8 , which prevent atomics from moving ‘up’
or ‘down’ in the schedule, respectively:

Emem,SC = Eintra-iter ∪ Enopipe ∪ Eat 8 ∪ Eat 9 (4)

where

Eat 8 = {(v, v′, 0) | sb(v, v′) ∧ v ∈ Vat}
Eat 9 = {(v, v′, 0) | sb(v, v′) ∧ v′ ∈ Vat}.

Eat8 specifies that for every atomic operation v and every
memory operation v′ sequenced after v, there must exist an
ordering edge from v to v′ of dependence distance 0. Eat9
specifies that for every atomic operation v′ and every memory
operation v sequenced before v′, there must exist an ordering
edge from v to v′ of dependence distance 0. The combination
of these two constraints with the original MCM Eintra-iter
allows us to define an MCM that supports C11 atomics. We
treats all atomics as SC atomics by applying the same rules
to the entire set of atomics Vat.

The schedule of our running example when implemented in
this MCM is shown below.

Cycle: 1 2 3 4 5 6 7 8 9 10 11 12
r1=x; ldna x ldna x
r2=ld(&y,ACQ); ldACQ y ldACQ y
r0=z; ldna z ldna z

Within an iteration, the atomic load of y is constrained to
happen after the loads of x (by Eat 9 ) but before the load of
z (by Eat8 ). Even though the atomic load uses the acquire
consistency mode, this MCM treats it as a SC atomic load.
The second iteration executes after the completion of the first,
since this MCM does not support loop pipelining. Therefore,
both the latency and initiation interval are equal to 6 for this
MCM’s schedule.

B. Exploiting weak atomics

Having defined a simple MCM that implements all C11
atomics as if they are SC, we now show how to take advan-
tage of the relaxations allowed for weakly-consistent atomics,
according to the C standard.

Let Vsc, Vacq, Vrel, and Vrlx be the sets of sequentially
consistent, acquire, release and relaxed atomics, such that
Vsc ∪ Vacq ∪ Vrel ∪ Vrlx = Vat. We define a MCM that can
support weak atomics as follows:

Emem,weak = Eintra-iter ∪ Enopipe ∪
Esc8 ∪ Esc9 ∪ Eacq 8 ∪ Erel9 ∪ ERAR

(5)

where

Esc 8 = {(v, v′, 0) | sb(v, v′) ∧ v ∈ Vsc}
Esc 9 = {(v, v′, 0) | sb(v, v′) ∧ v′ ∈ Vsc}

Eacq 8 = {(v, v′, 0) | sb(v, v′) ∧ v ∈ Vacq}
Erel 9 = {(v, v′, 0) | sb(v, v′) ∧ v′ ∈ Vrel}
ERAR = {(v, v′, 0) | sb(v, v′) ∧ sloc(v, v′) ∧

v ∈ Vat ∩ Vld ∧ v′ ∈ Vat ∩ Vld}.

We need five rules to implement an MCM that exploits the
performance benefits of weak atomics, in contrast to two rules
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for the MCM in §IV-A. Esc 9 and Esc 8 define the ordering
dependencies for SC atomics, which are similar to Eat 9 and
Eat8 from §IV-A, except that they only apply to SC atomics
rather than all atomics. Eacq8 imposes that acquire atomics
cannot move ‘down’ in the schedule: for every memory oper-
ation v′ sequenced after an acquire atomic v, there must exist
an intra-iteration ordering edge from v to v′. Erel 9 imposes
that release atomics cannot move ‘up’ in the schedule: for
every memory operation v sequenced before a release atomic
v′, there must exist an intra-iteration ordering edge from v to
v′. ERAR enforces read-after-read (RAR) dependencies for all
atomics: we inject an intra-iteration ordering edge from v to
v′ whenever v is sequenced before v′ and both load from the
same memory location (sloc). This rule differentiates relaxed
atomics from non-atomic memory operations since non-atomic
memory operations do not enforce RAR dependencies. It is
needed to enforce C11’s coherence rule (§II-C).

The schedule of our running example for this MCM is
shown below.

Cycle: 1 2 3 4 5 6 7 8
r1=x; ldna x ldna x
r2=ld(&y,ACQ); ldACQ y ldACQ y
r3=z; ldna z ldna z

Since the load of y is an acquire atomic, it must execute
before the load of z (by Eacq 8 ), which is sequenced after
it. However, the memory operations sequenced before the
acquire load of y can be scheduled in parallel. This MCM
still does not support loop pipelining, so the second iteration
must execute after the first iteration. The loop’s latency and
initiation interval are both equal to 4.

