
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, OCTOBER 2020 1

DASS: Combining Dynamic & Static Scheduling
in High-level Synthesis

Jianyi Cheng, Student Member, IEEE, Lana Josipović, Student Member, IEEE, George A. Constantinides, Senior
Member, IEEE, Paolo Ienne, Senior Member, IEEE, and John Wickerson, Senior Member, IEEE

Abstract—A central task in high-level synthesis is scheduling:
the allocation of operations to clock cycles. The classic approach
to scheduling is static, in which each operation is mapped to
a clock cycle at compile-time, but recent years have seen the
emergence of dynamic scheduling, in which an operation’s clock
cycle is only determined at run-time. Both approaches have their
merits: static scheduling can lead to simpler circuitry and more
resource sharing, while dynamic scheduling can lead to faster
hardware when the computation has non-trivial control flow. In
this work, we seek a scheduling approach that combines the
best of both worlds. Our idea is to identify the parts of the
input program where dynamic scheduling does not bring any
performance advantage and to use static scheduling on those
parts. These statically-scheduled parts are then treated as black
boxes when creating a dataflow circuit for the remainder of
the program which can benefit from the flexibility of dynamic
scheduling. An empirical evaluation on a range of applications
suggests that by using this approach, we can obtain 74% of the
area savings that would be made by switching from dynamic
to static scheduling, and 135% of the performance benefits that
would be made by switching from static to dynamic scheduling.

Index Terms—High-Level Synthesis, Static Analysis, Dynamic
Scheduling.

I. INTRODUCTION

H IGH-level synthesis (HLS) is the process of automat-
ically translating a program in a high-level language,

such as C, into a hardware description. It promises to bring
the benefits of custom hardware to software engineers. Such
design flows significantly reduce the design effort compared to
manual register transfer level (RTL) implementations. Various
HLS tools have been developed in both academia [1], [2] and
industry [3], [4].

The Challenge of Scheduling: One of the most important
tasks for an HLS tool is scheduling: allocating operations
to clock cycles. Scheduling decisions can be made either
during the synthesis process (static scheduling) or at run-time
(dynamic scheduling).

The advantage of static scheduling (SS) is that since the
hardware is not yet online, the scheduler has an abundance of
time available to make good decisions. It can seek operations
that can be performed simultaneously, thereby reducing the
latency of the computation. It can also adjust the start times

J. Cheng, G. Constantinides and J. Wickerson are with the Department of
Electrical and Electronic Engineering, Imperial College London, UK.
E-mail: {jianyi.cheng17, g.constantinides, j.wickerson}@imperial.ac.uk

L. Josipović and P. Ienne are with Ecole Polytechnique Fédérale de
Lausanne (EPFL), Lausanne, Switzerland.
E-mail: {lana.josipovic, paolo.ienne}@epfl.ch

Manuscript received April 19, 2005; revised August 26, 2015.

0 10 20 30 40 50
0

2,000

4,000

6,000

8,000

Static Scheduling

Dynamic Scheduling

DASS

Wall Clock Time (ms)
L

U
T

C
ou

nt
Fig. 1: Area of three scheduling approaches over performance.

of operations so that resources can be shared between them,
thereby reducing the area of the final hardware. However, a
static scheduler must make conservative decisions about which
control-flow paths will be taken, or how long variable-latency
operations will take, because this information is not available
until run-time.

Dynamic scheduling (DS), on the other hand, can take ad-
vantage of this run-time information. Dynamically scheduled
hardware consists of various components that communicate
with each other using handshaking signals. This means that
operations are carried out as soon as the inputs are valid.
In the presence of variable-latency operations, a dynamically
scheduled circuit can achieve better performance than a stati-
cally scheduled one in terms of clock cycles. However, these
handshaking signals may also cause a longer critical path,
resulting in a lower operating frequency. In addition, because
scheduling decisions are not made until run-time, it is difficult
to enable resource sharing. Because of this, and also because
of the overhead of the handshaking circuitry, a dynamically
scheduled circuit usually consumes more area than a statically
scheduled one.

Our Solution: Dynamic & Static Scheduling: In this article,
we propose dynamic and static scheduling (DASS): a marriage
of SS and DS that aims for minimal area and maximal perfor-
mance, as sketched in Fig. 1. The basic idea is to identify the
parts of an input program that may benefit from SS—typically
parts that have simple control flow and fixed latency—and to
use SS on those parts. In the current incarnation of this work,
it is the user’s responsibility to annotate these parts of the
program using pragmas, but in the future we envisage these
parts being automatically detected. The statically scheduled
parts are then treated as black boxes when applying DS on

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, OCTOBER 2020 2

1 double A[N]; // initialised at run
-time to {1.0, -1.0, 1.0,
-1.0, ...}

2 double g(double d) {
3 return (((((d+0.2)*d+0.3)*d+0.6)

*d+0.2)*d+0.7)*d+0.2;
4 }
5 double filterSum() {
6 double s = 0.0;
7 for (int i = 0; i < N; i++) {
8 double d = A[i];
9 if (d >= 0) {

10 double t = g(d);
11 s += t;
12 }
13 }
14 return s;
15 }

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
rd A[i] d≥0? t = g(d) s += t

rd A[i] d≥0? t = g(d) s += t
rd A[i] d≥0? t = g(d) s += t

rd A[i] d≥0? t = g(d) s += t

(b) The schedule of the SS circuit (the loop II = 5).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
rd A[i] d≥0? t = g(d) s += t

rd A[i] d≥0? nop
rd A[i] d≥0? t = g(d) s += t

rd A[i] d≥0? nop

(a) Motivation code (c) The DS circuit and DASS circuit have the same schedule (II g in DASS = 1).

Fig. 2: Motivating example of dynamic and static schedules. DS has better performance when comparing with SS. Our work
propose a DASS solution having comparable performance to DS. The latency of function g is 59 cycles but is represented as
5 cycles in the figure to save space.

the remainder of the program.
Several challenges must be overcome to make this marriage

work. These include: (1) How should statically scheduled parts
be correctly and efficiently integrated into their dynamically
scheduled surroundings? (2) How should the memory be cor-
rectly and efficiently shared between the statically scheduled
circuit and the dynamically scheduled circuit?

In this article, we show how these challenges can be
overcome. Our evaluation on several realistic benchmarks
demonstrates that it is possible to obtain 74% of the area
savings that would be made by switching from DS to SS
and 135% of the performance benefits that would be made by
switching from SS to DS. In other words, DASS can obtain
most of the area benefits associated with SS, and can actually
outperform both DS and SS.

Article Outline: In Section II, we give a working exam-
ple to motivate the combined scheduling approach in which
some scheduling decisions are taken dynamically at run-time
and the others are determined offline using traditional HLS
techniques. Section III provides a primer on existing SS and
DS techniques. In Section IV, we describe how our proposal
overcomes challenges related to component integration and
shared memory. Section V details a prototype implementation
of DASS that uses Xilinx Vivado HLS [3] for SS and Dyna-
matic [5] for DS. In Section VI, we evaluate the effectiveness
of DASS on a set of benchmarks and compare the results with
the corresponding SS-only circuits and DS-only circuits.

Relationship to Prior Publications: This article expands on
a conference paper by Cheng et al. [6] in two main directions.
First, we include an additional three realistic benchmarks:
two benchmarks to show more code properties amenable
for DASS; and one benchmark with a detailed case study
to identify the limits of DASS and show how it affects
performance and area. Second, we address a limitation of
the work described in our conference paper: that it did not
allow memory to be shared between the SS circuit and the
DS surroundings. This limitation places severe restrictions on
which parts of a program can be statically scheduled. For

instance, if a kernel of a tiled loop is to be statically scheduled,
then all the operations that access the same array would have
to be statically scheduled, too – even those that do additional
processing on boundary tiles that might be better suited to
dynamic scheduling. Such a code pattern can result in a sub-
optimal pipeline solution. In this article, we extend our tool by
supporting shared memory between the SS and DS hardware
thus allowing a more fine-grained division between SS and
DS components. Finally, we add a realistic benchmark to
demonstrate the shared memory architecture between DS and
SS hardware.

Auxiliary Material: All of the source code of benchmarks
and the raw data from our experiments are publicly avail-
able [7], [8]. Our prototype tool, which relies on the Vivado
HLS and Dynamatic HLS tools, is also open-sourced [9].

II. OVERVIEW

We now demonstrate our approach via a worked example.
Fig. 2(a) shows a simple loop that operates on an array

A of doubles. It calculates the value of g(d) for each non-
negative d in the array, and returns the sum of these values.
The g function represents the kind of high order polynomial
that arises when approximating complex non-linear functions
such as tanh or log. If the values in A are provided at run-time
as shown at the top of Fig. 2(a), then function g is only called
on odd-numbered iterations.

To synthesise this program into hardware, we consider three
scheduling techniques: SS, DS, and our approach, DASS.

