
Who checks the checkers? Automatically finding
bugs in C-to-RTL formal equivalence checkers
Michalis Pardalos

Imperial College London
michail.pardalos17@imperial.ac.uk

Alastair F. Donaldson
Imperial College London

alastair.donaldson@imperial.ac.uk

Emiliano Morini
Intel

emiliano.morini@intel.com

Laura Pozzi
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Abstract—C-to-RTL (register-transfer level) formal equivalence check-
ers (ECs) allow hardware implementations to be compared against
software specifications. Thanks to their complete state-space coverage,
ECs are trusted to authorise design sign-off. Therefore, ridding ECs of
bugs is a top priority. In pursuit of this goal, we have developed Equifuzz,
a technique and tool for randomized testing (fuzzing) of SystemC-to-RTL
ECs. Equifuzz uses knowledge of SystemC semantics to generate rich
designs that are known to be equivalent to trivial RTL designs. It has
uncovered 7 unsoundness bugs in major commercial ECs (where the EC
claimed equivalence incorrectly), and 5 incompleteness bugs (where the
EC failed to prove equivalence between equivalent designs), all of which
have been confirmed by the tool vendors. The fact that Equifuzz has
been able to find serious bugs in extensively tested, major commercial
ECs demonstrates that fuzzing is a valuable complement to the hand-
crafted tests that EC developers use as standard.

I. INTRODUCTION

C-to-RTL formal equivalence checkers (ECs) such as Synopsys
DPV [10], Cadence Jasper C2RTL [13] and Siemens SLEC [22]
are valuable components of the hardware designer’s toolbox. They
are used to prove that an RTL implementation matches a high-
level specification, usually written in C, C++, or SystemC. Where
simulation-based approaches explicitly traverse the state space (and
hence can only check a subset of inputs and a limited number of
cycles), ECs provide an unbounded proof: valid for any inputs, and
for any number of cycles. This exhaustive coverage means that ECs
are deeply trusted, even to the extent of being used to authorise design
sign-off. Indeed, the Synopsys marketing blog claims that:

HECTOR delivers 100% confidence that the RTL design
implementation conforms to the C/C++ reference algo-
rithm, thereby significantly speeding up signoff [14]

while Siemens claim that their SLEC tool:
enables designers to have the ultimate confidence to move
to high-level synthesis [. . . ] dramatically reducing or elimi-
nating the need for design teams to perform simulation/ver-
ification of RTL. [21]

The guarantees that ECs provide are, of course, contingent on the
ECs themselves being correct. In this work, we seek to help users and
developers of ECs achieve higher confidence by identifying bugs that
have escaped manual testing. This is important because bugs in ECs
can have serious consequences, partly because they can be difficult to
spot. Users will usually assume that an unexpected result from the EC
is due to their own code, rather than a bug in the EC itself. Moreover,
a bug in an EC could, like compiler bugs, be exploited to allow
malicious code inserted into a design to slip through verification [2].

In order to evaluate, and hopefully improve, the reliability of ECs,
we turn to randomized testing, also known as fuzzing. Fuzzing has

found great success at uncovering bugs in many different tools, such
as state-of-the-art C compilers [25, 15], graphics shader compilers [3]
and OpenCL compilers [17]. Although fuzzing has not, to our
knowledge, been applied to ECs before, it has been effective at finding
bugs in other tools from the EDA realm, such as FPGA synthesis
tools [8] and high-level synthesis tools [6]. Fuzzing has also been
used to find bugs in verification tools other than ECs, such as SMT
solvers [24] and software model checkers [26].

We have developed Equifuzz: a technique and tool for randomized
testing of ECs that compare RTL implementations against SystemC
specifications. We focus on SystemC because it is accepted by the
three major commercial ECs, and often used by their industrial users.
Equifuzz works by generating random SystemC programs. These are
then compared (using the EC-under-test) against trivial RTL designs
that are known to be equivalent. We record a potential bug if the EC
gives a result other than “equivalent”.