C. Pipelining SC atomics

In §IV-A, we defined an MCM that supports atomics in a
non-pipelined setup. We now extend this MCM to ensure the
correct execution of atomics in a pipelining context. We do
so by injecting additional inter-iteration dependencies on top
of the intra-iteration dependencies from (4). Similarly to the
MCM in §IV-A, we treat all C11 atomics as SC atomics. By
doing so, we can support pipelining using just one additional
rule, as given below:

Epipe
mem,SC = Eintra-iter ∪ Einter-iter ∪

Eat 8 ∪ Eat 9 ∪ Eat-inter-iter
(6)

where

Eat-inter-iter = {(v, v′, 1) | v ∈ Vat ∧ v′ ∈ Vmem}.

Eat-inter-iter defines the inter-iteration dependencies required
for all atomics: for every atomic operation v and every memory
operation v′ that executes in the iteration after v, there must
exist an inter-iteration edge from v to v′ of distance 1.

The schedule for our running example for this MCM is
shown below:

Cycle: 1 2 3 4 5 6 7 8 9 10
r1=x; ldna x ldna x
r2=ld(&y,ACQ); ldACQ y ldACQ y
r0=z; ldna z ldna z

The first iteration’s schedule is the same as in §IV-A, where
the first atomic load of y must happen after first load of x and
before the first load of z. The second load of x must happen
after the first load of x (by Einter-iter) and the first load of y
(by Eat-inter-iter), but there is no rule that prohibits the first
load of z and the second load of x happening in parallel.
Therefore, the loop latency is still 6, as it is in §IV-A, but the
initiation interval is now 4.

D. Pipelining weak atomics

We now define an MCM that enables loop pipelining for
weak atomics by extending the weak MCM defined in §IV-B.
We do so by defining four separate rules to handle SC, acquire,
release and relaxed atomics in a loop pipelining context, as
given below:

Epipe
mem,weak = Eintra-iter ∪ Einter-iter ∪ Esc8 ∪ Esc 9 ∪

Eacq8 ∪ Erel 9 ∪ ERAR ∪
Esc-inter-iter ∪ Eacq-inter-iter ∪
Erel-inter-iter ∪ ERAR-inter-iter

(7)

where
Esc-inter-iter = {(v, v′, 1) | v ∈ Vsc ∧ v′ ∈ Vmem}

Eacq-inter-iter = {(v, v′, 1) | v ∈ Vacq ∧ v′ ∈ Vmem}
Erel-inter-iter = {(v, v′, 1) | v′ ∈ Vrel ∧ v ∈ Vmem}

ERAR-inter-iter = {(v, v′, 1) | sloc(v, v′) ∧
v ∈ Vat ∩ Vld ∧ v′ ∈ Vat ∩ Vld}.

Esc-inter-iter and Eacq-inter-iter are similar to Eat-inter-iter but
apply only to SC and acquire atomics respectively, where for
every v that is either SC or acquire atomic and memory oper-
ation v′ that executes in the iteration after v, there must exist
an inter-iteration edge from v to v′ of dependence distance 1.
Erel-inter-iter only applies to release atomics, where for every
memory operation v and release atomic v′ that executes in the
iteration after v, there must exist an inter-iteration edge from
v to v′ of dependence distance 1. ERAR-inter-iter applies to
all atomics including relaxed atomics, where for every atomic
load v and atomic load v′ that executes in the iteration after
v and to the same location (sloc), there must exist an inter-
iteration edge from v to v′ of dependence distance 1.

The schedule for our running example for this MCM that
support pipelining weak atomics is shown below:

Cycle: 1 2 3 4 5 6
r1=x; ldna x ldna x
r2=ld(&y,ACQ); ldACQ y ldACQ y
r3=z; ldna z ldna z

The first iteration’s schedule is the same as in §IV-B, where
the first loads of x and y can happen in parallel but the first
load of z must happen after the first load of y (by Eacq 8 ).
The second load of x must happen after the first load of x (by
Einter-iter) and the first load of y (by Eacq-inter-iter), and can
therefore start on the third cycle. This leads to a loop latency
of 4 and an initiation interval of 2.