SS – Small Area but Low Performance: The hardware
resulting from SS is shown in Fig. 3(a). It consists of three
main parts. On the left are the registers and memory blocks
that store the data. On the right are several operators that
perform the computation described in the code. At the bottom
is an FSM that monitors and controls these data operations
in accordance with the schedule determined by the static
scheduler at compile time. The SS circuit achieves good
area efficiency through the use of resource sharing, i.e. using

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, OCTOBER 2020 3

+
+

≥
FSM for the

whole hardware

×

A[]

s
t

0.2
0.3
0.6
0.7
d

…

Read A[i]

call_g

Buff

start
i = 0

d
0

+

1

<

N

sink

sink

A[]

t

Buff

start
s = 0

old s

return s

0.2

×+

0.3

×+

0.6

×+

0.2

×+

d

t

0.7

×+

0.2

+

× FSM
for g

+d
t

t 0.2 0.3 0.6 0.7 d …

function g (DS)

function g (SS)

Our work≥

+

(a) SS circuit (b) DS circuit and its transformation into a DASS circuit

Fig. 3: DS has larger area when comparing with SS, and our work makes
the area smaller without losing performance.

TABLE I: Dataflow components in DS circuits.

in1 in2

out

Merge: receives an input data from one
of its multiple predecessors and forwards
it to its single successor.

in

out1 out2

Fork: receives a piece of data at its only
input and replicates it to send a copy to
each of its multiple successors.

in1 in2

out

Join: triggers its output only once both
of its inputs are available.

in1

out1 out2
in2

Branch: is a control-flow component that
passes a piece of data to one of its two
successors, depending on the input
condition.

multiplexers to share a single operator among different sets of
inputs.

The timing diagram of the SS circuit is shown in Fig. 2(b).
It is a pipelined schedule with an initiation interval (II) of 5.
The II cannot be reduced further because of the loop-carried
dependency on s in line 11. Since the if decision is only
made at run-time, the scheduler cannot determine whether
function g and the addition are performed in a particular
iteration. It therefore conservatively reserves their time slots in
each iteration, keeping II constant at 5. This results in empty
slots in the second and fourth iteration (shown with dashed
outlines in the figure), which cause the operations in the next
iteration to be unnecessarily delayed.

DS – Large Area but High Performance: The DS hard-
ware is a dataflow circuit with a distributed control system
containing several small components representing instruction-
level operations [5], as shown on the left of Fig. 3(b). Each
component is connected to its predecessors and successors
using a handshaking interface. This handshaking, together with
the inability to perform resource sharing on operators, causes
the area of the DS hardware to be larger than the corresponding
SS hardware.

The timing diagram of the DS circuit is shown in Fig. 2(c).
It has the property that each operator executes as soon as its
inputs are valid, so the throughput can be higher than that
for SS hardware. For instance, it can be seen that the read
of A[i] in the second iteration starts immediately after the
read in the first iteration completes. Most stalls in a DS circuit
are due to data dependencies. For instance, the execution of
function g and the addition in the second iteration are skipped
as d = -0.1 < 0, leading to s = old_s. The operation
is not carried out immediately after the condition check but
stalled until s += t in the first iteration completes, since it
requires the output from the previous operation as input. Then
it is immediately followed by s += t in the third iteration.

DASS – Both Small Area and High Performance: The DASS
hardware combines the previous two scheduling techniques. It
is based on the observation that although the overall circuit’s
performance benefits from DS, the function g does not because
it has a fixed latency. Therefore, we replace the dataflow
implementation of g with a functionally equivalent SS im-

plementation. The SS implementation uses resource sharing
to reduce six adders and five multipliers down to just one
of each. The rest of the circuit outside g is the same as the
DS circuit. Because g represents a substantial fraction of the
overall hardware, this transformation leads to the area of the
DASS hardware being close to that of the pure SS hardware,
as shown in Fig. 1.

The timing diagram of the DASS circuit is the same as
that of the DS circuit, as shown in Fig. 2(c).1 In the DS
circuit, g’s schedule is determined at run-time, while in the
DASS circuit it is determined by the static scheduler; in both
cases, the timing diagram is the same. The data-dependent
if condition in the loop remains part of the DS circuit to
maximise throughput. Hence the DASS hardware and the DS
hardware have the same throughput in terms of clock cycles.
However, since the SS implementation of g optimises the
critical path of the system, the DASS hardware can actually
run at a higher clock frequency. Therefore, in this example,
DASS hardware achieves not merely the ‘best of both worlds’,
but actually achieves better performance than DS hardware
(in terms of wall clock time), and comparable area to SS
hardware, as shown in Fig. 1.

In the rest of the paper, we give the details of how to config-
ure the constraints of the static parts for maximising resource
sharing and preserving performance, and the methodology for
integrating the static parts into the dataflow circuit.

III. BACKGROUND

In this section, we review the basics of HLS scheduling.
We discuss related work in static and dynamic scheduling
techniques and contrast them with the approach we present
in this work.

A. Scheduling in HLS

In most HLS tools like LegUp [1] and Vivado HLS [3],
the tool flow is divided into two steps: frontend and backend.
In the frontend, the input source code is compiled into an
intermediate representation (IR) for program analysis and

1Actually, the latency of function g varies slightly between DS and SS for
technical reasons, as explained in Section VI.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, OCTOBER 2020 4

transformation. In the backend, the IR is transformed into an
RTL description of a circuit, during which static scheduling is
carried out, as well as allocation and binding.

The scheduling process in most HLS tools starts by con-
verting the IR into a control/data flow graph (CDFG) [10]. A
CDFG is a two-level directed graph consisting of a number
of vertices connected by edges. At the top level, the graph is
represented as a control-flow graph (CFG), where each vertex
corresponds to a basic block (BB) in the transformed IR, while
edges represent the control flow. At a lower level, a vertex
corresponding to a BB is itself a data-flow graph (DFG) that
contains a number of sub-vertices and sub-edges. Each sub-
vertex represents an operation in the BB and each sub-edge
indicates a data dependency.

B. Static Scheduling

In HLS tools, scheduling is the task of translating the CDFG
described in the previous section, with no notion of a clock,
into a timed schedule [11]. The static scheduler determines
the start and end clock cycles of each operation in the
CDFG, under which the control flow, data dependencies, and
constraints on latency and hardware resources, are all satisfied.
One of the most common static scheduling techniques, used by
Vivado HLS [3] and LegUp [1], expresses a CDFG schedule
as a solution to a system of difference constraints (SDC) [12].
Specifically, it formulates scheduling as a linear programming
(LP) problem, where the data dependencies and resource
constraints are represented as inequalities. By changing these
constraints, various scheduling objectives can be customised
for the user’s timing requirements.

Besides achieving high performance, static scheduling
also takes resource allocation into account, such as modulo
scheduling for loop pipelining [13]. It aims to satisfy the given
time constraints with minimum possible hardware resources
or achieve the best possible performance under the given
hardware resource requirements. If the hardware resource con-
straints are not specified, the binder automatically shares some
hardware resources among the operations that are not executed
in parallel. This maintains the performance but results in
smaller area. In addition, typical HLS tools like Vivado HLS
allow users to specify resource constraints via pragmas. In
this case, the binder statically fits all operations into a given
number of operators or functions based on the given schedule.
This may slow down execution if hardware resource is limited.

In summary, static scheduling results in efficient hardware
utilisation by relying on the knowledge of the start times
of the operations to share resources while preserving high
performance. However, when the source code has variable-
latency operations or statically indeterminable data and control
dependencies, static scheduling conservatively schedules the
start times of certain operations to account for the worst-
case timing scenario, hence limiting the overall throughput
and achievable performance.

C. Dynamic Scheduling

Dynamic scheduling is a process that schedules operations
at run-time. It overcomes the conservatism of traditional

static scheduling to achieve higher throughput in irregular
and control-dominated applications, as we saw in Fig. 3.
Similarly, dynamic scheduling can handle applications with
memory accesses which cannot be determined at compile
time. For instance, given a statement like x[h1[i]] =
g(x[h2[i]]), the next read of x can begin as soon as
it has been determined that there is no read-after-write de-
pendency with any pending store from any of the previous
loop iterations, i.e. h2 is not equal to any prior/pending store
address h1. A dynamically scheduled circuit will allow the
next operation to begin as soon as this inequality has been
determined; otherwise, it will appropriately stall the conflicting
memory access.

Initial work on dynamically scheduled hardware synthesis
from a high-level language proposed a framework for auto-
matically mapping a program in occam into a synchronous
hardware netlist [14]. This work was later extended to a
commercial language named Handel-C [15]. However, it still
required the designer to manually design and implement
hardware optimisation such as pipelining and parallelism.
Venkataramani et al. [16] proposed a framework that automat-
ically transforms a C program into an asynchronous circuit.
They implement each node in a DFG of the design in an
intermediate representation called Pegasus [17] into a pipeline
stage. Each node represents a hardware component in the
netlist, containing its own controlling trigger. This dataflow de-
sign methodology was then brought into synchronous design.
Recent work [5] proposes a tool flow named Dynamatic that
generates synchronous dataflow circuits from C code. It can
take arbitrary input code, automatically exploits the parallelism
of the hardware and uses handshaking signals for dynamic
scheduling to achieve high throughput. In this work, we use
Dynamatic to generate dynamically scheduled HLS hardware.

As formalised by Carloni et al. [18], dynamic scheduling
is typically implemented by dataflow circuits which consist
of components communicating using handshake signals. Apart
from the common datapath operators, a dynamically scheduled
dataflow circuit contains a number of dataflow components
shown in Table I, used to control the flow of data.

