
Concurrency-Aware Thread Scheduling
for High-Level Synthesis

Nadesh Ramanathan, George A. Constantinides and John Wickerson
Department of Electrical and Electronic Engineering

Imperial College London, London, SW7 2AZ, United Kingdom
E-mail: {n.ramanathan14, g.constantinides, j.wickerson}@imperial.ac.uk

Abstract—When mapping C programs to hardware, high-level
synthesis (HLS) tools seek to reorder instructions so they can
be packed into as few clock cycles as possible. However, when
synthesising multi-threaded C, instruction reordering is inhibited
by the presence of atomic operations (‘atomics’), such as compare-
and-swap. Atomics, the fundamental concurrency primitive in C,
are the basis of more abstract concurrency mechanisms such as
locks, and also of efficient lock-free data structures.

Whether a particular atomic can be legally reordered within
a thread can depend on the memory access patterns of other
threads. Existing HLS tools that support atomics typically sched-
ule each thread independently, and so must be conservative when
optimising around atomics. Yet HLS tools are distinguished from
conventional compilers by having the entire program available.
Can this information be exploited to allow more reorderings
within each thread, and hence to obtain more efficient schedules?

In this work, we propose a global analysis that determines, for
each thread, which pairs of instructions must not be reordered.
Our analysis is sensitive to the C consistency mode of the
atomics involved (e.g. relaxed, release, acquire, and sequentially-
consistent). We have used the Alloy model checker to validate our
analysis against the C language standard, and have implemented
it in the LegUp HLS tool. An evaluation on several lock-free data
structure benchmarks indicates that our analysis leads to a 1.6×
average global speedup.

I. INTRODUCTION

When mapping C programs to hardware, high-level syn-
thesis (HLS) tools try to schedule instructions into as few
clock cycles as possible. To do this, they seek opportunities
to reorder or parallelise instructions without affecting the pro-
gram’s behaviour. However, when synthesising multi-threaded
C programs, changes to the order of instructions are inhibited
by the presence of atomic operations.

Atomic operations are the fundamental concurrency prim-
itive provided by the C language [2, §7.17]. They can be
used to implement more programmer-friendly concurrency
mechanisms such as mutual exclusion locks, and also to
build efficient lock-free concurrent data structures. Atomics
are guaranteed to appear to execute instantaneously. They also
impose constraints on the ordering of memory accesses.

In our previous work, we showed that atomics can be
implemented in HLS by adding scheduling constraints within
each thread to ensure correct global ordering [3]. These
constraints were determined locally; i.e., based only on one
thread’s memory accesses. In the current work, we exploit
the fact that HLS tools have the entire program available: we
determine each thread’s scheduling constraints by analysing

the memory accesses of all other threads. This can lead to a
significant reduction in the number of constraints required, as
demonstrated in the following example.

Example 1: Consider the following program, which con-
sists of an ordinary (non-atomic) store to x followed by an
atomic store to y:

x=1;

atomic_store(&y,1);
(Program 1)

Assuming x and y do not alias, these two instructions can
safely be parallelised. The analysis proposed in this paper
correctly determines that both can be scheduled into the
same clock cycle. Unfortunately, compilers and HLS tools
that use only a thread-local analysis have to work on the
assumption that there might be other threads concurrently
accessing x and y, so they cannot safely reorder the two
stores. For instance, there could be an additional thread that
loads atomically from y and then non-atomically from x,
as shown below, where || separates the two threads:

x=1; if(atomic_load(&y))

atomic_store(&y,1); r0=x;
(Program 2)

The two stores must no longer be reordered. This is
because the C standard dictates that when an atomic load
observes an atomic store in another thread, the two threads
synchronise [2, §5.1.2.4.11]. As a consequence, all memory
accesses that happen before the atomic store are guaranteed
to become visible to all memory accesses after the atomic
load. This guarantee could be violated in Program 2 if the
stores are executed out of order.

In this paper, we propose a global analysis that determines
which pairs of instructions must not be reordered within a
thread. Our analysis handles programs that use sequentially-
consistent (SC) atomics (the default consistency mode), as
well as ‘weak’ atomics [2, §7.17.3]. Weak atomics impose
fewer ordering constraints than SC atomics, and hence have
more opportunities for reordering and parallelism, but their
complex semantics makes them harder for programmers to use
correctly. Our analysis handles the relaxed, acquire, release,
and acquire-release weak consistency modes. We use the
Alloy model checker to validate our analysis against the C
standard for both SC and weak atomics.

int x=0,y=0; atomic_int xr=0,yr=0;
T0 T1 T2
¶ x=42; º r1=ald(&xr); ¼ r3=ald(&yr);
· ast(&xr,1); if(r1==1) if(r3==1)
¸ y=17; » r2=x; ½ r4=y
¹ ast(&yr,1);
assert((r1==1 =⇒ r2==42) && (r3==1 =⇒ r4==17))

(a) a program

¶

·

¸

¹

º

»

¼

½

(b) thread-local analysis

¶

·

¸

¹

º

»

¼

½

(c) global analysis

Fig. 1. Three-threaded message passing example with two channels.