E. Ensuring correctness

Even though the scheduling constraints that we enforce are
relatively straightforward, it is still challenging to justify that
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they are sufficient to rule out all executions deemed inconsis-
tent by C11’s MCM, because the specification of C11’s MCM
is so complex. Previous work has proved the correctness of
implementations of C11’s MCM both on CPUs [6] and on
GPUs [5], but such proofs are laborious and fragile, and hence
ill-suited to our prototype implementation.

Therefore, we turn to lightweight methods for verifying
correctness. We employ the Alloy model checker [8] both to
debug our implementation and to verify its correctness (up
to a bound on the size of programs). Alloy is a mature and
well-supported tool whose input language (based on relational
algebra) closely matches the style in which most MCMs are
written. It has previously been used by Wickerson et al. [34]
to check implementations of the C11 and OpenCL MCMs for
several CPU and GPU architectures. Here, we port their work
from the conventional processor domain to HLS.

Specifically, we use Alloy’s constraint-solving abilities to
search for a C11 execution T and a strict total order @T over
the operations in T , such that

1) T is disallowed by C11, but
2) @T is consistent with all of the scheduling constraints

given in §IV-B.
The @T relation represents the order in which T ’s operations
occur at run-time. Other relations in the execution T include
‘sloc’ (for when two events access the same location), ‘sb’
(for when one event is sequenced before another), ‘site’ (for
when two events originate from the same loop iteration), and
‘nite’ (for when one event originates from the next iteration
after another event). Our setup supports pipelining by having
intra-iteration constraints restricted to site-related events, and
inter-iteration constraints restricted to nite-related events.5

The existence of an execution that satisfies conditions 1 and
2 above would imply that the scheduling constraints need to
be strengthened.

Alloy was able to verify that for all executions with up to
nine operations, conditions 1 and 2 cannot be simultaneously
satisfied. Because this represents an exhaustive search of all
executions of all programs, it guarantees that our scheduling
constraints are sufficient to rule out any memory-related bug
that can be expressed using no more than nine memory
operations. Though our verification result is bounded, it is still
quite a strong result because many common memory-related
bugs can be minimised to even smaller programs, typically
comprising between four and six operations [35].

To give an indication of the computational effort involved in
establishing this verification result, Fig. 3 shows that Alloy’s
verification time increases exponentially with the upper bound
on the number of operations. The peformance figures were
obtained on a machine with four 16-core 2.1 GHz AMD
Opteron processors and 128 GB of RAM, and we used the
Glucose SAT-solving backend.

We also confirmed that the original scheduling constraints
are sufficient to avoid memory-related bugs in a single-
threaded setting, again up to a 9-operation bound.

Although the constraints we have presented in this section
have been shown to be correct, it is interesting to note that

5Our full Alloy model files are available online [11].

Operation count: 3 4 5 6 7 8 9
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Fig. 3. Solving time to verify our MCMs in §IV up to a bounded number of
operations.

TABLE I
DESIGN POINTS. THE FIRST FIVE REPRESENT EXISTING HLS SOLUTIONS;

THE LAST FOUR ARE THE SOLUTIONS PROPOSED IN THIS WORK.

Short name Description MCM Ref.

Unsound constraints treat atomics as
ordinary accesses (baseline)

Emem §II-B1

Pipelined unsound like Unsound, but pipelined Epipe
mem §II-B1

Atomic locks like Unsound, but with a lock
around each atomic

Emem

SC atomics constraints treat all atomics as
if they are SC

Emem,SC §IV-A

Weak atomics constraints sensitive to consis-
tency modes of atomics

Emem,weak §IV-B

Pipelined SC atomics like SC atomics, but pipelined Epipe
mem,SC §IV-C

Pipelined weak atomics like Weak atomics, but
pipelined

Epipe
mem,weak §IV-D

Alloy was able to detect a bug in an earlier version of the con-
straints, which we had lifted directly from the reordering rules
for C11 atomics listed on the widely-used cppreference.com
website.6 Alloy found a program that could be scheduled to
reveal an illegal behaviour. The earlier constraints forbade
acquire loads to be reordered with any subsequent loads; the
revised constraints forbid reordering with any subsequent loads
or stores. We traced this bug back to the cppreference.com
website itself, and it has now been fixed [36].

V. EVALUATION

We evaluate our method on two applications/data struc-
tures: a two-threaded message-passing (MP) channel and a
single-producer-single-consumer (SPSC) circular buffer. We
use message-passing as a pilot experiment to check the sanity
of our implementations (§V-C), and SPSC circular buffers as
our main case study (§V-D).