One difficulty for dynamic scheduling is scheduling the
memory accesses. In static scheduling, all the memory ac-
cesses are scheduled at compile-time, such that there is no
memory conflict during the execution. In dynamic scheduling,
the untimed memory accesses may affect correctness and
performance if the memory arbitration or the memory con-
flicting accesses are not correctly solved. Hence, dynamically
scheduled circuits may use load-store queues (LSQs) [19]
to resolve data dependencies and appropriately schedule the
arbitrary memory accesses at run-time. However, LSQs cost
significant area and add delays to the circuit. To reduce
such overhead, the architecture of the LSQ in Dynamatic
is optimised by statically identifying the memory aliasing
among all the memory accesses [20]. In our work, the memory
architecture may contain partially-scheduled memory accesses
in the static part and unscheduled memory accesses in the
dynamic part. We will detail our approach to handle this
situation in Section IV-C.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, OCTOBER 2020 5

D. Combining Dynamic & Static Approaches

Several works have explored the integration of certain
aspects of dynamic scheduling into static HLS. Alle et al. [21]
and Liu et al. [22] propose source-to-source transformations
to enable multiple schedules selected at run-time after all the
required values are known. Tan et al. [23] propose an approach
named ElasticFlow to optimise pipelining of irregular loop
nests that contain dynamically-bound inner loops. Dai et
al. [24], [25] propose pipeline flushing for high throughput
of the pipeline and dynamic hazard detection circuitry for
speculation in specific applications. These works are still
based on static scheduling and work only under stringent
constraints, which limits the performance improvements for
general cases, such as complex memory accesses. In contrast,
our approach adds existing hardware optimisation techniques
into dynamically scheduled circuits and supports arbitrary
code input under the same restriction with respect to the
synthesis tools that DASS replies on independently.2 Also,
these approaches cannot solve the problem of input-dependent
behaviour in hardware, while DASS solves it by dynamically
scheduling these parts of code to achieve higher throughput.

Carloni [26] describes the theory of how to encapsulate
static modules into a latency-insensitive system, and we use a
similar integration philosophy. We utilise this approach within
our tool, which automates the generation of circuits from high-
level code, resulting in the mix of two HLS paradigms in a
single synthesis tool.

IV. METHODOLOGY

In this section, we show how to partition and synthesise
some functions into SS hardware and the rest of the pro-
gram into a DS circuit. We first discuss which programs
are amenable to our approach. We then detail the integration
of the SS hardware into the DS circuit using a dedicated
wrapper, which ensures that the data is correctly propagated
between these two architectures. Finally, we show how to
enable memory sharing among SS and DS circuits correctly.

A. Applicability of Our Approach

Our approach is generally applicable, in the sense that it
can be used wherever SS or DS can be used. The following
conditions indicate scenarios where our approach is likely to
yield the most substantial benefits over DS and SS:

1) there is an opportunity to improve throughput using
information that only appears at run-time,

2) at least one region of the code has a constant (or low
variability) latency, and

3) this code region has an opportunity for resource sharing.
The first condition indicates that the design may be amenable
to DS, as explained in Section III-C. The second and third
reflect the fact that SS determines a fixed schedule and can
take advantage of resource sharing. We emphasise that not all
of the conditions above need to hold for an input program
to benefit from our approach; it is simply that each condition
listed above is desirable.

2The synthesised hardware from arbitrary code may not be efficient, but
still preserves correctness.

DS Component

Predecessor

Successor

pValid ready

valid nReady

dataIn

dataOut

ap_ready

ap_vld

dout

din

pValid

0
1
0
1
…
1

ap_ce
SSC_g

valid nReady

1

2

3

readydataIn

dataOut

DS Component

Predecessor

Successor

pValid ready

valid nReady

dataIn

dataOut

ap_ready

ap_vld

dout

din

pValid

0
1
0
1
…
1

ap_ce
SSC_g

valid nReady

1

2

3

readydataIn

dataOut

(a) Handshaking
interface in a DS circuit

(b) SS function g as a DS
component

Fig. 4: The statically scheduled (SS) circuit of function g is
wrapped with additional control circuitry for interfacing to the
DS circuit.

B. Integrating SS Hardware into DS Hardware

In this section, we show how to implement a wrapper of
SS hardware around the DS surroundings. A wrapper design
of a synchronous circuit around latency-insensitive designs
is explained by Carloni [26]. In the design, the wrapper
always fires as long as inputs are valid and the successor is
ready. In other words, they assume no stall is caused by the
internal architecture of the synchronous circuit, i.e. the II of the
synchronous circuit is always 1. However, in most hardware
designs, we want to have efficient hardware architecture as
well as high performance. II greater than 1 allows designers
to perform more hardware optimisation, like resource sharing,
while still preserving high performance. In our work, we
support and prefer that II greater than 1, so resource sharing
is possible.

A DS circuit is constructed as a dataflow circuit, containing
a number of small components, while an SS circuit has a
centralised FSM for control. We regard each SS circuit as a
component in the dataflow circuit, as indicated in Fig. 3(b). In
this section, we explain how to make an SS circuit behave
like a DS component so that it can be integrated into the
overall DS hardware. Let us look at function g in Fig. 2(a), for
example, which is a single-input and single-output function.
The multiple-input and multiple-output cases are discussed
shortly.

In the DS circuit part, each component communicates with
its predecessors and successors using a set of handshaking
signals as shown in Fig. 4(a). Each DS component uses the
bundled data protocol [27] for communication, where each
data connection has request and acknowledgement signals. For
instance, the following is the control interface of a component
from Dynamatic [5]:

• pValid: an input signal indicating that the data from the
predecessor is valid,

• valid: an output signal informing the successor that the
data from the current component is valid,

• nReady: an input signal indicating that the successor is
ready to take a new input, and

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, OCTOBER 2020 6

• ready: an output signal informing the predecessor that the
current component is ready to take a new input.

On the other hand, traditional SS hardware has a different
interface to monitor and control the states of the centralised
FSM. An example of an HLS tool that generates SS hardware
is Vivado HLS [3]. For a typical control interface of an SS
function synthesised into SS hardware, its control interface is
as follows:

• ap ce: The clock enable signal controls all the sequential
operations driven by the clock.

• ap ready: The ready signal from the SS hardware indi-
cates that it is ready for new inputs.

• ap vld: The valid signal indicates the output from SS
hardware at the current clock cycle is valid.

The interface of an SS circuit is not compatible with the
above handshaking signals in a DS circuit. To overcome this
issue, we add a wrapper around each SS circuit, ensuring that
the data propagates correctly between the SS circuit and the
DS circuit. This wrapper is generated in two steps: 1) In an
SS circuit, any output is only valid for one clock cycle. We
design a valid signal to correctly send the data to the successor
and preserve the output when backpressure from the successor
occurs; 2) Since there may be a pipeline stall caused by this
component, we design a ready signal to send the backpressure
to the predecessor, ensuring any valid input is not lost.

We now discuss those two steps in more detail.
Constructing the valid signal: In an SS-only circuit, where

the entire schedule is determined at compile-time, the arrival
time of each input can be predicted. However, this is not
the case in DS as the behaviour of the rest of the DS
circuit is unknown. Two choices are available: 1) stalling
the SS function until valid input data is available, or 2)
letting the SS function continue to process data actively in its
pipeline, marking and ignoring any invalid outputs. Since the
SS function does not have the knowledge of the rest of the
DS circuit, the first approach may cause unnecessary stalls.
Hence, for performance reasons, we take the second choice
with power overhead from keeping SS functions active.

An invalid input read and processed by the SS hardware is
named a bubble. We use a shift register to tag the validity of
the data and propagate only the valid data to the successor, as
shown in Fig. 4(b). The shifting operation of the shift register
is controlled by the state of the SS hardware to synchronise the
data operations in the SS circuit. It shifts to the right by one bit
every time the SS hardware takes a new input, as indicated by
the ap ready signal. The new bit represents whether the newly
taken input data is valid or not. A zero represents a bubble
and a one represents a valid input. The length of the shift
register is determined by the latency and the II of function
g: dlatency/II e, where these time constraints are obtained
from the scheduling report by the static scheduler. This ensures
that when the output is available from the SS hardware, as
indicated by the ap vld signal, its validity is indicated by the
oldest bit of the shift register. By checking the oldest bit value,
only the valid data is propagated to the successor with the valid
signal high. In summary, we use the shift register to monitor
and control the state of the SS hardware, such that the data can

be synchronised between the SS and DS hardware, filtering out
the bubbles to ensure the correctness of the function. Similarly,
only the memory operations with valid data are carried out.

Constructing the ready signal: The valid signal for the
successor and the shift register allows data to propagate from
the predecessor, through the SS function, to the successor.
However, the component is not able to deal with any back-
pressure from the function or its successor. Backpressure
happens when a component is unable to read an input even
though it is valid, resulting in its predecessor stalling. In a
DS circuit, this issue is solved using handshake signals—the
hardware stalls when its output is valid but the successor is
not ready, as indicated by its nReady signal or the ready signal
from the successor. We design a control circuit to handle
the backpressure between a DS circuit and an SS circuit.
Backpressure can arise between a DS circuit and an SS circuit
in two ways, which we now discuss.