We demonstrate the effectiveness of Equifuzz by uncovering 16
distinct bugs in three major commercial ECs, 12 of which have been
confirmed by the vendors: 9 unsoundness bugs (where the EC claims
equivalence incorrectly) and 7 incompleteness bugs (where the EC
fails to find an existing equivalence).

Since SystemC is a superset of C++, we also compare the bug-
finding ability of Equifuzz against two state-of-the-art C fuzzers
(Csmith [25] and YARPGen [18]) by counting how many bugs each
tool is able to find within 24 hours. Additionally, because Equifuzz
allows for precise control over the size of generated programs, we
investigate the effectiveness of different program sizes in catching
bugs. These experiments demonstrate that even though Equifuzz
generates smaller and simpler programs than state-of-the-art tools,
it is much more capable at finding bugs in SystemC-to-RTL ECs.

We believe Equifuzz can complement the handcrafted test suites
that EC developers currently use. Those suites can exhaustively
check language features individually – and indeed we found no
bugs involving only a single feature – while Equifuzz can (non-
exhaustively) check interactions between features.

Our contributions

1) We present the first fuzzer for SystemC programs.
2) We present the first fuzzer oriented towards testing ECs.
3) We present a novel program generation algorithm that works

by applying a random sequence of small transformations which
maintain syntactic wellformedness at each step (§IV), speeding
up test-case reduction (§V).

4) We present a technique for rephrasing false-negative EC bugs as
false-positives, thus increasing their perceived severity (§III-B).



5) We present a total of 16 bugs in three major commercial ECs,
among them 9 unsoundness bugs (§VI-A).

6) We investigate how Equifuzz’s bug-finding ability changes with
the size of the SystemC programs it randomly generates, and
we also compare its bug-finding ability against two state-of-
the-art C fuzzers (§VI-B).

II. PROBLEM STATEMENT

We are looking to create random, valid inputs for an EC, in order
to trigger buggy behaviours. In general, an EC checks equivalence
between programs in two languages, say L1 and L2. In the context
of this paper, L1 is SystemC and L2 is RTL. An EC can be viewed
as a function of the following type:

⟨P1(x⃗), P2(x⃗)⟩ → {True, False, Error}

where Pi(x⃗) is a program in language Li, which takes x⃗ as inputs.
The EC will have one of the following results:

• “True”, if it can show that for all inputs x⃗, P1(x⃗) and P2(x⃗)
produce the same output.

• “False”, if it can find an input x⃗ for which P1(x⃗) and P2(x⃗)
produce different outputs. In this case, x⃗ is presented to the user
as a counterexample.

• “Error”, if one of the programs is invalid in some way (e.g. it
exhibits a syntax or type error).

The problem, then, is to generate pairs of programs P1(x⃗) and
P2(x⃗), as well as, for each pair, an expected result E ∈ {True, False,
Error}, according to whether the programs really are equivalent (or
even valid). We can then use these program pairs with their expected
results to look for violations of this expectation. These violations can
be divided into the following categories:

• False positive: The EC says that two programs are equivalent,
when in reality they are not. This could be because they exhibit
different behaviours, or because at least one is invalid (e.g.
contains a syntax error) and thus should be rejected.

• False negative: The EC says that two programs are not equiv-
alent, when in reality they are (they are both valid and have the
same behaviour for all inputs).

• Valid input rejected: The EC gives an error message, even
though both input programs are valid.

Of those, a false positive is the most critical, as it could mean that
an incorrect design is signed-off. We also refer to this kind of bug
as an “unsoundness”. A false negative or valid input being rejected,
if not fixed, could result in lost engineering time for the verification
engineer, who will have to re-write the design in a way that works
around the bug. As we will demonstrate in §III-B, however, a false
negative can often be rephrased to expose an associated — but much
more serious — false positive. For this reason, the discovery of false
negatives is valuable in practice.