We describe all the common atomic design points for
both data structures, including our method and prior work,
in §V-A. We also discuss our hardware implementations via
two different tools in §V-B. We conclude our evaluation by
aggregating the overall resource utilisation of our method
compared to prior work in §V-E.

A. Design points

We evaluate both these data structures on seven design
points (as shown in Table I): two unsound versions, one lock-

6http://en.cppreference.com/w/cpp/atomic/memory order

http://en.cppreference.com/w/cpp/atomic/memory_order
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Fig. 4. An example of the generated memory architecture for SPSC buffer
by LegUp 4.0 and 5.1 respectively. In general, LegUp 4.0 treats all shared
memory as global memory whereas LegUp 5.1 performs points-to analysis to
infer variable-local arbitration [37].

based version, and four lock-free versions. The first of the
two unsound versions is Unsound. This design uses neither
atomics nor locks when implementing our buffers. Pipelined
unsound is the Unsound design with loop pipelining enabled.
Both of these designs can yield incorrect results, as shown in
§III; we include them because they provide an experimental
upper limit on performance.

We implement one lock-based version, Atomic locks, using
pre-existing lock support provided by both HLS tools. Atomic
locks represents the simplest way of implement atomics using
pre-existing HLS tools. Atomics can be synthesised correctly
by wrapping locks around each atomic access. Atomic locks is
the finest-grained approach: every individual atomic load/store
operation is wrapped in its own critical section, with one
lock per data structure. This locking strategy is similar to the
support that LegUp currently offers for implementing OpenMP
atomics [30], except we assign one lock per data structure
and avoid using a single global lock for all threads to reduce
contention.

We implement all four of our MCM extensions, discussed
in §IV, that support C11 atomics. SC atomics implements
the MCM from §IV-A that implements all atomics as se-
quentially consistent. This design is the strictest but easiest-
to-implement. Pipelined SC atomics implements the MCM
from §IV-C that adds pipelining support to SC atomics. Weak
atomics implements the MCM from §IV-B that differentiates
C11 atomics by their consistency mode. This design has the
best potential for performance but is harder to implement.
Pipelined weak atomics implements the MCM from §IV-D
that extends Weak atomics to enable loop pipelining. This
MCM can further exploit the performance of weak atomics
by allowing interleaving of multiple loop iterations while
maintaining program correctness.

B. Hardware implementation

We implement our case study using two tools: LegUp 4.0
and LegUp 5.1. For both tools, we synthesise each Pthread as
a hardware accelerator, with shared memory implemented on

atomic_int flag1 = 0, ..., flagN = 0;

int data1 = 0, ..., dataN = 0;

1.1 for(i=0; i<ITER; i++) { 2.1 for(i=0; i<ITER; i++) {
1.2 if(ld(&flag1,ACQ)==0){ 2.2 if(ld(&flag1,ACQ)==1){
1.3 data1++; 2.3 data1++;

1.4 st(&flag1,1,REL); 2.4 st(&flag1,0,REL);

1.5 } 2.5 }
... ...

1.7 if(ld(&flagN,ACQ)==0){ 2.7 if(ld(&flagN,ACQ)==1){
1.8 dataN++; 2.8 dataN++;

1.9 st(&flagN,1,REL); 2.9 st(&flagN,0,REL);

1.10 } 2.10 }
1.11 } 2.11 }

Fig. 5. A two-threaded message-passing example with acquire-release
semantics on N independent channels.

the FPGA. We place-and-route all the designs for a Cyclone V
SoC FPGA (5CSEMA5) with 32075 ALMs, 128300 registers,
and 3970 Kb of RAM blocks.