Backpressure from SS function to its predecessor. In this
case, the ready signal indicates whether the SS hardware is
ready to take an input so ap ready is directly connected to
the ready signal of the wrapper. It sends feedback to the
predecessor such that the predecessor can be stalled, holding
the valid input to the SS hardware until the SS hardware is
ready.

Backpressure to SS function from its successor. Since the SS
hardware only holds the output for one cycle when running, we
stall the process in the SS hardware to preserve the output data.
This is achieved by disabling the clock signal, ap ce = 0, so
the SS hardware stops all the sequential processes, preserving
the output. The condition for such a stall to occur is that the
next output from the SS hardware is valid (valid = 1) but
the successor is not ready (nReady = 0). The SS hardware
continues running after the nReady signal is set to high,
indicating that the successor is ready to accept the output data
of the SS hardware. This additional circuitry ensures that the
data exchanged between an SS circuit and a DS circuit is not
lost when any stall occurs.

Handling multiple inputs and multiple outputs: The exam-
ple above shows the wrapper for a function with a single
input and an output. However, it is also common to have
a function with zero or more than one inputs or outputs. If
there is no input and output, the external DS circuit would
have no corresponding data port for the component, hence no
corresponding handshaking signal is needed. Here we focus
on the cases of multiple inputs and outputs.

For multiple inputs, we construct a set of handshaking
signals as shown in Fig. 4(b) for each input and synchronise
data with the help of join components in Table I, such that
the SS hardware always takes all the input simultaneously. A
join component is used to preserve the valid inputs to the SS
circuit until all the inputs are valid. This is similar to a DS
component with multiple inputs.

For multiple outputs of the SS function, each component has
its own handshaking signals. The output handshaking signals
are implemented in two parts, the valid and nReady signals.
First, each output has its own valid signal. For each output,
the SS circuit has a ap vld signal indicating whether the cor-
responding output is valid. Each ap vld signal is ANDed with

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, OCTOBER 2020 7

MC(z)
load z[i]

store z[j]

store z[k]

load x[i]

load y[i]

store y[j]

load z[k]

LSQ(z)

LSQ(y) MC(y)

MC(x)

BRAM(z)

BRAM(y)

BRAM(x)

Fig. 5: An example of the netlist of all memory accesses for a
purely DS circuit. The analysis in DS reports which memory
node may cause memory conflicts. Each green circle means
the minimum unit to be integrated in a SS hardware.

MC

ap_ready

ap_vld

dout

din

pValid readydataIn

dataOut

0
1
0
1
…
1

ap_ce
SSC_g

valid nReady

1

2

3

MUX Memory

ce0

Arbiter ce1

ce0

ce1

clk_en

clk_en

select

load [i]

store [j]
LSQ

Fig. 6: Shared memory architecture in the DASS hardware. An
arbiter is used to decide which hardware to access the memory
in each clock cycle.

the oldest bit of the shift register (sr(0)) as the corresponding
valid signal: validi = ap vldi ∧ sr(0), i = 0, 1, 2, ... Second,
any unset nReady signal from the output when the data is valid
can disable the clock in the SS hardware as back pressure:
ce = ¬ ∧ ((¬nReadyi) ∧ validi).

C. Shared Memory Between SS and DS Circuits

The SS hardware has its memory accesses pre-scheduled at
compile time and can interact with the memory at run time
in a predictable sequence, while as explained in Section III-C,
the DS hardware requires an load-store queue (LSQ) [19] that
schedules the memory accesses at run-time before accessing
the data. In DASS hardware, a combination of the two memory
architectures needs to be handled. An LSQ is beneficial for
programs that have irregular memory accesses. It does not
bring performance improvements when implementing regular
computation in the form of an SS circuit. The DS tool uses
static analysis, such as polyhedral analysis, to identify the
memory accesses in the dataflow graph that cannot cause any
memory conflict [20]. Then these memory access nodes are
directly connected to the BRAM through an arbiter, as the
memory controller, instead of being scheduled by an LSQ.

Figure 5 shows an example of the memory architecture
of purely DS hardware. The grey nodes on the left are
the memory nodes, and the yellow blocks are the memory

components in the DS hardware. The blocks on the right
are the BRAM blocks on FPGAs. Each block represents an
array in the input program. The dotted edges are handshak-
ing interface, while the solid edges are the block memory
interface. In DS hardware, each memory node performs a
single load/store operation, and all these nodes are connected
to the memory components through handshaking signals. The
LSQ schedules the memory with dependencies, while the
memory controller (MC) is a simple memory arbiter which
issues independent memory accesses to memory. Then the
memory components serialise the requests from these nodes
and perform the corresponding memory operations with the
BRAM through the block memory interface.

In the figure, the DS hardware has seven memory access
nodes targeting three arrays. Here we assume load z[k]
cannot have conflicts with other accesses to z, the same as
store z[k]. Since these arrays are separate, there are three
memory controllers to manage the accesses to the memory.
Firstly, the array x is only accessed by a single load so
the node can be directly connected to the memory controller.
Secondly, the load and store with the indices i and j, whose
values are determined at run time, may depend on each other
when accessing the same array y. Therefore, an LSQ is
required to ensure that those memory accesses are carried out
in the correct sequence. Finally, the memory accesses to array
z have both regular and irregular patterns. The DS analysis
proves that the regular memory accesses do not conflict with
the irregular memory accesses. Hence, these regular memory
accesses can be safely connected to the memory controller,
skipping the LSQ. One advantage of such an approach is
to minimise the overhead caused by the LSQ and maintain
the dynamic mechanism of the memory architecture. The
DS compiler analyses the program and constructs efficiency
memory architecture above for the DS hardware.

In DASS, we use the results of the above analysis to identify
whether the memory accessed by the SS hardware can be
shared safely with the DS hardware. We inline all the SS
functions at the top-level program and send it to the memory
analyser used by DS. The DS compiler outputs a memory
architecture graph at the top level, such as Fig. 5. The graph
shows the connection of each memory node to the memory
controller if the whole hardware is dynamically scheduled.
Based on that graph, our tool divides all these memory nodes
into several node sets, shown as green circles. All the nodes
of a single set must belong to the same hardware region. For a
SS function that contains unpredictable memory accesses, the
top-level SS function cannot be pipelined. The reason is that
the external DS surroundings ignore the memory dependencies
inside the SS function. For instance, a SS function in a loop
that may require the maximum loop throughput to be 0.2 in
Fig. 2(b), while the dynamically scheduled loop feeds data at
a throughput of 1 set of data per clock cycle in Fig. 2(c) as it
does not see the inter-iteration dependency hidden in the SS
function.

For instance, in Fig. 5, all the nodes are divided into 5
sets indicated by the green circles: 1) Any node directly
connected to the memory controller is a single set; 2) any
node sharing the same LSQ belongs to the same set. The

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, OCTOBER 2020 8

memory accesses in each green circle may cause conflicts,
so they have to be scheduled together either dynamically or
statically. The reason is that each SS hardware is treated as as
a black box by the LSQ, and the behaviour of SS hardware
accessing the memory is unknown for a single input. This is
different from purely DS circuits, in which each memory node
only accesses the memory once every time the single node is
triggered. A SS component may access memory multiple times
in one computation if it contains contains multiple memory
statements or loops. Therefore, our approach only allows
complete sets in the SS hardware. Such a method ensures that
there is no memory conflict between the SS hardware and the
DS surroundings whenever they access the shared memory.
If a set of nodes using an LSQ is considered to be statically
scheduled, the LSQ is no longer needed. The performance
may be affected by the conservatism in SS, however there is
significant area reduction as the LSQ is no longer needed.

Constructing Shared Memory Interface in DASS: In SS,
the nodes in Fig. 5 are no longer distributed but scheduled
at compile time. The memory interface is the block memory
interface instead of the handshaking signals. Once the access
to a shared memory block occurs, our tool automatically adds
the memory interface to the wrapper. Fig. 6 shows an example
of a shared memory architecture in the DASS hardware. The
yellow block on the left is the wrapper for the SS hardware,
as shown in Fig. 4(b). Apart from that, an additional memory
wrapper is added shown as the circuits on the right. As
mentioned previously, the SS hardware directly accesses the
memory through the BRAM interface shown as the thick
arrows. The DS hardware uses the memory controllers to
transform the handshaking signals in dotted arrows to the
same interface as the SS hardware. In order to ensure that
there is no conflict among these two systems, our tool adds a
memory arbiter in the memory system. In every clock cycle,
the arbiter grants access to either the DS hardware or a SS
circuit, and stalls the others by controlling the clock enable
bits ce of these components. If more than one hardware, either
SS competing with DS or SS competing with SS, request to
access the memory, the memory arbiter chooses one to grant
in a round-robin fashion and stalls the rest of the hardware
for data synchronisation. The priority of the SS hardware is
always higher than the DS hardware since we expect the SS
hardware to run at the highest throughput.

Summary: We identify code that is amenable for DASS,
where the design quality of the resulting hardware can be im-
proved. With our wrapper, the SS hardware can work correctly
in a DS circuit. Finally, we show how to automatically validate
the memory correctness between the SS and DS hardware, and
synthesise efficient shared memory architecture in the DASS
hardware. Our experiments have shown that the proposed
shared memory interface allows us to remove all the LSQs
in the benchmarks in Section VI.