It is also possible for the EC to fail to produce any result
at all, usually because of reaching memory or time limits. Such
results are expected, as the problem of equivalence checking is, in
general, undecidable. We did not encounter any such issues in our
investigation. If we had, we would not have considered them as bugs.

III. FUZZER DESIGN

Given this general problem statement, we constrain it to a more
limited problem in order to arrive at a concrete implementation.

ECint f() {return 1 + 1;}
P1

assign out = 2;

P2

Counterexample:
P1 output: “5”
P2 output: “2”

EC assign out = 5;

P ′
2

Equivalent

False negative

False positive

Fig. 1: Converting a false negative (failing to prove 1+1=2) into a
false positive (proving 1+1=5).

sc_dt::sc_fixed<16,8> dut() {
sc_dt::sc_int<1> x0 = sc_dt::sc_int<1>(-1);
sc_dt::sc_fixed<16,8> x1 =

sc_dt::sc_fixed<16,8>(x0.range(0, 0));
return x1;

}

(a) SystemC code triggering false negative and false positive bugs.

module top
( output [15:0] out );
assign out = 16’h0100

endmodule

(b) Verilog demonstrating false
negative. EC incorrectly pro-
duces negative result

module top
( output [15:0] out );
assign out = 16’hff00

endmodule

(c) Verilog demonstrating false
positive. EC incorrectly produces
positive result

Fig. 2: Example of false positive bug discovered from false negative.

A. Constraining the problem

The “direct” approach to solving the problem identified in §II
would be to generate arbitrary ⟨P1(x⃗), P2(x⃗)⟩ pairs, decide whether
they are equivalent, and use that to test the EC. This approach has
multiple issues. First, we run into the oracle problem [1]: deciding
whether two arbitrary programs are equivalent amounts to building
another EC, likely to contain more bugs than the ECs under test. Even
overcoming that (say, using differential testing [20]) this approach
would be unlikely to find any bugs. Two entirely arbitrary programs
will almost certainly be non-equivalent in uninteresting ways.

Constraining the problem can both make it tractable and increase
the chance of finding bugs. First, we focus our attention on valid
programs; that is, SystemC programs that can be compiled and run
without error. This ensures that we have an expected output to check
against. Furthermore, valid programs are likely to exercise more of
the equivalence checker than invalid programs. Second, we focus
on input-free programs: programs which take no inputs and can
therefore be expected to produce a constant result. This might appear
to reduce the chances of triggering real-world bugs. However, input-
free programs have proven to be useful in the domain of compiler
testing: Csmith [25] and Verismith [8] both used exclusively input-
free programs to find multiple miscompilation bugs in C compilers
and FPGA synthesis tools, respectively.

Given these two restrictions, we can produce program pairs as
follows: generate an input-free program P1 (in SystemC). This
program will have some constant output N . Then, P2 can be a
program in another language supported by the EC, e.g. Verilog, that
outputs N directly, without any computation. The expected result E
for the equivalence of P1 and P2 will therefore be “True”, and any
other result can be considered a probable bug.

B. Converting false negatives to false positives

When looking for EC bugs we want to maximise the proportion of
false-positive (unsoundness) results. The design we have described,



however, can only directly find false-negative or valid-input-rejected
bugs. This is because we generate program pairs that are equivalent.
We demonstrate a way to recover a possible false-positive bug from
a false-negative witnessed by an input-free program.

ECs produce a counterexample with negative results. For input-free
(i.e. constant) programs, this counterexample contains the value that
the EC believes that program evaluates to. If we know that the EC is
incorrect, we can create a new program which returns the value that
the EC expects. This can be used to trigger a false-positive bug in
the EC. Figure 1 illustrates this process with an artificial example.