We implement our analysis as an LLVM pass in the
LegUp 5.1 HLS tool [4], as detailed in §III. To evaluate
it (§IV), we compile three real-world lock-free data struc-
tures: the Treiber stack [5], a single-producer-single-consumer
buffer [6] and the Michael–Scott queue [7]. Our results show
that our analysis leads to an average 1.6× global speedup
compared to our previous thread-local analysis, with per-
benchmark speedups ranging up to 3.7×. Making the analysis
sensitive to weak atomics leads to an average 1.2× hardware
speedup compared to treating all atomics as SC.

Our companion material [1] includes our benchmarks, Alloy
model files, and performance data.

II. MOTIVATING EXAMPLE

In this section, we give a more realistic program that
can benefit from our whole-program analysis, and explain
intuitively how the analysis works.

Consider the program in Fig 1a, in which ald stands for
atomic_load and ast stands for atomic_store. The
program uses atomic variables to pass messages from thread
T0 to threads T1 and T2. This is an important concurrent pro-
gramming pattern, as it represents a master thread distributing
work to two other threads. Thread T0 passes messages to T1
and T2 by first writing to a non-atomic variable (x or y)
and then writing to an atomic variable that serves as a ready
signal (xr or yr). Threads T1 and T2 receive T0’s messages
by checking that their ready signals are set before reading the
data. The assert ensures that there are no message-passing
violations; i.e., that T1 and T2 receive 42 and 17 respectively
if their ready signals are set.

The arrows in Fig. 1b show the ordering constraints that a
thread-local analysis would impose [3]. These constraints are
injected on the basis that · and ¹ are atomic, and hence they
must not be reordered with other memory accesses. This forces
all four memory operations to be serialised during scheduling.

However, considering the program as a whole, the ordering
constraints in T0 are conservative, because we do not need
to enforce ordering between the two independent message-
passing channels. Our analysis considers which pairs of atom-
ics could actually synchronise at runtime. As shown by the

arrows in Fig. 1a, T0 can synchronise with T1 if º observes
· and with T2 if ¼ observes ¹. If these operations do
synchronise, then we must ensure that all memory accesses
before the atomic store are visible to all memory accesses after
the atomic load. We can ensure this by adding two ordering
constraints in T0 and one constraint each in T1 and T2, as
shown in Fig 1c. All other accesses can be safely reordered
because no thread would be able to observe such a reordering.
Hence, our global analysis reduces the number of ordering
constraints in T0 from five to two, and allows ¸ and ¹ to be
scheduled in parallel with ¶ and ·.

In summary, analysing the possible synchronisation oppor-
tunities of the entire program can allow us to reduce the
ordering constraints within each thread.

III. METHOD

We implement our analysis in LegUp 5.1 as an LLVM
module pass between the allocation stage and the scheduling
stage. From the LLVM intermediate representation (IR) we
extract all memory operations of all threads along with their
locations and consistency modes. We also verify that memory
locations do not alias using LLVM’s alias analysis tool.

Using this information, we perform our global analysis,
which identifies the ordering constraints to be preserved. We
subsequently inject these constraints into LegUp’s scheduler.
Our analysis supports atomic loads, stores, and compare-and-
swaps, both on scalar variables and on arrays. We also support
fences, but do not discuss them in this paper to simplify the
presentation. Our analysis assumes that reads and writes to
FPGA memory elements occur instantaneously (i.e., no caches
or write buffers) – that is, the only source of reordering of
memory accesses is the instruction scheduler.

LegUp divides a thread into several basic blocks of straight-
line code. Instructions within a basic block can be reordered
and parallelised, but basic blocks are executed in sequence.
Hence, our analysis only needs to produce ordering constraints
within a basic block.

A. Input to our Analysis
The input to our analysis is a set
of memory operations grouped into
the following overlapping subsets:
• Ld , the set of loads,
• St , the set of stores, and
• At , the set of all atomics.

At

all
memory
operations

Ld St

Our analysis also relies on the following relations between
those operations:
• po, the ‘program order’ relation, which relates all the

memory accesses within each thread in a strict total order,
as stipulated by the programmer,

• sloc, the ‘same location’ relation, which relates all ac-
cesses to the same memory location (as determined by
an alias analysis), and

• sthd , the ‘same thread’ relation, which relates all accesses
within the same thread.

B. Identifying instructions that must not be reordered

Our analysis begins by identifying pairs of operations that
can cause threads to synchronise:

canSync = (At ×At) ∩ sloc \ sthd .

The canSync relation connects any two atomic operations
on the same location from different threads. For instance, the
canSync edges of our motivating example are given by the
arrows in Fig. 1a. If two operations in canSync, say A and
B, do synchronise at runtime, then all memory operations that
A has observed must become visible to operations that follow
B. For instance, if · synchronises with º then operation ¶
must be visible to ». In order to ensure this, both po edges
(¶,·) and (º,») must be preserved.