V. IMPLEMENTATION

Our approach is generic and can be used with various SS
and DS HLS tools. For our work, we choose Vivado HLS [3]
and Dynamatic [5] to synthesise the SS and DS hardware

1 g(...){
2 #pragma SS II=N
3 ...
4 }
5 f(...){
6 ...
7 call g;
8 ...
9 }

Added
by us

DS Frontend

.cpp

.dot

SS Design Tool

Frontend
Analyser

Wrapper
Generator

DS Backend

.vhd

.dot

.cpp
(SS)

.cpp
(DS)

.rpt .rpt
.vhd

Schedule
Merger

Memory
Manager

.vhd

.vhd

.dot

(a) Source (b) DASS tool flow

Fig. 7: With user-specified constraints in pragmas, our tool
automatically generates a combined dynamically and statically
scheduled circuit.

respectively. Our tool flow is shown in Fig. 7. The user-
defined scheduling constraints are configured using pragmas.
DASS takes the input C++ code and splits the functions
into two groups based on the pragmas specified by the user,
representing the SS and the DS functions.3 We synthesise a
function without any scheduling constraints to DS hardware
by default. Our tool supports the integration of multiple SS
functions into a DS function. A front end analysis is carried
out to identify whether there is inter-iteration dependence or
shared memory between the SS function and the DS function.
Then each SS functions is synthesised by Vivado HLS. If a
SS function has no inter-iteration dependence, the II of the
function is either an II defined by the user or the optimal II de-
termined by Vivado HLS. If a SS function has an inter-iteration
dependence, the it is synthesised with a sequential schedule.
The resultant SS hardware is then automatically wrapped up to
ensure compatibility with the DS circuit interface, as described
in Section IV-B. Each input variable or output variable of the
function is constructed as a data port with a set of handshaking
signals. The memory port for exclusive array accesses from
the SS function is directly forwarded to the memory block.
If the array is shared by other hardware, then an arbiter is
generated to serialise the memory accesses.

In the DS function that contains SS functions, each SS
function appears as a single component in the DS hardware
netlist. We access the dataflow graph in Dynamatic that
contains the timing constraints of all these DS components
and update the II and latency of each SS function in terms
of the corresponding scheduling report from Vivado HLS.
This ensures correct hardware optimisation in the backend of
Dynamatic. Finally, the resultant RTL files represent the final
DASS hardware of the top function.

VI. EXPERIMENTS

We evaluate our work on DASS on a set of benchmarks,
comparing with the corresponding SS-only and DS-only de-
signs. We assess the impact of DASS on both the circuit area
and the wall clock time.

3The SS region of code is required to be a function, such that it can be
scheduled by Viavdo HLS.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, OCTOBER 2020 9

We evaluate our approach on the latency and the area of the
whole hardware compared to existing scheduling approaches.
Specifically, we select a number of benchmarks, where the DS
approach generates hardware with lower latency than the SS
approach, and show how the area overhead can be reduced
while preserving low latency. To ensure fairness, we present
the best SS solution from Vivado HLS and the best DS solution
from Dynamatic for each benchmark as a baseline. In addition,
we assume that the designer has no knowledge of the input
data distribution for the DASS hardware and show that the
area and execution time can still be reduced. This means we
use the conservative II automatically obtained from Vivado
HLS, i.e. the smallest possible II determined by only the
topology of the circuit like loop carried dependency. The
timing results of our work are shown as a range of values
that depends on the input data distribution. We obtain the total
clock cycles from ModelSim 10.6c and the area results from
Post & Synthesis report in Vivado. The FPGA family we used
for result measurements is xc7z020clg484 and the version of
Vivado software is 2018.3. All our designs are functionally
verified in ModelSim on a set of test vectors representing
different input data distributions.

A. Benchmarks
The HLS hardware can benefit from the dynamic scheduling

for the highest throughputs. We select a number of benchmarks
that are amenable for DS, and evaluate our work, DASS,
on further optimising the design quality in terms of the
performance and area. The first two benchmarks are made
artificially to demonstrate simple examples. The third and
fourth benchmarks are the sparse form of the corresponding
benchmarks from the paper by Josipović et al. [5]. The
two getTanh benchmarks apply the existing approximation
algorithms on sparse data arrays. These benchmarks are all
made publicly available [7].

We apply our approach to eleven benchmarks and selects
the SS parts based on the formulation given in Section. IV-A:
• 1) sparseMatrixPower performs dot product of two

matrices, which skips the operation when the weight is
zero.
• 2) histogram sums various weight onto the corre-

sponding features but also in a sparse form.
• 3) filterSum sums a number of polynomial results

from the array elements that meet the given conditions
where the difference between two elements from the
arrays is non-negative.
• 4) filterSumIf is similar but the SS function returns

one of two polynomial expressions based on the value of
the difference.
• 5) getTanh performs the approximated function tanh(x)

onto an array of integers using the CORDIC algo-
rithm [28] and a polynomial function.
• 6) getTanh(double) is similar but uses an array of

doubles.
• 7) BNNKernel is a small binarised neural network [29].
• 8) bubbleSort is a bubble sort algorithm that repeat-

edly swaps the elements in the one-dimensional array
until the sequence is in ascending order.

• 9) LFK7 is one of the 7th kernel, equation of state
fragment, in the Livermore loops [30], a well-known
benchmark set for loop kernels.
• 10) distSum evaluates the probability of three events

in a specific domain by accumulates the three probability
density functions (pdf).
• 11) getIntersection measures the intersection of

polyhedrons, used for modelling tumors in biophotonic
cancer treatments [31].

B. Overall Experimental Results

In most benchmarks, our approach has less area and execu-
tion time than the corresponding DS hardware. Fig. 8 shows
the overall design quality of our approach compared to the
SS and DS solutions, complementing the detailed results in
Tab. II. In the figure, we show three arrows for each bench-
mark: the best case (all inputs take the short path), the worst
case (all long), and a middle case (half short, half long). The
axes are normalised to the corresponding SS solutions at (1,1).
The starting point of an arrow represents the LUT usage and
execution time of the DS hardware, while the corresponding
result of the DASS hardware is at the end of the arrow. The
II of the SS function in the DASS hardware is chosen only
considering the worst case of the execution patterns, where
all the iterations are long, that is η = 1, assuming the user
does not know the input data distribution. With fixed hardware
architecture, we show the results of all seven benchmarks
with different input data distributions. Generally, our DASS
designs sit at the top left of the corresponding SS hardware.
In addition, for the same benchmark, most DASS hardware
designs are on the bottom left of the DS hardware. It shows
that the DASS hardware can be smaller than the DS hardware
and have better performance. The arrows point to the top right
indicate that the benchmark is not suitable for DASS and will
be explained in the later section.

The results of those arrows in the figure show different
patterns over the performance, attributing to the variety of
code patterns in the benchmarks. For instance, some arrows
for the same benchmarks position at a noticeable distance
from each other, like groups of 3, 4, 5, 8, 11. The reason
is that the performance of the benchmark depends on the
distribution of the input data. In contrast, some arrows for
the same benchmarks overlap completely, like groups of 7,
9, 10. These arrows indicate that the input data does not
affect the performance of the circuit. Similarly, the benchmarks
between these two categories result in the partially overlapping
or closely positioned arrows, like groups of 1, 2, 6. Besides,
from the area point of view, the arrows for the same benchmark
has the same area reduction as the hardware architecture is
fixed.

Detailed results of these benchmarks are shown in Tab. II,
considering all the cases of possible input distribution (from
all long to all short). In general, some values in the “Total
Cycles” column is a range because the control decisions
taken in the code depend on input values. For the SS case,
the number of total cycles is often independent of the input
due to pipelining worst-case assumptions made by the SS

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, OCTOBER 2020 10

0.02 0.05 0.1 0.2 0.5 1 2 5

1

2

5

10

SS

1a,1b

1c

2a, 2b, 2c

3a

3b

3c

4a

4b4c

5a
5b5c

6a, 6b, 6c

7a, 7b, 7c

8a 8b 8c

9a, 9b, 9c

10a, 10b, 10c

11a, 11b, 11c

• 1) sparseMatrixPower
• 2) histogram
• 3) filterSum
• 4) filterSumIf
• 5) getTanh
• 6) getTanh(double)
• 7) BNNKernel

• 8) bubbleSort
• 9) LFK7
• 10) distSum
• 11) getIntersection
a - worst case
b - average case
c - best case

Wall clock time (normalised to SS)

L
U

T
co

un
t

(n
or

m
al

is
ed

to
SS

)

Fig. 8: The overall effects of our approach over the eleven benchmarks from Tab. II. Each benchmark is given three different
data distributions: (a) worst case, (b) average case, and (c) best case. Each arrow shows a change in area and performance by
switching from DS to DASS, both relative to SS. Most of the arrows lie entirely in the second quadrant, which means both
DS and DASS are faster but larger than SS. Arrows that point left mean that DASS is faster than DS; arrows that point down
mean that DASS is smaller than DS.

TABLE II: Evaluation of design quality of DASS over eleven benchmarks. Assuming the data distribution is unknown, the II
of the static function in DASS is selected as the II in the worst case. The average values are taken except bubbleSort as
it is not amenable for DASS.