We treat LegUp 4.0 and LegUp 5.1 as two different tools
because the generated memory architecture of these two
versions are different. Figure 4 shows an example of the
generated memory architecture by LegUp 4.0 and 5.1 for
the SPSC buffer. Both tools instantiate each shared memory
variable/array as individual memory elements (head, tail,
arr and res). Although each variable/array is synthesised as
an individual memory element, LegUp 4.0 requires all shared
memory access to be arbitrated via a single global memory
controller, as seen in Figure 4a. Each thread only has two-
ported access to shared memory on LegUp 4.0 that enforces
an added resource constraints to the intra-thread scheduling
constraints. In contrast, LegUp 5.1 can analyse the access
patterns of each thread via points-to analysis and generates
variable-local arbitration for each shared memory element,
referred to as local and shared-local memories in [37], as
seen in Figure 4b. In Figure 4b, we see that each variable
is now protected by an individual arbiter and threads can
access all variables in parallel (one port per register and two
ports per RAMs) without having to be restricted by two-ported
access of shared memory in LegUp 4.0. We show in §V-C2
and §V-D5 how the different arbitration schemes impact the
throughput as we increase the workload of memory accesses.
In addition to different arbitration schemes, LegUp 4.0 and
5.1 also synthesise locks differently. On LegUp 4.0, locks
are synthesised centrally and protected by a synchronisation
controller that is accessed by the global memory controller.
Instead on LegUp 5.1, locks are synthesised distributedly
as individual memory elements and each thread spins on
individual locks to obtain and surrender lock access.

C. Pilot experiment: Message-passing

Our first experiment is a message-passing application in
which two threads take turns to pass messages to each other
via shared variables. This application combines two well-
known litmus tests for weak atomics: message-passing and
load-buffering [6].

1) Code behaviour: Figure 5 shows two threads operating
on N message-passing channels. Each thread must acquire
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Fig. 6. Throughput results for our pilot experiment. The dashed lines indicate
unsound designs; we include their throughput only as a limit study of the best
performance possible.

the atomic flag (line 1.2 and line 2.2) before reading the data
(line 1.3 and line 2.3), preserving load-buffering behaviour.
Each thread must also write to data (line 1.3 and line 2.3)
before releasing the atomic flag (line 1.4 and line 2.4), preserv-
ing message-passing behaviour. We perform message-passing
across multiple channels for a fixed number of iterations to
measure performance across all our design points.

2) Throughput: Figure 6 shows memory bandwidth
achieved as we scale the number of independent channels
for both tools across all design points. On both LegUp 4.0
and 5.1, the Unsound and Pipelined unsound designs achieve
the highest bandwidth but do not guarantee correct execution.
These lines are treated as limits to the maximum achievable
bandwidth for our atomic implementations.

Atomic locks achieves the worst bandwidth of 14 million
memory operations per second (Mmops) and 71 Mmops for

LegUp 4.0 and 5.1 respectively, although we see a 5x improve-
ment when arbitration is localised in LegUp 5.1, as discussed
in §V-B. Both tools, however, restrict any improvements as
we scale the number of channels.

SC atomics achieves up to 6x and 3x bandwidth improve-
ments compared to Atomic locks on LegUp 4.0 and 5.1
respectively. These results show that wrapping locks around
atomic memory access results in unnecessary performance
overhead. SC atomics also restricts performance when scaling
the number of channels since SC atomics serialise accesses to
each channel. Each thread is required to exchange messages
on one channel at a time.

Weak atomics achieves up to 6x and 6x bandwidth im-
provements compared to Atomic locks on LegUp 4.0 and 5.1
respectively. Weak atomics only achieves 3% improvement
compared to SC atomics on LegUp 4.0 but achieves up to
2x improvement on LegUp 5.1. SC atomics and Weak atomics
have similar performance on LegUp 4.0 because the number
of memory accesses are limited to two accesses per cycle
due to the resource constraints imposed by global access of
shared memory, as discussed in §V-B. Weak atomics allows
for better performance when scaling the number of channels,
since weak atomics allow each thread to exchange messages
across multiple channels at a time.

When loop pipelining is enabled, Pipelined SC atomics
achieves similar bandwidth to SC atomics on both tools. Since
the final memory access in the loop (line 1.9 and line 2.9
in Figure 5) is a SC atomic, it disallows any overlapping
between consecutive iterations. This restriction leads Pipelined
SC atomics achieving a similar schedule to SC atomics.

In contrast, Pipelined weak atomics achieves up to 7x
and 10x bandwidth improvements compared to Atomic locks
on LegUp 4.0 and LegUp 5.1. Compared to Weak atomics,
Pipelined weak atomics achieves up to 1.2x and 1.6x band-
width improvements on LegUp 4.0 and 5.1, since weak atom-
ics permits overlapping of consecutive iterations. In particular,
the release atomic in line 1.9 (of Figure 5) is allowed to
overlap/reorder with the next iteration’s memory operations
from line 1.1 up to line 1.7.