In general, we must consider not just isolated canSync
edges, but paths of them, in order to handle programs like
the one shown below.

int x=0; atomic_int y=0, z=0;
T0 T1 T2

x=17; r1=ald(&y); r2=ald(&z);
ast(&y,1); if(r1==1) if(r2==1)

ast(&z,1); r3=x;
assert((r1==1 ∧ r2==1) =⇒ r3==17)

Here, thread T0 can synchronise with T2 indirectly, via thread
T1, as shown by the arrows. If both flags y and z are observed,
then T2 must observe the value of x that is written by T0, as
captured by the assertion. This program shows that the global
order in which memory accesses are allowed to occur can
depend on paths between the accesses that are made up of
several canSync edges.

Hence, to enumerate all possible synchronisation oppor-
tunities, we construct the following set of paths through
the memory operations of the entire program. A path is an
ordered list of edges, and each edge is a pair of po-related
operations. The set AllPaths is defined to contain the path
[(v0, v

′
0), . . . , (vn, v

′
n)] if and only if it satisfies all of the

following conditions:

∀i. 0 ≤ i ≤ n =⇒ (vi, v
′
i) ∈ po (1)

∀i. 0 ≤ i < n =⇒ (v′i, vi+1) ∈ canSync (2)
∀i, j. 0 ≤ i < j ≤ n =⇒ (vi, vj) /∈ sthd (3)
(v0, v

′
n) ∈ sloc (4)

(v0, v
′
n) ∈ Ld × Ld =⇒ (v0, v

′
n) ∈ At ×At (5)

Condition (1) states that every path is a ordered list of n+ 1
edges from po. Condition (2) states that the target operation
of each po edge is connected to the source operation of the
next po edge in the path via canSync. We only consider
paths that do not revisit a thread (Condition 3), since such
paths can be minimised by removing the detour. This condition
limits n to be smaller than the number of threads. Also, we
are only interested in paths that start and end with accesses
to the same location (Condition 4) because the order in
which memory accesses to different locations occur cannot be
directly observed. Finally, if a path begins and ends with loads,

atomic_int x=0, y=0;
¬ ast(&x,1, ® ast(&y,1,

release); release);
 r1=ald(&y, ¯ r2=ald(&x,

acquire); acquire);

(a) a program

¬

®

¯

(b) SC

¬

®

¯

(c) Weak

Fig. 2. The ‘store buffering’ programming pattern, and its canSync edges
under SC and weak consistency

then we only consider it if both loads are atomic (Condition 5).
Non-atomic loads can be reordered because this reordering
cannot be observed unless the program has a data race [8],
and this would be a programming error.

As an example, there are two paths in Fig 1a that satisfy
Conditions (1) to (5): [(¶,·), (º,»)] and [(¸,¹), (¼,½)].

Ultimately, having enumerated all relevant paths, we pre-
serve all the po edges that appear in at least one path. That
is, we define the preserved program order, ppo, as follows:

ppo = {(v, v′) | ∃p ∈ AllPaths. (v, v′) ∈ p}. (6)

The only edges that need to be preserved in Fig. 1a are the four
po edges in its two paths: (¶,·), (º,»), (¸,¹), and (¼,½),
as shown in Fig. 1c.

C. Exploiting weak concurrency

Thus far, we have handled all atomics using the default,
strictest consistency mode: sequential consistency (SC). How-
ever, the C standard also supports a range of ‘weak’ atom-
ics that offer acquire, release, and relaxed consistency [2,
§7.17.3.1]. Weak atomics allow more reordering of memory
accesses within a thread, which can improve performance,
though they can be harder for programmers to use correctly.
In this subsection, we describe how we extend our analysis
to exploit weak atomics, then in §IV-B1, we show that the
resultant reduction in scheduling constraints does indeed yield
better-performing hardware.

In order to support weak atomics, we provide three further
inputs to our analysis:

• SC , the set of SC atomics,
• Acq , the set of atomic

loads with at least acquire
consistency, and

• Rel , the set of atomic
stores with at least release
consistency.

At

all
memory
operations

Ld St

SC
Acq

Rel

We redefine the pairs of atomics that can cause threads to
synchronise, as follows:

canSync = ((Rel×Acq)∪(SC×At)∪(At×SC))∩sloc\sthd .

This new definition relates two atomics to the same location
on different threads if: (a) the first operation is a release atomic
and the second is an acquire, or (b) either of the operations is
an SC atomic. Condition (a) captures the one-way nature of
release/acquire synchronisation [2, §5.1.2.4.11], while Condi-
tion (b) lets SC atomics retain their full synchronising abilities.

Figure 2a gives an example of a program that is affected by
this weakening of the canSync relation. It illustrates the ‘store
buffering’ pattern, which appears in, for instance, Dekker’s
algorithm for mutual exclusion [9]. It consists of two atomic
locations, x and y, two release stores, and two acquire loads. If
all of the memory accesses were SC, the outcome r1 = r2 =
0 would be forbidden by C. To ensure that this outcome cannot
happen, our analysis would place canSync edges as shown in
Fig. 2b; this would lead to paths such as [(¬,), (®,¯)] and
hence both po edges being preserved.

However, our refined definition of canSync is sensitive to
the program’s use of release/acquire atomics. It produces one-
way canSync edges, as seen in Fig. 2c. No legal paths can be
constructed with these edges, and hence the two instructions
in each thread can be reordered.