DASS II LUTs DSPs Registers Total Cycles Fmax/MHz Wall Clock Time/µs
SS DS DASS SS DS DASS SS DS DASS SS DS DASS SS DS DASS SS DS DASS

1 299 206 465 317 3 6 3 191 489 198 306-30.7k 141-30.0k 141-29.7k 64.9 60.2 67.8 4.7-473 2.3-498 2.1-437
2 1 902 1002 990 3 3 3 639 637 809 9.01k 1.01k-1.02k 1.01k-1.01k 111.4 111.4 111.4 80.9 9.0-9.1 9.0-9.1
3 5 2209 7874 4514 17 79 23 2592 5552 3960 5.08k 1.02k-5.07k 1.02k-5.08k 111.4 77.3 84.9 45.6 13.2-65.6 12-59.8
4 5 3352 12068 5222 31 152 37 3903 9440 5188 5.08k 1.02k-5.07k 1.02k-5.08k 111.4 73.2 85.0 45.6 13.9-69.3 12-59.8
5 11 3768 6154 4072 6 12 6 2172 6418 2422 55.0k 2.51k-66.0k 2.51k-11.0k 42.4 64.7 45.2 1298.7 38.8-1.02k 55.5-243
6 1 2272 2453 2579 50 50 50 2236 2154 2797 38.0k 1.01k-1.04k 1.01k-1.04k 111.4 111.4 111.4 341.2 9.1-9.3 9.1-9.4
7 303 & 402 306 1250 664 3 9 3 142 1606 519 30.9k 30.4k 30.4k 143.3 61.1 112.8 215.7 498 270
8 3 91 785 829 0 0 0 109 643 677 2.00M 1.00M-2.00M 1.00M-2.50M 224.2 64.4 58.6 8.92k 15.5k-31.0k 17.1k-42.6k
9 4 1466 6620 3179 14 40 10 1831 5943 3475 10043 1460 1464 120.0 46.1 45.0 83.7 31.7 32.5
10 10 & 10 & 10 1746 11068 4807 12 128 28 1784 10509 4481 20065 10896 10899 120.0 78.2 82.6 167.2 139.4 132.0
11 4 & 13 2241 4788 2832 5 39 19 1642 4808 3180 95-210 89-105 92-110 120.0 83.8 108.1 1.3 1.1-1.3 0.9-1.0

Normalised
geometric mean 1 2.48 1.52 1 2.65 1.08 1 3.34 1.6 1 0.29-0.76 0.29-0.61 1 0.89 0.92 1 0.51-1.04 0.34-0.73

scheduler. However, in the case of 1) sparseMatrixPower
and 11) getIntersection, the SS scheduler decides to
implement the outer loop of the circuit without pipelining,
resulting in sequential execution of iteration and hence also
variable execution time. There is also a small difference be-
tween the total clock cycles of the DS hardware and the DASS
hardware. One of the reasons is that the existence of bubbles
causes pipeline stalls at startup and then the throughput is
stabilised. The cycle count of the SS hardware in the DASS
hardware may also be different from the corresponding DS
hardware due to different retiming approach, which also affects
the critical path (like function g in Section II).

In some of the benchmarks like 3) filterSum, the II of
the top function is high limited by the topology of the circuit,
leading to more area saving. For the benchmarks that con-
tain sparse data operations like 1) sparseMatrixPower,
although the memory is shared, it can be proved that there is

no memory conflict between the SS part and the DS part.
Therefore the design quality of the hardware can still be
improved by DASS. The DS pipelining capabilities are not
always as powerful as those of SS when pipelining more
complex loops (i.e. the DS hardware sometimes contains more
restrictive synchronisation logic which may prevent complete
loop pipelining). Hence, in 5) getTanh, the DASS design
benefits in cycle count by introducing the fully pipelined SS
function. The benchmark 7) BNNKernel shows that multiple
SS functions can be synthesised using our tool. Ideally, all
the regular operations in the input code can be synthesised as
SS hardware to maximise area efficiency and performance.
Besides, 11) getIntersection has both an unbounded
loop and the data dependent if conditions that cannot be
fully pipelined by SS. However, the program contains several
operations that can be shared as the performance bottleneck
is at the memory bandwidth. We identify the SS functions

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, OCTOBER 2020 11

0 20 40 60 80 100
0

2,000

4,000

6,000

8,000

5 6 7 8 9 10

1

2

35

10

1

5

8

1

5

6

1

5

6

Wall Clock Time (ms)

L
U

T
C

ou
nt

SS
DS

DASS

η=0
η=0.25

η=0.5
η=1

η
=0

η
=0

.2
5

η
=0

.5

η
=1

Fig. 9: LUT usage of different scheduling approaches over the
performance for the example from Fig. 2. Each data point on
DASS is labelled with the II of function g. Each data point
on SS is labelled with the loop II. η indicates the fractions of
long latency operations.

based on the conditions given in Section IV-A, and the tool
synthesises these functions from the original program into SS
hardware that both access the same array. The DS analysis
shows that these two functions have no memory conflict, as
they never compute in parallel. The average results include an
unsuitable benchmark 8) bubbleSort causing large bias on
the average. Over the 10 benchmarks amenable for DASS, DS
achieves 0.51×-0.85× of the execution time and 3.03× area,
while DASS achieves 0.38×-0.63× of the execution time and
1.68× area. If the input data distribution is known, the design
quality of the DASS hardware for all these benchmarks can
be further improved (as in the case study 1).

C. Case Study 1: II Exploration

Now let us take the motivating example in Section II for
a case study. We discuss how the variation of II affects the
hardware performance and some principles that guide the
selection of an appropriate II for the SS portion of a DASS
circuit.

The Effects of II Selection: Let us first consider the case
when the entire circuit is generated using SS. As an example,
in Fig. 2 the minimum II of the loop in function filterSum
is 5, because of a loop-carried dependency on s that takes
5 cycles. However, a user can also choose a larger II. This
can lead to smaller area (because of more opportunities for
resource sharing) but higher latency, as shown in Fig. 9 (blue
circles). In this case, if the II is increased from 5 to 7, the
LUT count is reduced by 28%, at the cost of increasing the
latency by 39%.

Now let us consider the DASS case. For the example in
Fig. 2, there are various choices of II for function g. The
most aggressive solution is to set II = 1 for the highest possible
throughput. However, due to the aforementioned loop-carried
dependency on s, there is actually no performance benefit if
the II is set to anything below 5—the loop-carried dependency
dictates that the time between two calls to g is at least 5 cycles

(when g is called from two consecutive loop iterations). The
time between calls to g will only increase if the iterations that
call it are further apart. Hence, if the user’s primary objective
is to maximise performance, an II of 5 cycles is sensible.

However, if the user knows more about the expected data
distribution of the input, they can choose an even better II for
g. Let us explore these effects on the motivating example. We
denote the fraction of the loop iterations where d >= 0 as η,
since these have long latency through function g and the accu-
mulation in s. The fraction of the iterations where d < 0 is
then 1 - η. The input data distribution affects η over all the loop
iterations. Fig. 9 shows the LUT usage and wall clock time
of the hardware by three scheduling approaches over several
values of η, the fractions of long latency operations. The circuit
is buffered for throughput by Dynamatic [32], and we assume
the decision of the if condition is uniformly distributed over
the iterations. Unbalanced structures are usually handled by
the buffers, so here we only consider the average case. In the
figure, it can be seen that the best II for function g varies in
terms of the input data distribution. For example, if only the
odd loop iterations are long and the rest are short, η is 0.5 and
the optimal II for function g is 6.

More generally, a suitable II can be selected for a function
f, where 1/II of a component can be considered as its
maximum rate of processing data (also known as maximum
throughput). The maximum II of function f that does not
affect the overall program execution time is defined as its
DASS optimal II (II opt). It depends on two constraints, the
maximum production rate allowed by its predecessors, 1/II p,
and the maximum consumption rate allowed by its successors,
1/II s.

II Selection for the Motivating Example: Now let us show
how to select the DASS optimal II (II opt) for the motivating
example. Other works have investigated these effects [33],
[34], [32] in related problems. Here is an example of how it
works. To analyse the circuit, we first show how to formalise
the input rates and output rates for each component. Then we
show how to use the formulation to find the DASS optimal II
(II opt) for the example.

There are two types of components in the DS circuit:
non-control-flow components and control-flow components.
The non-control-flow components only perform predictable
operations like addition and multiplication. The control-flow
components perform unpredictable operations like merge and
branch.