D. Case study: Circular Buffer

Thus far, our code examples have been relatively small,
and designed to convey the problems of weak behaviour
and demonstrate the potential of strengthening MCMs to
implement atomics. We investigate the performance of SC
atomics and weak atomics on a real-world example: a lock-
free single-producer-single-consumer circular buffer, due to
Hedström [38], as our case study. Data structures similar to
this circular buffer are used in many real-time and memory-
sensitive systems, and also appear in the Boost C++ library
and the Linux kernel [39].

1) Code behaviour: Figure 7 shows the C-like code of a
producer (on the left) and consumer (on the right) communi-
cating via a circular buffer that is visualised in Fig. 8.

The buffer consists of atomic head and tail pointers, a
buffer array (arr) and a result array (res). The producer
only adds tasks and the consumer only removes tasks, as
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atomic_int tail=0; atomic_int head=0;

int arr[SIZE]; int res[MSGS];

1.1 while(true) { 2.1 while(true) {
1.2 chead=ld(&head,ACQ); 2.2 ctail=ld(&tail,ACQ);

1.3 ctail=ld(&tail,RLX); 2.3 chead=ld(&head,RLX);

1.4 ntail=(ctail+1)%SIZE; 2.4 nhead=(chead+1)%SIZE;

1.5 if(ntail!=chead){ 2.5 if(ctail==chead){
1.6 arr[ctail]=prod 2.6 res[cons]=arr[chead];

1.7 st(&tail,ntail,REL); 2.7 st(&head,nhead,REL);

1.8 prod++; 2.8 cons++;

1.9 } 2.9 }
1.10 } 2.10 }

Fig. 7. A single-producer-single-consumer circular buffer that synchronises
the producer (left) and the consumer (right) using weak C11 atomics [38].

head

tail

The head and tail point-
ers advance counterclock-
wise.

Fig. 8. The SPSC circular buffer, diagrammatically. This buffer consists of
an array of elements protected by head and tail pointers, each pointing to
the next location to pop from and push to respectively.

reflected by the store to arr (line 1.6) and the load from
arr (line 2.6). The producer and consumer first check that
the buffer is not full (line 1.5) and not empty (line 2.5),
respectively. Finally, the producer and consumer update the
tail (line 1.7) and head (line 2.7) pointers respectively
with their next values. These next tail (line 1.4) and head
(line 2.4) values are computed by a modular increment of
SIZE to create a counterclockwise update, as depicted in
Fig. 8. In addition, each atomic load (ld()) and atomic store
(st()) is assigned a weak consistency mode: either ACQ for
acquire, REL for release, or RLX for relaxed.

Hedström explains in detail why each memory access does
not require full SC [38]. Roughly speaking, the non-atomic
stores to arr (by the producer in line 1.6) do not race with
the non-atomic loads of arr (by the consumer in line 2.6)
because they are always separated by a release/acquire pair
on the tail or the head pointer. These pairs ensure correct
message-passing behaviour. The tail pair (lines 1.7 and 2.2)
ensures that the consumer always reads from the latest write
of the producer. Similarly, the head pair (lines 2.7 and 1.2)
ensures that the consumer completes the read from arr before
the producer writes to arr again.

2) Ensuring correctness: Going beyond the informal ar-
gument presented above, how can we be confident that the
program we have chosen for evaluating our implementations of
weak atomics actually uses weak atomics correctly? Ensuring
the correctness of any multi-threaded program in a weakly
consistent setting is difficult because of the counterintuitive
behaviours allowed by a weak MCM. Ordinary testing is
inconclusive because of the non-deterministic nature of multi-
threading and because implementations of weakly consistent
operations vary significantly between architectures. As such, to
gain additional confidence in the correctness of this code, we
turn to automatic verification. We use the CppMem tool [6] to

Thread 1 Thread 2 Thread N

. . .

produce

consume
[compute]
produce

consume

Fig. 9. Our experiments (for N from 2 to 9). For CHAINING, [compute] is
a no-op; for DIVISION, it is a long-latency division operation.

confirm that the accesses of the shared non-atomic variable
do not cause a race. Because CppMem does not support
arrays, we replace arr with a scalar variable, and because
CppMem’s performance degrades rapidly with the number of
operations, we remove the while-loops. We give the actual
code we verified in our companion material [11]. CppMem’s
result is of course weakened by the inclusion of these sim-
plifications, but taken together with the informal argument for
correctness given by Hedström, we obtain a reasonable degree
of confidence in the program’s correctness.