D. Compare-and-swap support

We now explain how our analysis can be extended to
support atomic compare-and-swap (CAS) operations, which
are central to many fine-grained concurrent algorithms [10].
A CAS operation is parameterised by an atomic location, an
expected value, and a desired value. If the location holds the
expected value, it is instantaneously swapped to the desired
value, otherwise its value is unchanged. C defines ‘strong’ and
‘weak’ CAS operations; the difference being that a weak CAS
may fail to swap even if the location does hold the expected
value [2, §7.17.7.4.4].1 We implement the strong CAS, as it
is more powerful, and is required by our benchmarks.

1) Analysing CAS operations: For our analysis, we treat
a CAS as a pair of accesses: an atomic load followed by an
atomic store. The consistency modes of the load and the store
are determined from the consistency mode of the original CAS.
If our analysis produces a ppo edge that constrains either the
load or the store component, it is automatically mapped to
constrain the original CAS.

2) Implementing CAS operations: A straightforward
method of implementing CAS operations in HLS is to perform
an ordinary load and store while holding a mutual-exclusion
lock [11]. However, using locks to implement atomics is
inefficient because extra cycles are needed to acquire and then
release the lock. Locks also prevent a CAS operation from
being reordered, even if it is relaxed. Instead of using locks,
we modify LegUp’s RTL generator to support CAS operations
directly in hardware.

Figure 3 shows the generated memory architecture when
two threads access a shared array. The basic mechanism for
accessing shared memory in LegUp is as follows. A thread
asserts its enable (en) signal to request (req) access from
the arbiter. On each cycle, the arbiter grants (grant) access
only to one thread while other unsuccessful threads must stall
(stall) and keep their enable signal asserted. To perform a
CAS on a RAM, a thread requires two consecutive cycles to

1Note that this usage of ‘weak’ is distinct from weak consistency. The
strength of a CAS refers to its behaviour when the comparison succeeds; its
consistency mode refers to how the CAS operation can be reordered with the
other memory operations in its thread.

THREAD 0 ARBITER THREAD 1

MUX MUX

BRAM

addr wr_data

rd_data

addr wr_data

rd_data

hold

en

hold

en

stall stall

req[0] req[1]

hold

grant

addr data_in

data_out

Fig. 3. A (simplified) circuit showing how CAS works for two threads, the
shaded region indicating circuitry added by us.

¬

®

¯

°

±

²

³

´

µ

Fig. 4. Illustrating primary (solid) and secondary (dotted) canSync edges

complete an uninterrupted sequence of read and write accesses.
To achieve this effect, we first add circuitry that holds (hold)
the arbiter’s grant signal for an extra cycle, as shown in the
shaded region of Fig. 3. Then, we modify each thread’s state
machine to pack the read and write into consecutive cycles.
Finally, we implement the comparison logic between the read
and write. To perform a CAS on a register, the hold signal
is not required as registers have zero-latency reads and hence
the CAS can be packed into a single cycle.

E. An optimised implementation of our analysis

A naı̈ve implementation of our analysis is to enumerate the
AllPaths set and then to extract the ppo edges, as described
in §III-B. However, as we show in §IV-C, this method scales
poorly on realistic programs. The problem is that realistic
programs have a large number of canSync edges and these
edges can exponentially increase the number of paths to
explore. To improve the scalability of our analysis, we now
describe a more efficient method to calculate ppo. The idea is
to identify a subset of the canSync edges as ‘secondary’, and
to remove them while enumerating paths; then to re-introduce
them on a per-path basis when calculating ppo.

For example, Fig. 4 shows the shape of a program with three
threads and four canSync edges. We shall call the two dotted
canSync edges secondary edges, because for any path that
passes through one or more of these secondary edges, there
always exists a path between the same endpoints that does
not pass through any secondary edges. For instance, from the
path [(¬,), (°,±)] we can obtain the path [(¬,®), (¯,±)]
which passes only through ‘primary’ canSync edges.

More formally, we define the primary canSync edges as:

canSyncPrimary =
{(va, vb) ∈ canSync | @(vc, vd) ∈ canSync.
(va, vc) ∈ po∗ ∧ (vd, vb) ∈ po∗ ∧
(vc 6= va ∨ vd 6= vb)}.

That is, (va, vb) is a primary edge providing there exists
no other canSync edge (vc, vd) such that vc is either equal to
va or po-after it, and vd is either equal to vb or po-before it.
(Note that r∗ is the reflexive transitive closure of r.)

We then define the set of primary paths, PrimaryPaths ,
as those that pass only through primary canSync edges, by
redefining (2) to:

∀i. 0 ≤ i < n =⇒ (v′i, vi+1) ∈ canSyncPrimary . (2a)

Having calculated the set of primary paths, it remains to
generate the ppo relation in a way that re-includes the non-
primary paths. This can be done on an efficient per-path basis.
The idea is, for each edge in each path, to put into ppo not just
that po edge, but also any other po edge that a non-primary
path between the same threads could have taken.

For example, in Fig. 4, the po edge from ¯ to ² is on a
primary path from ¬ to µ. We include that edge in ppo, but
also (¯,±), (°,²), and (°,±).