We provide a real example of this “conversion” process in Figure 2,
using a bug found by Equifuzz. Equifuzz initially reports (after
reduction, see §V) the pair of the SystemC in Figure 2a and the
Verilog in Figure 2b as triggering a false negative bug. The code
in Figure 2a produces a result of 0x0100 when running using the
reference SystemC implementation [11], and yet, the EC claims that
it is not equivalent to Figure 2b which is hard-coded to produce this
value. This is a false negative bug. Examining the EC log, we find
that it produced a counter-example, claiming that the SystemC code
has a result of 0xFF00. We can use this to generate a second Verilog
module (Figure 2c), and run the EC a second time, comparing the
original SystemC against this second Verilog module. Since this has
the result that the EC (incorrectly) expects, it produces a positive
result. Since this disagrees with the true value of the SystemC code,
we have a false positive bug. More details on this specific bug can
be found in §VI-A.

It is certainly possible to encounter a bug that cannot be converted
to a false positive using this process but we did not during our testing.
We were successful in converting every false negative result found
during our testing into a false positive.

The converted bugs have the same underlying cause as the
originals. However, they are presented in their most severe form,
which improves the likelihood of a quick fix when reported the
the tool developers. This is analogous to how a bug that has been
automatically reduced is more likely to be fixed than a bug reported
with a big program as generated by the fuzzer.

C. Undefined behaviour

Given that SystemC is a superset of C++, we must contend with the
existence of undefined behaviour (UB) in the programs we generate
for testing. The usual approach in compiler fuzzing, as popularised
by Csmith [25], is to construct the generator such that it avoids
programs that could trigger UB. The reason for this, in the context
of compiler testing, is that code which triggers UB has no value
in finding compiler bugs: the compiler is free to generate code that
behaves in an arbitrary fashion. Therefore, no behaviour exhibited by
the program (on input that triggers UB) could be considered a bug.

In the context of equivalence checking (and perhaps formal tooling
more generally) the story is not quite as simple. Since the program
can have any behaviours at all, it cannot be considered equivalent
to any RTL designs! We take the stance that a positive result is a
false-positive bug, and that any non-positive result is correct, whether
that be a negative answer (possibly with a counterexample showing
the input that triggers the UB) or simply an error.

Equifuzz is designed with this attitude towards UB in mind. It will
occasionally generate programs containing UB. Ideally, we would
detect when a generated program contains UB, and then expect
a non-positive result from the EC. We attempted to perform this
detection using the “undefined behaviour sanitizer” (UBSan) in the
Clang compiler. Unfortunately, this approach ran into issues, with
the official SystemC implementation from Accellera triggering UB

int f() { return 42; }Seed(42)1

sc_uint<16> f() {
sc_uint<16> x1 = sc_uint<16>(42);
return x1; }

Cast(sc_uint<16>)2

sc_uint<16> f() {
sc_uint<16> x1 = sc_uint<16>(42);
return x1 * 4; }

Multiply(4)3

sc_fixed<10,2> f() {
sc_uint<16> x1 = sc_uint<16>(42);
sc_fixed<10,2> x2 = sc_fixed<10,2>(x1 * 4);
return x2; }

Cast(sc_fixed<10,2>)4

Fig. 3: Example of generation process

for valid SystemC code. We reported this issue to Accellera1, who
confirmed that the issue was present in the latest stable version
of the library (SystemC 2.3), but that it had been fixed in the
upcoming SystemC 3.0 release. Our current workaround has been
to use the result given by the Accellera SystemC implementation
even for programs with UB. This way, we can still find cases where
the EC-under-test disagrees with Accellera’s SystemC. After finding
the discrepancy we can check whether the result constitutes a bug
manually, often using UBSan to check if UB could be present.

It would also be possible to test ECs using only programs that
contain UB, e.g. by using UBFuzz [16]. We leave this as future work.

IV. FUZZER IMPLEMENTATION

At a high level, the fuzzer follows the following process.

1) Generate an input-free SystemC program P using the method
that will be specified below.

2) Compile and run it using GCC and the Accellera SystemC
Class Library [11] to get its output N .

3) Use the EC to check that P is equivalent to the constant N .