For a non-control-flow component g that has N predeces-
sors and M successors, let the actual data rate of its ith

predecessor be rpi, the actual data rate of its ith successor
be rsi. Then we can see that all these rates are equal, where
we introduce r to represent the value that these rates are all
equal to:

∀i, j ∈ [1, N], rpi = rsj = r

The reason is that the handshaking interface of the compo-
nent stalls the inputs until all the inputs are valid and all the
predecessors are ready. This balances the rates at the inputs
and outputs. Also, the data rate is limited by the physical IIs
of the component and all the surrounding hardware.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, OCTOBER 2020 12

call_g

+

sink

start
s = 0

return s

d

II0 ≥ 3

II1 ≥ 1

II2 ≥ 5II5 ≥ 3

II7 ≥ 3

II6 ≥ 5

II8 ≥ 3

II3 ≥ 3
r0=1/3

r1=1/6

r2=1/6

r6=1/6
r5=1/6

r8=1/6
r7=1/6

r9=1/3r10=1/3

r3=1/3

Buff
r4=1/3

II4 ≥ 3

r11=1/3

r12=1/3

r13=1/3

Fig. 10: Rate analysis for the motivating example.

r ≤ min(1/II g, 1/II p1, . . . , 1/II pN , 1/II s1, . . . , 1/II sM)

On the other hand, the processing rates of control flow
components depend on the topology of the circuit and the
input data distribution. The rate changes when the data goes
through these components, as detailed below:

Merge: rout = rin1 + rin2

Branch: rin1 = rin2 = rout1 + rout2

The rate analysis of a portion of the dataflow circuit from
Fig. 3(b) is shown in Fig. 10. The green labels show the II
constraints of each component and the blue labels represent
the actual rate along each edge between two components. Due
to the loop-carried dependency on the adder, where the output
s is sent back to the input, the II of the circuit is limited
by the latency of the feedback loop containing an adder and
a buffer. That latency is 5 cycles, hence any value of the II
of that adder smaller than 5 does not cause a performance
bottleneck. In this case, the input and output rate of the adder
is limited: II 6 ≥ 5. Since there is no dataflow component in
the path, II 2 = II 6 ≥ 5. The top component consuming d is
a branch component, which sends data to one of two outputs
according to the if condition. The rate of a branch component
with the loop-carried dependency has an additional constraint
that:

1/rbranch,in1 ≥ max(II in, II out1×p1+II out2×(1−p1)) (1)

where II in is the II of its predecessor, II out1 is the II of its
first successor, p1 is the fraction of the data going into its
first successor, and II out2 is the II of its second successor. In
the figure, the predecessor is known not to be the bottleneck
as the upper loop in Fig. 3(b) can feed d every clock cycle.
In addition, one of the successors, sink, has II 1 ≥ 1 as it
can take data every clock cycle, and the other is function g
with II 2 ≥ 5. With half of the iterations being long, that is
p1 = 0.5, we have II 0 ≥ 0.5× 1 + 0.5× 5 = 3. This means
the highest overall rate is r0 = 1/3, where the component
consumes 1 set of data every 3 cycles on average. This agrees
with the schedule in Fig. 2(c) that the hardware consumes 2

sets of data every 6 cycles and repeats. At the highest rate,
the rate of the input is split into two edges through the branch
component in terms of the fraction of the data going into the
corresponding successor:

rout1 = p1 × rin, (2)
rout2 = (1− p1)× rin (3)

In this case, r2 = r0/2 = 1/6. Similar analysis can be
performed on other branch components in the circuit, resulting
in the rate of each edge shown in Fig. 10. In conclusion, the
rate to the function g is 1/6 at the highest overall rate, and the
DASS optimal II of function g is II opt = 6. Smaller IIs may
cause less area saving and larger IIs may cause performance
degrading.

For all input data distributions in Fig. 9, the SS approach
appears as a single line. The DS solution is always the
same hardware architecture (i.e. constant LUT count) but with
performance varying with the changing input data distribution.
Our approach is shown as multiple green lines, one for each
input data distribution. The design with DASS optimal II,
shown as the elbows in the DASS lines, can have better
performance than the DS hardware by improving the maxi-
mum clock frequency with SS implementation. In addition,
the DASS hardware can also have comparable area efficiency
compared to the SS hardware in terms of LUT and DSP usage.

By performing the rate analysis above, we have the DASS
optimal II of function g equal to II opt2 = 1/η + 4. This can
be justified as follows. Knowing II d = 1, we have II 0 = (1−
η)×II 1+η×II 2. Then knowing II 1 ≥ 1 and II 2 ≥ 5, we have
II 0 ≥ 1+4L. For best performance, II 0 = 1+4η. Ultimately,
knowing r0 = 1/II 0, r2 = r0×η and r2 = 1/II opt2, we have
II opt2 = 1/η + 4, as required.

For instance, at η = 1, the DASS optimal II is 5, the same
as the minimum loop II from SS. When η = 0, function g
and the adder for += are never used, so the II of the function
does not affect the latency of the whole program. In this case,
the DASS optimal II is infinity, i.e. function g is no longer
needed.

In this work, we let users manually determine the optimal
II for the SS function in the DASS hardware. In general,
finding the optimal II for an SS function can be difficult
as it depends on both the topology of the circuit and the
input data distribution. However, even if users have only some
information on the circuit, such as the minimum II achievable
due to loop-carried dependencies, the hardware optimisation
is still promising. In the figure, the DASS hardware with
II = 5 for the SS function does not have minimum area
but still achieves significant area reduction compared to the
DS hardware. Although the hardware is underperforming, the
difference in area reduction by switching from II = 5 to
II = 6 is significantly smaller than that by switching from
II = 1 to II = 2.

D. Case Study 2: BubbleSort

There are two throughput overheads caused by DASS.
These overheads are usually minor but can still affect the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, OCTOBER 2020 13

1 void bubbleSort(int A[N]){
2 for (int i = 0; i < N-1; i++){
3 for(int j = i; j < N-1-i; j++){
4 /*if (A[j] < A[j+1]) {
5 A[j] = A[j+1];
6 A[j+1] = A[j];
7 }*/ swap_ss(A, j);
8 }}}

0 5 10 15
0

5k

10k

15k

20k

Thousands of Clock Cycles

L
U

T
C

ou
nt

SS
DS

DASS

Fig. 11: Design quality of different scheduling approaches for
bubbleSort benchmark. Bad choice may result in worse
performance and larger area.

design quality with a bad choice of source for SS functions.
Here we take bubbleSort for example, as illustrated in
Fig. 11. The swapping process is chosen to be a SS function
named swap_ss. The first overhead is caused by the inter-
iteration dependence inside swap_ss. A load from A[j] in
an iteration depends on the conditional store to A[j+1] in
the last iteration. This memory dependence forces the schedule
swap_ss to be sequential to preserve correctness. Second, the
functionalisation of SS hardware instead of inlining causes one
cycle of additional latency. This additional latency is usually
hidden in a pipeline. In bubbleSort, the sequential schedule
of swap_ss causes throughput of the loop depending on the
latency of swap_ss, slowing down the computation.

The bottom of Fig. 11 shows how how these overheads
affect the performance. Both axes are in log scale. In the figure,
it can be seen that the optimal choice for bubbleSort is
to statically schedule the whole program. Compared to the SS
hardware, the DASS hardware has lower throughput due to the
additional latency caused by the wrapper. It also loses in the
circuit area due to the handshaking interface in the DS circuit.
In addition, although the DS hardware can solve the memory
dependence using an LSQ. However, the LSQ has a large area
and a long memory latency. The memory latency is usually
hidden in the pipeline but not for bubbleSort as explained
before. Such a long latency results in a low throughput in
the DS hardware. Compared to the DS hardware, the DASS
hardware does not have an LSQ and has a smaller memory
latency since all the memory accesses are statically-scheduled.

VII. CONCLUSION

In high-level synthesis, dynamic scheduling is useful for
handling irregular and control-dominated applications. On
the other hand, static scheduling can benefit from powerful
optimisations to minimise the critical path and resource re-
quirements of the resulting circuit. In this work, we combine
existing dynamic and static HLS approaches to strategically
replace regions of a dynamically scheduled circuit with their

statically scheduled equivalents: we benefit from the flexibility
of dynamic scheduling to achieve high throughput as well as
the frequency and resource optimisation capabilities of static
scheduling to achieve fast and area-efficient designs.

Across a range of benchmark programs that are amenable to
DASS, our approach on average saves 45% of area in compar-
ison to the corresponding dynamically scheduled design, and
results in 1.98× execution time speedup over the correspond-
ing statically scheduled design. In certain cases, the knowledge
of the input data distribution allows us to further increase the
design quality and may result in additional performance and
area improvements. Our current approach relies on the user to
annotate via pragmas parts of the code which do not benefit
from dynamic scheduling and can, therefore, be replaced with
static functions. The current version of DASS only support
pipeline-related pragmas. Our future work will support more
pragmas and explore the automated recognition of such code
and these pragmas.

ACKNOWLEDGMENT

This work is supported by the EPSRC (EP/P010040/1,
EP/R006865/1), the Royal Academy of Engineering, and
Imagination Technologies. Lana Josipović is supported by a
Google PhD Fellowship in Systems and Networking.

REFERENCES

[1] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. An-
derson, S. Brown, and T. Czajkowski, “LegUp: High-level Synthesis for
FPGA-based Processor/Accelerator Systems,” in Proceedings of the 19th
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, ser. FPGA ’11. Monterey, CA, USA: ACM, 2011, pp. 33–
36.

[2] V. G. Castellana, A. Tumeo, and F. Ferrandi, “High-level synthesis of
memory bound and irregular parallel applications with bambu,” in 2014
IEEE Hot Chips 26 Symposium (HCS). Cupertino, CA: IEEE, Aug
2014, pp. 1–1.

[3] Xilinx Vivado HLS, 2017. [Online]. Available: https://www.xilinx.com/
[4] Intel HLS Compiler, 2017. [Online]. Available: https://www.altera.com/
[5] L. Josipović, R. Ghosal, and P. Ienne, “Dynamically scheduled high-

level synthesis,” in Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’18. Mon-
terey, CA: ACM, 2018, pp. 127–136.