3) Experiment Setup: We conduct experiments based on the
circular buffer by chaining together several of these buffers
and observing the performance and area characteristics of our
various designs. Figure 9 shows our basic experimental setup:
a producer thread sends a stream of messages across a chain of
repeater threads to a consumer thread that verifies the results.
We conduct two experiments based on this setup. The first
is CHAINING, where we solely observe the maximum perfor-
mance on the memory operations, and the second is DIVISION,
where we introduce a long-latency divide operation into each
repeater thread (between the ‘consume’ and ‘produce’ steps)
to analyse the impact of computation on our designs. In both
versions, we observe the performance and scalability of our
various designs and HLS tools by increasing the number of
repeater threads.

4) Additional lock-based design points: In addition to the
design points discussed in §V-A, we further optimise Atomic
locks for better performance by reducing the number of
locking and unlocking steps for the SPSC circular buffer. The
intention for this exercise is to observe the performance of the
buffer when coarsening the locking granularity. As we coarsen
the granularity of the implementations, the critical sections
grow in size and move towards lock-based programming rather
than exploiting the buffer’s lock-freedom. In comparison to
Atomic locks, Fine locks also uses one lock per buffer but
requires a repeater thread only to hold the lock of its source
buffer while consuming, and then only to hold the lock of its
target buffer while producing. This is slightly coarser-grained
locking strategy than Atomic locks and is intended to allow any
computation by the repeater thread, between the ‘consume’
and ‘produce’ steps, to avoid being in a critical section. Coarse
locks is the coarsest approach and requires each repeater thread
to hold the lock of both its source and its target buffer before
it begins consuming or producing. This design only requires
a pair of locking and unlocking steps.

5) Throughput: Figure 10 shows the performance of
CHAINING and DIVISION for both HLS tools, measured in
terms of the number of data packets transferred per second.

The two unsound designs give the highest throughput, but
because they can give incorrect results, we include them only
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Fig. 10. Throughput results. The hatched bars indicate unsound designs; we include their throughput only as a limit study of the best performance possible.

as nominal upper bounds on performance. For instance, in the
Pipelined unsound case, we were occasionally able to observe
packets being erroneously duplicated.

The lock-based designs are the slowest in both experiments.
Although the results of these designs are correct, correctness
comes with a high overhead. On average, the lock-based
designs are 6x slower than Unsound. LegUp 4.0’s locks are
5x slower than those in LegUp 5.1’s, due to the improvement
on lock access on LegUp 5.1 as discussed in §V-B. On
average, Coarse locks is 1.1x faster than Fine locks, potentially
because it involves fewer lock and unlock steps. However, Fine
locks achieves 1.5x better performance than Coarse locks for
DIVISION, which can be attributed to Fine locks not holding
any locks during the division operation (critical section).
Atomic locks is consistently the least-performing lock-based
implementation and performs 12x slower than Unsound, on
average.

SC atomics performs on average 8.2x faster than Atomic
locks in the CHAINING experiment (and 3x faster in DIVI-
SION). SC atomics restricts the ordering of the atomic opera-

tions because of the additional memory dependencies but does
not incur the overheads of acquiring and releasing locks. The
benefit of SC atomics reduces during the DIVISION experiment
when the compute latency dominates the total latency of
the repeater’s schedule. SC atomics can recover 87% of the
Unsound throughput for DIVISION (which is compute-bound)
but only 44% for CHAINING (which is memory-bound). SC
atomics also performs 6x better on LegUp 5.1 than on LegUp
4.0, due to the improved memory architecture discussed in
§V-B.

Weak atomics is 1.3x and 1.2x faster than SC atomics for
CHAINING and DIVISION. This shows that although weak
atomics are harder to implement, they offer superior perfor-
mance in our case study. On average, Weak atomics achieves
reduced repeater latency compared to SC atomics because
weak atomics require fewer dependencies than SC atomics.
Weak atomics performs on average 11x and 3.4x faster than
Atomic locks in the CHAINING and DIVISION experiments.
Weak atomics recovers 59% of the Unsound throughput for
CHAINING, and actually outperforms Unsound by 0.3% for
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DIVISION. This is because despite Weak atomics having a
slightly higher cycle count, it runs at a much higher clock
frequency than Unsound. Weak atomics also performs 5x better
on LegUp 5.1 than LegUp 4.0, once again due to the improved
memory architecture discussed in §V-B.