The most complex part of this process is step 1. We need to
generate programs that cover a wide range of SystemC features, while
remaining valid SystemC. It is also important to make them amenable
to reduction (as will be discussed in §V).

To get the expected result of the generated SystemC code we use
the Accellera SystemC Class Library. This is a software implemen-
tation of the C++ classes mandated by the SystemC Standard [9].

We should note that any bugs that show up could possibly be bugs
in either GCC or the Accellera SystemC implementation. Speaking
precisely, the fuzzer is set up to find discrepancies between the EC-
under-test and the combination of GCC and Accellera SystemC.

Once the fuzzer uncovers a possible bug it is up to a human to ver-
ify that this is, indeed, a bug in the EC, and not in another component
of the system (including the fuzzer itself). This process is easy, thanks
to the automated test-case reduction we have implemented (described
in §V) which means that the test cases presented by Equifuzz are
already minimised (usually to fewer than 5 lines of code).

With the above goals in mind, Equifuzz generates programs in
steps. Starting from a simple seed program (e.g. a random integer
constant), we iteratively apply transformations that grow the program.
As we expand the generated program, we model it in two parts:
the head expression, which will become the final return statement,
and a list of statements that will become the function’s body.
Transformations modify the head expression and add statements
to the list. They cannot modify the statements given by previous
transformations. We also keep track of some additional information
about the head expression, such as its type and bit-width. This is used
to decide whether transformations can be applied. An example of this
process is given in Figure 3: we begin with a seed expression 42,

1Link to bug report: https://github.com/accellera-official/systemc/issues/61

https://github.com/accellera-official/systemc/issues/61


which is transformed by adding a cast to a 16-bit unsigned integer,
a multiplication by 4, and finally a second cast to a 10-bit fixed-
point number with 2 fractional bits. This process can be repeated an
arbitrary number of times to produce programs of a precise desired
size that can be used as test cases.

We have currently implemented the following transformations.
These can easily be extended to cover more of the Sys-
temC language: Cast with assignment (e.g. sc_int<8> y =
sc_int<8>(x)), functional cast (e.g. sc_int<8>(x)), range op-
erator (e.g x.range(10, 2)), arithmetic (e.g. x + 5), unary op-
erators (e.g. - x), ternary operator (e.g. x ? 1 : 2), bit select op-
erator (e.g. x[1]), and reduction operators (e.g. x.or_reduce()).
The cast operations can use any of the following types: sc_(u)int,
sc_big(u)int, sc_(u)fixed, int, unsigned, float,
double, bool.

It is worth remarking that transformation-based approaches to
program generation have previously been used in a few other contexts.
Donaldson et al. use it to test SPIR-V compilers [4], but where
they seek a pair of minimally different programs that give distinct
results after compilation, we seek a single minimal program that
confuses the EC-under-test. Le et al. generate test programs by
repeatedly removing instructions deemed unreachable from an initial
program [15], whereas we build our test programs additively. Perhaps
the closest program generation algorithm to ours is in HyperPUT [5],
which aims to generate challenging test-cases for bug-hunting tools
by repeatedly wrapping a buggy instruction in control-flow structures.
However, our approach focuses on data-flow transformations (i.e.
changing the value returned by the program) rather than control
flow (i.e. changing which statements are executed). Moreover, where
HyperPUT tests whether a bug-hunting tool can reach a specific,
deeply nested line of code, we are testing whether an EC can reason
correctly about the generated SystemC program as a whole.

Finally, having generated an experiment ⟨P,N⟩ as described
above, our experiment runner generates a Verilog program that
produces N , and a TCL script that tells the EC to compare that
against the SystemC program P . These are all sent over SSH to the
server that runs the EC, and the result is sent back. If the result is
not as expected, the experiment is marked as a possible bug, and the
reduction process described in the following section is initiated. We
have also developed a web-based user interface for the fuzzer, which
displays the test cases that are currently running or have been run.
This allows quickly sifting through a large number of test cases, as
well as simplifying debugging of the fuzzer.