More formally, we generate ppo as follows:

ppo =
{(w1, w2) | ∃[(v0, v′0), . . . , (vn, v′n)] ∈ PrimaryPaths.
∃i. 0 ≤ i ≤ n ∧
(w1 = vi ∨

((vi, w1) ∈ po ∧ (w1, v
′
i−1) ∈ (canSync−1 ; po∗)) ∧

(w2 = v′i ∨
((w2, v

′
i) ∈ po ∧ (vi+1, w2) ∈ (po∗ ; canSync−1))}

(noting that r ; s is the sequential composition of relations r
and s, and r−1 is the inverse relation of r). That is, the path
edge (vi, v

′
i) leads to the po edge (w1, w2) being put into ppo

whenever:
• w1 is equal to vi, or it is po-after vi and is the target of

a canSync edge whose source is po-before or equal to
the previous operation in the path (namely, v′i−1), and

• w2 is equal to v′i, or it is po-before v′i and is the source
of a canSync edge whose target is po-after or equal to
the next operation in the path (namely, vi+1).

F. Ensuring correctness

The semantics of atomic operations in C, particularly the
weakly consistent variants, is rather complex. Therefore, to
ensure that our analysis is valid, we turn to automated
tool support. We use the Alloy model checker [12], which
has previously been successfully employed to validate other
compiler mappings and optimisations in a weakly consistent
setting [13], [3].

The C standard does not define the meaning of atomics on
their own, but rather in terms of which executions of an entire
program are allowed and which are not. An execution, in this
context, is a set of runtime events with various dependencies

between them. For example, the picture below shows the three
‘candidate executions’ of Program 2 from §I. W indicates a
write event, R indicates a read event, and na means non-
atomic.

Wna x 1

WSC y 1

RSC y 0
po

rb

Wna x 1

WSC y 1

RSC y 1

Rna x 1

po po
rf

rf
Wna x 1

WSC y 1

RSC y 1

Rna x 0

po po
rf

rb

The first candidate is the execution where the if-statement’s
test condition fails. Here, the rb (‘reads before’) edge indicates
that the second thread’s read of y is overwritten by the first
thread’s write to y. In the second candidate, the test condition
succeeds and the new value of x is observed. Here, the rf
(‘reads from’) edges indicate that the writes of x and y
are observed by the other thread’s read events. In the third
candidate, the test condition succeeds but the old value of x
is observed.

C allows the first and second candidate executions, but for-
bids the third. The mechanism for rejecting the third execution
is the detection of a cycle made of rf edges between SC
atomics, po edges, and rb edges. The precise rules that C
uses to forbid executions are detailed by Lahav et al. [8].

Let us define a buggy execution to be an execution that
is forbidden by C yet allowed by our implementation. The
existence of such an execution would demonstrate that our
implementation does not preserve enough of the program
order. Characterising the executions that are forbidden by C
is straightforward: they are the executions that violate at least
one of Lahav et al.’s rules. Characterising the executions that
our implementation allows is a little more subtle.

As discussed at the start of this section, the only source
of memory reordering in our implementation is instruction
reordering. Therefore, our starting point for characterising
the executions that our implementation allows is simply SC.
Shasha and Snir [14] characterise SC executions using the rule

acyclic(po ∪ rf ∪mo ∪ rb) (Shasha–Snir)

which states that there are no cycles made up of po, rf , rb,
and mo edges. (The ‘modification order’, mo, is a relation
between write events on the same location that represents the
order in which the writes hit the main memory.) The rule
works by rejecting executions in which data-flow (as captured
by rf , rb, and mo) contradicts the program order. We weaken
the Shasha–Snir rule by removing all the po edges that our
analysis does not preserve, to obtain the following rule:

acyclic(ppo ∪ rf ∪mo ∪ rb).

This rule has the same effect as Shasha–Snir applied to a
program with a less constrained program order.

Event bound: 2 3 4 5 6

1 s
1 min

1 hour

So
lv

e
tim

eAlloy was able to confirm
that there are no buggy ex-
ecutions with six events or
fewer, for both methods of
calculating ppo. The graph to
the right shows that the time

. . .

(a) Chaining

...

(b) Distribution

...

(c) Reduction

Fig. 5. The experiments we conduct for each data structure. Squares represent
threads; circles represent data structure objects; arrows represent data flow.

taken for Alloy to deduce this result increases exponen-
tially with the event bound. This is because Alloy casts the
constraint-solving problem as a Boolean SAT query. Although
a bound of six events appears small, note that Alloy’s search
space covers executions of all programs, so any bug that can
be minimised to six events or fewer will be found. Experience
indicates that most bugs related to weak memory can be
minimised to between four and six events [15], so Alloy’s
result is a useful, if not completely watertight, validation of
our method.

IV. EVALUATION

We now evaluate how our global analysis compares to a
thread-local analysis, on both SC and weak atomics.

In the theoretical best case, our global analysis can lead to
an arbitrary speedup, if given a program such as

ast(&x1,1); ast(&x2,1);...; ast(&xN,1);

that consists of a series of atomic stores to different locations.
A thread-local analysis would have to schedule all the stores
sequentially, but our analysis can put them all in parallel,
giving an N× speedup for arbitrary N . On the other hand,
the worst-case speedup over a thread-local analysis is none
at all, which would happen if every instruction in a program
depends on its predecessor.