[6] J. Cheng, L. Josipović, P. Ienne, G. Constantinides, and J. Wickerson,
“Combining dynamic & static scheduling in high-level synthesis,” in
Proceedings of the 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’20. Monterey, CA: ACM,
2020.

[7] J. Cheng, “HLS-benchmarks,” 2019. [Online]. Available:
https://doi.org/10.5281/zenodo.3561115

[8] “Datasets for Combining Dynamic & Static Schedul-
ing in High-level Synthesis,” 2019. [Online]. Available:
http://doi.org/10.5281/zenodo.3406553

[9] “DSS: Combining Dynamic & Static Scheduling in High-level Synthe-
sis,” 2019. [Online]. Available: https://github.com/JianyiCheng/DSS

[10] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An introduction
to high-level synthesis,” IEEE Design Test of Computers, vol. 26, no. 4,
pp. 8–17, July 2009.

[11] V. J. M. III and G. D. Micheli, “Hardware/software co-design of run-time
schedulers for real-time systems,” Design Automation for Embedded
Systems, vol. 6, no. 1, pp. 89–144, Sep 2000.

[12] J. Cong and Z. Zhang, “An efficient and versatile scheduling algorithm
based on SDC formulation,” in 2006 43rd ACM/IEEE Design Automa-
tion Conference. San Francisco, CA: IEEE, 2006, pp. 433–438.

[13] Z. Zhang and B. Liu, “SDC-based modulo scheduling for pipeline
synthesis,” in 2013 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). San Jose, CA: IEEE, 2013, pp. 211–218.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, OCTOBER 2020 14

[14] Ian Page and Wayne Luk, “Compiling occam into Field-Programmable
Gate Arrays,” in FPGAs, W. Moore and W. Luk, Eds., Abingdon EE&CS
Books, 1991.

[15] Celoxica, “Handel-C,” 2005. [Online]. Available:
http://www.celoxica.com

[16] G. Venkataramani, M. Budiu, T. Chelcea, and S. C. Goldstein, “C to
asynchronous dataflow circuits: An end-to-end toolflow,” in IEEE 13th
International Workshop on Logic Synthesis (IWLS). Temecula, CA:
IEEE, Jun 2004.

[17] M. Budiu and S. C. Goldstein, “Pegasus: An efficient intermediate
representation,” Carnegie Mellon University, Tech. Rep. CMU-CS-02-
107, May 2002.

[18] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli,
“Theory of latency-insensitive design,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 20, no. 9, pp.
1059–1076, Sep. 2001.

[19] L. Josipović, P. Brisk, and P. Ienne, “An out-of-order load-store queue for
spatial computing,” ACM Trans. Embed. Comput. Syst., vol. 16, no. 5s,
pp. 125:1–125:19, Sep. 2017.

[20] L. Josipović, A. Bhattacharyya, A. Guerrieri, and P. Ienne, “Shrink it
or shed it! minimize the use of LSQs in dataflow designs,” in 2019
International Conference on Field-Programmable Technology (ICFPT),
2019, pp. 197–205.

[21] M. Alle, A. Morvan, and S. Derrien, “Runtime dependency anal-
ysis for loop pipelining in High-Level Synthesis,” in 2013 50th
ACM/EDAC/IEEE Design Automation Conference (DAC). Austin, TX:
IEEE, May 2013, pp. 51:1–51:10.

[22] J. Liu, S. Bayliss, and G. A. Constantinides, “Offline Synthesis of Online
Dependence Testing: Parametric Loop Pipelining for HLS,” in 2015
IEEE 23rd Annual International Symposium on Field-Programmable
Custom Computing Machines. Vancouver, BC: IEEE, May 2015, pp.
159–162.

[23] M. Tan, G. Liu, R. Zhao, S. Dai, and Z. Zhang, “ElasticFlow: A
complexity-effective approach for pipelining irregular loop nests,” in
2015 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). Austin, TX: IEEE, Nov 2015, pp. 78–85.

[24] S. Dai, M. Tan, K. Hao, and Z. Zhang, “Flushing-enabled loop pipelin-
ing for high-level synthesis,” in 2014 51st ACM/EDAC/IEEE Design
Automation Conference (DAC). San Francisco, CA: IEEE, June 2014,
pp. 1–6.

[25] S. Dai, R. Zhao, G. Liu, S. Srinath, U. Gupta, C. Batten, and Z. Zhang,
“Dynamic hazard resolution for pipelining irregular loops in high-level
synthesis,” in Proceedings of the 2017 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, ser. FPGA ’17. Monterey,
CA: ACM, 2017, pp. 189–194.

[26] L. P. Carloni, “From latency-insensitive design to communication-based
system-level design,” Proceedings of the IEEE, vol. 103, no. 11, pp.
2133–2151, Nov 2015.

[27] Charles Seitz, System Timing, 1980.
[28] J. Duprat and J.-M. Muller, “The CORDIC algorithm: New results for

fast VLSI implementation,” IEEE Trans. Comput., vol. 42, no. 2, pp.
168–178, Feb. 1993.

[29] E. Wang, J. J. Davis, P. Y. K. Cheung, and G. A. Constantinides,
“LUTNet: Rethinking Inference in FPGA Soft Logic,” in 2019 IEEE
27th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). San Diego, CA: IEEE, 2019, pp. 26–34.

[30] F. H. McMahon, “The Livermore Fortran kernels: A computer test of
the numerical performance range,” Lawrence Livermore National Lab.,
CA (USA), Tech. Rep., Dec. 1986.

[31] T. Young-Schultz, L. Lilge, S. Brown, and V. Betz, “Using OpenCL to
enable software-like development of an FPGA-accelerated biophotonic
cancer treatment simulator,” in The 2020 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p.
86–96. [Online]. Available: https://doi.org/10.1145/3373087.3375300

[32] L. Josipović, S. Sheikhha, A. Guerrieri, P. Ienne, and J. Cortadella,
“Buffer placement and sizing for high-performance dataflow circuits,”
in The 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, ser. FPGA ’20. Monterey, CA:
Association for Computing Machinery, 2020, p. 186–196. [Online].
Available: https://doi.org/10.1145/3373087.3375314

[33] S. Stuijk, M. Geilen, B. Theelen, and T. Basten, “Scenario-aware
dataflow: Modeling, analysis and implementation of dynamic appli-
cations,” in 2011 International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation. Samos, Greece:
IEEE, July 2011, pp. 404–411.

[34] A. H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten, B. D. Theelen,
M. R. Mousavi, A. J. M. Moonen, and M. J. G. Bekooij, “Throughput
analysis of synchronous data flow graphs,” in Sixth International Con-
ference on Application of Concurrency to System Design (ACSD’06).
Turku, Finland: IEEE, June 2006, pp. 25–36.

Jianyi Cheng (S’20) received an MSc in Analogue
and Digital Integrated Circuit Design from Imperial
College London in 2018 and a BEng in Electrical
and Electronic Engineering from University of Not-
tingham in 2017. Currently, he is a PhD student in
Electrical and Electronic Engineering from Impe-
rial College London. His research interests include
reconfigurable computing, high-level synthesis, pro-
gram analysis and formal verification. He is a Stu-
dent Member of the IEEE and the ACM.

Lana Josipović (S’16) received a MSc (2015) and
BSc (2013) in Electrical Engineering and Infor-
mation Technology from the University of Zagreb,
Croatia. Currently, she is a PhD student in Computer
and Communication Sciences at EPFL, Switzerland.
Her research interests include high-level synthesis,
compilers, and reconfigurable computing. She is a
recipient of the Google PhD Fellowship for Sys-
tems and Networking and the Best Paper Award at
FPGA’20.

George A. Constantinides (S’96, M’01, SM’08)
received the Ph.D. degree from Imperial College
London in 2001. Since 2002, he has been with the
faculty at Imperial College London, where he is cur-
rently Royal Academy of Engineering / Imagination
Technologies Research Chair, Professor of Digital
Computation, and Head of the Circuits and Systems
research group. He has served as chair of the FPGA,
FPL and FPT conferences. He currently serves on
several program committees and has published over
150 research papers in peer refereed journals and

international conferences. Prof Constantinides is a Senior Member of the IEEE
and a Fellow of the British Computer Society.

Paolo Ienne (S’90, M’96, SM’10) received the
laurea degree in Electrical Engineering from Politec-
nico di Milano, Italy, in 1991 and the Ph.D. degree in
Computer Science from EPFL, Switzerland, in 1996.
Since 2000, he has been a Professor with the School
of Computer and Communication Sciences, EPFL.
He serves on the steering committee of the ARITH,
FPL, and FPGA conferences, and is an associate
editor of ACM CSUR and ACM TACO. Ienne has
published over 200 articles in peer reviewed journals
and international conferences, some of which have

received the Best Paper Awards at prestigious venues (including the FPGA,
FPL, CASES, and DAC conferences). He is a Senior Member of the IEEE
and a Member of the ACM.

John Wickerson (M’17, SM’19) received a Ph.D. in
Computer Science from the University of Cambridge
in 2013. He is a Lecturer in the Department of
Electrical and Electronic Engineering at Imperial
College London. His research interests include high-
level synthesis, the design and implementation of
programming languages, and software verification.
He is a Senior Member of the IEEE and a Member
of the ACM.