V. REDUCER DESIGN AND IMPLEMENTATION

After a bug-triggering example is found, it needs to be reduced.
This makes it easier to understand (and therefore easier for the
EC developers to fix) and also allows us to spot duplicate bugs.
There are various techniques to achieve this in the literature. Sun
et al. [23] described a general method of program reduction which
uses language grammars to exclusively consider syntactically valid
programs during reduction. Our reduction algorithm is based on work
from Donaldson et al. [4] on test case reduction for transformation-
based fuzzers. It operates on programs represented as the sequences
of transformations that generated them. It attempts to remove trans-
formations in batches, while still preserving the bug. We remove
a sequence of n transformations from the sequence, generate the
program for that sequence, and use it to test the EC (i.e. run the
program with the reference SystemC implementation, and compare
the program against the result value using the EC, expecting a positive
result). If the response is incorrect (i.e. negative), then the bug can

Tool False positive: False positive: False Valid input Total
invalid input valid input negative rejected

EC 1 1 3 0 2 6
EC 2 2 1 1 2 6
EC 3 0 2 0 2 4

TABLE I: Summary of bugs found

be triggered without these transformations so they can be removed,
and we iterate with the reduced sequence. If the response is correct,
then the transformations are necessary to trigger the bug, so we keep
the same sequence, and repeat with a reduced n, until there is no
value of n ≥ 1 for which transformations can be removed.

VI. EXPERIMENTAL RESULTS

We used Equifuzz to test three major commercial formal ECs
and discovered false-positive, false-negative, and valid-input-rejected
bugs in all. Results are listed in Table I. The names of the tools have
been censored due to licensing restrictions. The bugs in EC 1 and
EC 2 have have been reported to and confirmed by the tool vendors.
The bugs in EC 3 have been reported to the tool vendor, but have
not been confirmed by the time of publication.

We have classified the bugs found into four categories:
• False positive: Invalid input An invalid program was deemed

equivalent to some value by the EC. Invalid here means either
not allowed by the SystemC reference manual or triggering UB.

• False positive: Valid input A valid program was deemed
equivalent to an incorrect value by the EC. These cases were
discovered as false negatives and converted using the process
described in §III-B.

• False negative A valid program, compared to its true result,
produced an inequivalent result by the EC. Here, we only list
bugs that could not be converted into false positives.

• Valid input rejected A valid program, compared to its true
result, produced an error by the EC.

We used Equifuzz to test the three ECs continuously through the
nine months of its development. During that time, new versions of
the ECs being tested were released with bugs that we reported in
previous versions fixed, while we continuously added new features to
Equifuzz. We searched for bugs opportunistically, running the fuzzer
for some period of time (usually overnight or during a weekend) after
implementing a new feature. If this revealed new bugs, there would
usually be a collection of possible bugs reported by Equifuzz, which
we would then de-deduplicate to uncover the true number of new
bugs discovered. This was aided by the reduction described in §V.

We also had to address the issue of easier-to-trigger bugs re-
appearing, increasing the volume of possible bugs to look through,
and obscuring harder-to-trigger bugs. The transformation-based ap-
proach to test-case generation allowed us to work around this. We
were able to add restrictions on the transformations that could be
applied, preventing us from triggering known bugs, but not disabling
entire features, which could still have bugs that could be tested.

All bugs were initially found using programs generated by se-
quences of 30 transformations. After reduction, all were reduced
to sequences of two or three transformations. Notably, we found
no single-transformation bugs. This means that there was no single
feature that was problematic in any of the ECs tested. All bugs
stemmed from interactions between language features.