To give an indication of where the performance of our
analysis on realistic programs lies between these two extremes,
we evaluate three common data transfer patterns and three real-
world lock-free data structures.

A. Experimental setup

We evaluate our analysis on the Treiber stack [5], a single-
producer-single-consumer buffer [6] and the Michael–Scott
queue [7]. We use versions of the stack and the queue that use
weak atomics, due to Norris and Demsky [16].2 The buffer
only allows concurrent access between one writer and one
reader, whereas the stack and the queue allow multiple readers
and writers. These data structures are real-world examples of
lock-free data structures and are part of the Boost library [17].

We evaluate these benchmarks on three common data
transfer patterns: chaining, distribution and reduction. These
patterns are designed to test one-to-one, one-to-many, and
many-to-one relationships between threads, as shown in Fig. 5.
For all experiments, we scale the thread count to test both

2http://plrg.eecs.uci.edu/git/model-checker-benchmarks.git/

SC weak average
thread-local analysis

global analysis

1.4×

1.2×

1.8× 1.5× 1.6×

Fig. 6. Summary of speedups, averaged over all experiments

the scalability of our analysis and the performance of the
generated hardware.

Our designs use LegUp 5.1’s pure hardware flow, where
each thread is instantiated as a hardware accelerator on FPGA.
We use Quartus v15.0 to synthesise and place-and-route our
designs to a Cyclone V SoC FPGA (5CSEMA5) with 32075
ALMs, 128300 registers, and 3970 Kb of RAM blocks.

B. Evaluating the performance of generated hardware

Figure 6 summarises the average speedups between the four
design points in our evaluation, across all our experiments. The
move from a local analysis on all-SC atomics to a local analy-
sis on weak atomics was explored in our previous work [3] (but
that implementation did not support CAS operations, hence the
range of benchmarks was limited). We see that moving from
SC atomics to weak atomics also benefits our global analysis,
though the effect is slightly reduced. More significant speedups
are obtained by moving from a local to a global analysis, even
if programs only use SC atomics.

1) Global analysis versus thread-local analysis: Figure 7a
shows the per-experiment speedup obtained, for the analysis
that is sensitive to weak atomics, by switching from a thread-
local to a global analysis.

We see that for the chaining experiments, the global analysis
achieves an average speedup of 1.4× for the buffer and 1.2×
for the queue, compared to a thread-local analysis. The buffer
and the queue achieve good speedups because the global
analysis is able to exploit memory reordering by analysing
the interaction between a pair of push and pop routines
across different threads. However, the stack sees no speedup
because its small push and pop routines do not contain any
opportunities for parallelism.

The distribution and reduction experiments achieve better
speedups than the chaining experiments. This is because our
global analysis is not only able to exploit memory reordering
within routines but also to parallelise routines that access
independent data structures. Hence, we see that the speedup
scales proportionally with the thread count.

We remark that our global analysis actually leads to poorer
hardware than a thread-local analysis on the buffer in the two-
threaded reduction and distribution experiments (4% and 0.3%
slowdown). Here, both analyses actually generate schedules
with the same latency, but with different operations paral-
lelised, and this leads to variations in the clock frequency.

2) Weak atomics versus SC atomics: The overall perfor-
mance gained from performing the global analysis on weak
atomics rather than just SC atomics is 1.2×. Figure 7b shows
that this speedup is dependent on the benchmark. The buffer

http://plrg.eecs.uci.edu/git/model-checker-benchmarks.git/

1

1.5
2

3
4

Sp
ee

du
p

a) Performance of global analysis compared to thread-local analysis, using weak atomics

3 4 5 6 2 3 4 5 2 3 4 5 3 4 5 6 2 3 4 5 2 3 4 5 3 4 5 6 2 3 4 5 2 3 4 5

G
eo

m
ea

n

1

1.2

1.4

1.6

chaining reduction distribution chaining reduction distribution chaining reduction distribution
Treiber stack SPSC buffer Michael–Scott queue

Sp
ee

du
p

b) Performance of weak atomics compared to SC atomics, using global analysis

Fig. 7. Speedup (time) per benchmark. Data points are grouped by data structure, then by experiment, then by thread count.

ald(&y1); ald(yN−1); ald(yN);
x=42; ald(&z1); ald(zN−1); ald(zN);
ast(&y1,1); ast(&y2,1); · · · ast(yN,1); r0=x;
ast(&z1,1); ast(&z2,1); ast(zN,1);

Fig. 8. A class of programs on which our analysis scales poorly, because the
number of paths scales exponentially with the size of the program.

and the queue perform 1.2× and 1.35× better when the analy-
sis is sensitive to weak atomics. These two benchmarks benefit
from weak atomics since weak atomics allow more memory
reordering within individual push/pop routines, compared to
SC atomics. The stack, on the other hand, does not gain from
the move to weak atomics, since weak atomics do not offer
additional flexibility to its routines.

3) Resource utilisation: In most cases, our global analysis
results in similar or slightly reduced logic utilisation compared
to a thread-local analysis, on average saving under 1%. In the
worst case, the logic utilisation increases by 6%, and in the
best case, it decreases by 11%.