We further extend both our atomic MCMs to support loop
pipelining. Pipelined SC atomics represents the pipelined
version of SC atomics. Both designs achieve a similar per-
formance (pipelining worsens performance by 2.8%). Since
Pipelined SC atomics treats all atomics as sequentially-
consistent atomics, and because the last memory operation
in the loop is an atomic store, there is little opportunity for
pipelining the repeater. Pipelined SC atomics recovers only
44% and 37% of Pipelined unsound throughput for CHAINING
and DIVISION.

Pipelined weak atomics is the best-performing (correct)
design across all our experiments. In contrast to Pipelined SC
atomics, Pipelined weak atomics performs 1.25x and 1.45x
better in CHAINING and DIVISION than its non-pipelined coun-
terpart Weak atomics. In our case study, weak atomics allow
more overlapping between memory operations in consecutive
iterations compared to SC atomics. Since the last memory
operation of the loop is a release atomic store, memory
operations from the next iteration are allowed to overlap to
some degree. In fact, overlapping is allowed up to the acquire
atomic load in Line 1.2 of Fig. 7 of the current iteration. In
our experiments, this design’s initiation interval is roughly half
its loop latency. Pipelined weak atomics recovers on average
53% and 72% of the Pipelined unsound implementation for
CHAINING and DIVISION. In contrast to all other designs, this
design offers better performance for DIVISION, as its effect on
performance is much greater for large latencies (the initiation
interval being half the loop latency). Overall, Pipelined weak
atomics achieves an average 14x and 5x speedup in the
CHAINING and DIVISION experiments, compared to Atomic
locks.

E. Overall resource utilisation

Figure 11 shows the resource utilisation of our atomic
implementations relative to Atomic locks. On average, SC
atomics and Weak atomics only use 90% and 93% of the LUTs
required by Atomic locks despite having an average of 6x and
7.8x throughput improvement for our case study. An additional
7% and 4% LUT usage is required to implement Pipelined
SC atomics and Pipelined weak atomics, to achieve 1x and
1.3x compared to SC atomics and Weak atomics respectively.
Loop pipelining introduces additional pipeline stalling logic
and validity signals that increases LUT usage. Despite added
circuitry to support loop pipelining, both these designs still
use fewer LUTs than Atomic locks, on average. Pipelined
weak atomics only uses 15% additional LUTs to achieve an
average throughput performance of 10x. Overall, our atomic
implementations use between 79% and 115% LUT compared
to Atomic locks.

Our atomic implementations also required fewer registers on
average compared Atomic locks. Pipelining does not introduce
additional register usage as the pipelining circuitry is mostly

combinational. Our atomic implementations use between 80%
and 122% register usage compared to Atomic locks for average
performance improvement of 10x.

VI. CONCLUSION

We have investigated how multi-threaded C programs that
use atomic operations to synchronise threads can be synthe-
sised to FPGAs by extending two HLS tools (LegUp 4.0 and
LegUp 5.1). Where previous approaches have relied on locks
to implement atomics, we have shown how they can instead
be implemented by injecting additional intra-thread constraints
during the HLS scheduling phase. The C standard defines a
range of atomic operations, some of which are sequentially
consistent, others weakly consistent, and we have defined
scheduling constraints that are sensitive to the consistency
mode of each operation. Atomics support loop pipelining,
unlike lock-based solutions, which give rise to critical sections
that cannot overlap. By adding further scheduling constraints
between loop iterations, we have shown how to add support
for pipelining.

To justify the correctness of our work, we have used an
automatic model checker to prove that all programs (up to a
bounded size) will be synthesised correctly.

We have evaluated the performance of our work on a
widely-used lock-free buffer from the Linux kernel and the
Boost library. We demonstrate a 6x speedup compared to
LegUp’s current lock-based implementation of atomics [30].
We further demonstrate that switching from sequentially con-
sistent atomics to weakly consistent atomics (where safe to do
so) yields a further 1.3x speedup, and that enabling pipelining
brings a further 1.3x speedup. We achieve an overall perfor-
mance of 10x compared LegUp’s lock-based implementation
of atomics with fewer LUT and registers on average and with
a worst-case 20% increase in LUT and register overheads.

Where previous work on implementing weak atomics has
concentrated on mapping C to processor-specific assembly
code [6], [5], our work shows how HLS can compile the C
standard for weak atomics directly to hardware. In the future,
we hope to extend our approach beyond loads and stores to
handle compound atomic operations (such as compare-and-
swap), and thus enable a larger class of lock-free programs to
be synthesised into hardware.
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