The speed of the bug-finding process was entirely limited by the
speed of the EC being tested, and not by Equifuzz. Generating a
program takes well under a second for the 30-transformation pro-
grams we used (and also for much larger sizes that were attempted).



sc_dt::sc_uint<8> dut() {
sc_dt::sc_fixed<10,8> x0 =
sc_dt::sc_fixed<10,8>(-1);

sc_dt::sc_uint<8> x1 = sc_dt::sc_uint<8>(x0);
return x1;

}

True result 0xFF
Result accepted by EC 1 0xFC

Fig. 4: Example of false positive bug found in EC 1

double dut() {
int x0 = 1;
return double(bool(x0));

}

True result 0x3FF0000000000000
Result accepted by EC 2 0x0000000000000001

Fig. 5: Example of false positive bug found in EC 2

Compiling and running the generated program usually took a couple
of seconds, meaning that the overall program-generation process was
in the order of 3-5 seconds. Running the ECs we tested took about
ten seconds for EC 2 and about one minute for EC 1. Furthermore,
Equifuzz will generate programs while waiting for the EC to finish
and keep a queue of test programs ready. This all means that the EC-
under-test is going through test programs at the fastest rate allowed
by the hardware and number of licenses.

A. Bug examples

We present a set of bugs as found by Equifuzz in the ECs we
tested. Figure 4 lists the code to trigger one of the false-negative bugs
found in EC 1. The problematic operation here was the cast from
sc_fixed to sc_uint. According to the SystemC specification
(which the reference implementation followed correctly), this cast
should truncate the fractional part of the fixed point number, then
use the integer part as an sc_uint value. Instead, EC 1 assumes
that the operation should use the entire sc_fixed value, and re-
interpret it as an sc_uint.

Figure 5 shows an example of a bug found in EC 2. The code
returns a double-precision floating point value of 1. EC 2 deems
this program equivalent to RTL producing an integer value of 1.
According the documentation of EC 2, it should, in the default
configuration which we were using, perform a bit-by-bit compar-
ison. Instead, it appears to be checking that the values of the
SystemC and RTL results are equivalent. It should, therefore, find
this program equivalent to RTL producing a floating-point value of
1 (0x3FF0000000000000). This bug does not make use of any
SystemC-specific code. Of the bugs reported here, this is the only
one which could, in principle, be found by Csmith or YARPGen. It
also demonstrates that Equifuzz is also capable of finding bugs in the
pure C fragment of SystemC.

In Table I, for EC 1, we list an unsoundness bug due to an invalid
input being deemed equivalent to some value. This refers to a bug that
was discovered as an incompleteness, but could be converted into a
false positive through manual investigation. The original, discovered
by Equifuzz and listed on the left in Figure 6, should produce a
result of 157952. EC 1 produces an error when attempting to check
this code, making this an incompleteness bug. After manual testing,
attempting to get the EC to accept this code, we found a related bug,
listed on the right of Figure 6, triggered by calling a (non-existent)
method .to_int() on the result of a multiplication between an
sc_int and an integer constant.

int f() {
sc_int<63> x = 1234;
return x * 128; }

int f() {
sc_int<63> x = 1234;
return (x * 128).to_int(); }

Fig. 6: Left: Incompleteness bug, as found by Equifuzz. Right: False
positive bug, found by manual investigation.

This code is illegal according to the SystemC standard. The
multiplication x * 128 is meant to have type int, since, according
to the standard, x should be implicitly cast to a native C++ int.
Native C++ ints do not have a to_int() method (or, indeed, any
method). However, the EC accepts it, and gives a positive result when
comparing it to the constant value 157952, which we consider a bug
(as discussed in §III-C).

Finally, Figure 2 also demonstrates a bug found by Equifuzz,
caused by the interaction between the sc_int::range() method,
and casting to sc_fixed.

B. Fuzzer evaluation

Given that Equifuzz is the first fuzzer targetting SystemC, we
picked two C fuzzers as comparison points: Csmith [25] and YARP-
Gen [18]. As SystemC is a C++ library, programs generated by these
fuzzers will be accepted by the tools that expect SystemC as input.