C. Evaluating the scalability of our analysis

The analysis time for all of our experiments
ranges between 0.1 and 5.9 milliseconds, with a
median of 0.4 milliseconds. This is using the efficient
implementation of our analysis discussed in §III-E.

Threads: 3 4 5 6

1 ms
10 ms

1 s

1 min

efficient

naı̈ve

A
na

ly
si

s
tim

e

To assess the impact of our effi-
cient implementation, compared to
a naı̈ve enumeration of all paths,
the graph to the right compares the
time taken to analyse the Michael–
Scott queue in the chaining exper-
iment, with all atomics using SC
mode. We see that as we scale the
thread count, our efficient imple-
mentation outperforms the naı̈ve
implementation by several orders of magnitude (9500× at five
threads). The naı̈ve implementation cannot even complete the
analysis at six threads, as it runs out of memory.

Nonetheless, the running time of our efficient implementa-
tion can still scale exponentially with program size, in the
worst case. Figure 8 gives a pathological example of how
this can occur. For each program obtained by instantiating
the parameter N , there are 2N primary paths from x=42 to
r0=x that must be explored. This is because there are two
possible path choices for each stage in the chain, either via a
y-variable or via a z-variable.

V. RELATED WORK

Our previous work [3] exploited only a thread-local analysis
when generating HLS scheduling constraints for atomics; the
current work uses a global analysis instead. In most cases,
our global analysis imposes fewer constraints than the local
analysis, as seen in Example 1, since conservative assumptions
have to made during local analysis. However, there also exist
programs for which our global analysis imposes more con-
straints than the local analysis. This happens only in programs
that access the same location using both an SC atomic and a
non-SC atomic, and such programs are “not common” [8].
Indeed, we have used Alloy to verify that for all programs
that do not mix SC and non-SC atomics on the same location,
our global analysis never imposes more constraints than the
local analysis. Alloy was able to prove this property for all
programs with up to twenty operations in about a second.

Eliminating scheduling constraints in HLS is similar to
eliminating fences in a conventional compiler. Our work is
therefore related to that of Vafeiadis et al. [18] and Morisset
et al. [19], who present (and prove correct) compiler optimi-
sations that remove unnecessary fences from multiprocessor
assembly code. Unlike our work, their optimisations exploit
only a thread-local analysis.

Alglave et al. [20] present a whole-program analysis that
determines where fences need to be inserted into a program to
ensure SC behaviour when it is executed on weakly-consistent
hardware. Their analysis is, like ours, based on enumerating
inter-thread edges between conflicting accesses (similar to our

canSync relation), and combining these with po edges to
build paths. However, their analysis does not handle C atomics
– all memory accesses are treated equally. As such, their
analysis always guarantees SC behaviour. Our method, on the
other hand, imposes only enough ordering to guarantee the
behaviour specified by the programmer (which may be weaker
than SC if weak atomics are used). Also, their analysis targets
CPUs whereas our analysis targets hardware via HLS.

Crary and Sullivan [21] propose a new concurrent pro-
gramming paradigm in which the programmer explicitly an-
notates their code with the program order edges that must
be preserved; the compiler is then tasked with realising those
requirements as efficiently as possible. The idea is to give the
programmer more direct control over thread synchronisation
than is possible through atomics and fences. Our work also
involves preserving a subset of the program order edges,
but where Crary and Sullivan’s proposal is that this subset
is entered by the programmer using a specialised language
construct, we deduce it via a program analysis of an existing
language.

GCC [22] and LLVM3 both provide link-time optimisation
(LTO), where the compiler has access to intermediate repre-
sentation (IR) of all linked libraries and hence can treat the
link-time program as a single compilation unit. If we adapted
our implementation to insert fences rather than scheduling
constraints, it may be possible to cast it as an LTO, and thus
optimise atomics not just in HLS but in conventional compilers
too. However, there are several challenges related to LTO
such as the lack of one-to-one correspondence between the IR
and source code, all the source code having to be compiled
with the same compiler options, and the memory overheads
of preserving the IR in an embedded environment.

VI. CONCLUSION

This work has proposed a global program analysis for multi-
threaded C that determines which pairs of instructions within
each thread must not be reordered by the HLS scheduler in
order to implement the correct semantics for atomics. Our
analysis can handle atomic loads, stores, and compare-and-
swaps, and is sensitive to the consistency mode of each oper-
ation. We have provided a naı̈ve description of our analysis,
as well as an efficient way to implement it, and both versions
have been checked for correctness against the C language
standard via automated model checking. We have implemented
our analysis by extending the LegUp HLS tool, and evaluated
it on three real-world lock-free benchmarks. The results show
that our global analysis yields an average whole-program
speedup of 1.6×, with a minimal effect on resource utilisation.
They also show that weak atomics are well-suited to our
analysis, leading to an average speedup of 1.2× compared
to SC atomics.

Overall, this work has demonstrated that global analysis of
multi-threaded C programs can reduce the ordering constraints
required to implement atomics correctly in HLS.

3https://llvm.org/docs/LinkTimeOptimization.html

ACKNOWLEDGEMENTS

The support of the EPSRC Centre for Doctoral Train-
ing in High Performance Embedded and Distributed Sys-
tems (HiPEDS, grant reference EP/L016796/1), EPSRC grants
EP/I020357/1, EP/K034448/1 and EP/K015168/1, an Impe-
rial College Research Fellowship (Wickerson), and a Royal
Academy of Engineering / Imagination Technologies Research
Chair (Constantinides) is gratefully acknowledged.

REFERENCES

[1] Supplementary material is available on Zenodo, https://doi.org/
10.5281/zenodo.1205395, and GitHub, https://constantinides.github.io/
CATS-HLS/.

[2] ISO/IEC, Programming languages – C. International standard
9899:2011, 2011.

[3] N. Ramanathan, S. T. Fleming, J. Wickerson, and G. A. Constantinides,
“Hardware Synthesis of Weakly Consistent C Concurrency,” in Field-
Programmable Gate Arrays (FPGA), 2017.

[4] LegUp Computing Inc., “LegUp 5.1 Documentation.” 2017, http://bit.
ly/2D7VrQ0.

[5] R. K. Treiber, “Systems programming: Coping with parallelism,” IBM
Research, Tech. Rep. RJ5118, 1986.

[6] K. Hedström, “Lock-free single-producer-single-consumer circular
queue,” 2014, bit.ly/2dbr8IK.

[7] M. M. Michael and M. L. Scott, “Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms,” in ACM Symp.
on Principles of Distributed Computing (PODC), 1996.

[8] O. Lahav, V. Vafeiadis, J. Kang, C.-K. Hur, and D. Dreyer, “Repairing
sequential consistency in C/C++11,” in ACM Conf. on Programming
Language Design and Implementation (PLDI), 2017.

[9] E. W. Dijkstra, “Cooperating sequential processes (1965),” in The Origin
of Concurrent Programming, P. Brinch Hansen, Ed. Springer, 2002,
pp. 65–138.

[10] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming.
Morgan Kaufmann, 2011.

[11] J. Choi, S. Brown, and J. Anderson, “From software threads to parallel
hardware in high-level synthesis for FPGAs,” in Int. Conf. on Field-
Programmable Technology (FPT), 2013.

[12] D. Jackson, Software Abstractions – Logic, Language, and Analysis,
2nd ed. MIT Press, 2012.

[13] J. Wickerson, M. Batty, T. Sorensen, and G. A. Constantinides, “Auto-
matically comparing memory consistency models,” in ACM Symp. on
Principles of Programming Languages (POPL), 2017.

[14] D. Shasha and M. Snir, “Efficient and correct execution of parallel
programs that share memory,” ACM Trans. on Programming Languages
and Systems (TOPLAS), vol. 10, no. 2, 1988.

[15] S. Mador-Haim, R. Alur, and M. M. K. Martin, “Litmus tests for
comparing memory consistency models: How long do they need to be?”
in Design Automation Conference (DAC), 2011.

[16] B. Norris and B. Demsky, “CDSChecker: Checking concurrent data
structures written with C/C++ atomics,” in ACM Int. Conf. on Object-
Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), 2013.

[17] T. Blechmann, “Boost.LockFree,” in Boost C++ Libraries, 2013, http:
//bit.ly/2qzHu8r.

[18] V. Vafeiadis and F. Zappa Nardelli, “Verifying fence elimination opti-
misations,” in Static Analysis Symp. (SAS), 2011.

[19] R. Morisset and F. Zappa Nardelli, “Partially redundant fence elimina-
tion for x86, ARM, and Power processors,” in Int. Conf. on Compiler
Construction (CC), 2017.

[20] J. Alglave, D. Kroening, V. Nimal, and D. Poetzl, “Don’t sit on the
fence: A static analysis approach to automatic fence insertion,” ACM
Trans. on Programming Languages and Systems (TOPLAS), 2017.

[21] K. Crary and M. J. Sullivan, “A calculus for relaxed memory,” in ACM
Symp. on Principles of Programming Languages (POPL), 2015.

[22] T. Glek and J. Hubička, “Optimizing real-world applications with GCC
link time optimization,” Computing Research Repository (CoRR), vol.
abs/1010.2196, 2010.

https://llvm.org/docs/LinkTimeOptimization.html
https://doi.org/10.5281/zenodo.1205395
https://doi.org/10.5281/zenodo.1205395
https://constantinides.github.io/CATS-HLS/
https://constantinides.github.io/CATS-HLS/
http://bit.ly/2D7VrQ0
http://bit.ly/2D7VrQ0
bit.ly/2dbr8IK
http://bit.ly/2qzHu8r
http://bit.ly/2qzHu8r

	Introduction
	Motivating example
	Method
	Input to our Analysis
	Identifying instructions that must not be reordered
	Exploiting weak concurrency
	Compare-and-swap support
	Analysing CAS operations
	Implementing CAS operations

	An optimised implementation of our analysis
	Ensuring correctness

	Evaluation
	Experimental setup
	Evaluating the performance of generated hardware
	Global analysis versus thread-local analysis
	Weak atomics versus SC atomics
	Resource utilisation

	Evaluating the scalability of our analysis

	Related Work
	Conclusion
	References