We ran a set of controlled experiments comparing three different
configurations of Equifuzz against Csmith and YARPGen. For Equi-
fuzz, we compare three different sizes to investigate whether that
has any impact on bug-finding ability. For Csmith and YARPGen
there was no way to configure a desired overall program size, so we
used their default settings. Each experiment ran for 24 hours, on an
Intel Xeon E5-2630 server, using a single CPU core (due to license
restrictions of the EC). We initially used a timeout of five minutes for
the EC run, however that generated a large number of timeouts for
the Csmith- and YARPGen-generated programs, so we also include
an experiment with a 30 minute timeout.

This evaluation was conducted in a different way from the fuzzing
campaign discussed previously. We ran Equifuzz as “default”, placing
no restrictions in the generated programs. This meant that bugs would
be triggered multiple times, “wasting” test runs on bugs that had
been already found. When hunting for bugs, the transformation-based
structure of Equifuzz gave us the option to restrict the generated
programs in very targeted ways (e.g. “no xor reduce operations on
expressions of type sc_bigint”), working around specific bugs
without affecting fuzzing effectiveness. Because this is an ad-hoc
process, and to have a fair comparison with Csmith and YARPGen,
we did not use this capability in our evaluation.

Based on the Table II results, we make the following observations:

1) The number of false negatives found by Equifuzz in 24 hours
is (for 3 and 30 transformations) orders of magnitude larger
than that of by Csmith and YARPGen.

2) Programs generated by Csmith and (especially) YARPGen
required more time to be checked by the ECs. This meant that
a longer timeout was needed to get meaningful results, but also
that fewer experiments could run in the same timeframe.

3) When Equifuzz generates larger programs, its testing rate
actually increases (from 6367 runs in 24 hours to 8892). This
is counter-intuitive because one would expect larger programs
to take longer to check, and hence the testing rate to decrease.
However, almost all of the larger programs are causing the EC
to error out, and this tends to happen quickly. Almost all of
the errors are caused by the sc_bigint::xor_reduce()
method, which the EC claims to support but actually causes an
error. The larger the generated program, the higher the chance
that it contains at least one occurrence of this feature.



Fuzzer Total runs True positives False negatives Timeouts Other errors Average non-timeout time

Equifuzz (3 transformations) 6367 6035 176 0 156 14s
Equifuzz (30 transformations) 8654 4132 789 0 3733 10s
Equifuzz (300 transformations) 8892 16 17 0 8859 9.7s
YARPGen (5’ timeout) 1029 789 1 239 0 48s
YARPGen (30’ timeout) 193 148 0 44 1 63s
Csmith (5’ timeout) 2008 1808 13 66 121 33s
Csmith (30’ timeout) 1461 1347 7 14 93 42s

TABLE II: Fuzzer evaluation results. All experiments ran for 24 hours, targetting EC 2 from Table I

4) Many of the YARPGen- and Csmith-generated programs take
more than 30 minutes to check. This could be because these
programs are much larger than those generated by Equifuzz.

VII. CONCLUSION

We have introduced Equifuzz, a fuzzer for formal equivalence
checkers using SystemC. Equifuzz generates input-free SystemC
programs in a step-by-step manner, which allows for straightforward
test-case reduction. We have demonstrated its effectiveness by using it
to uncover 16 bugs in major commercial ECs, including 7 confirmed
unsoundness bugs (and 2 pending confirmation) that could have led
to incorrect designs being signed off.

In the future, there are improvements we believe could be made to
Equifuzz to expand the classes of bugs that it can detect, and generally
improve its utility to the users and developers of ECs. Primarily, we
would like to generate designs involving deeper control flow as well
as designs that operate on inputs. This could expand the classes of
bugs that Equifuzz can find.

Longer term, we are exploring the possibility of avoiding EC bugs
altogether by proving the implementation of the EC bug-free using
a proof assistant. This approach has been found to be feasible for
other EDA tools, such as Vericert (high-level synthesis, verified in
Coq) [7] and Lutsig (logic synthesis, verified in HOL4) [19], but has
not yet been attempted for ECs (except for very simple combinational
circuits of basic gates [12]).
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