
QuteFuzz: Fuzzing quantum compilers using randomly
generated circuits with control flow and subcircuits

ILAN IWUMBWE, BENNY ZONG LIU, and JOHN WICKERSON, Imperial College London, UK

Recent advancements in quantum hardware have led to an increase in the number of quantum software stacks
to allow developers to write, compile and run quantum programs. These quantum software stacks (QSS) are
usually comprised of a high-level quantum programming language, a compiler to optimise quantum programs
and convert them into quantum gate instructions, and a backend on which the program is run.

Despite these advancements, quantum processors are still in the Noisy Intermediate-Scale Quantum (NISQ)
era, characterised by a limited number of logical qubits that are susceptible to noise that corrupts the state
of the qubits. Therefore, quantum compilers are heavily relied upon to produce optimised circuits that can
produce reliable results, making the correctness even more crucial.

We introduce a tool for detecting quantum compiler bugs. Unlike other similar tools that have been
developed over the past few years, notably QDiff, QuteFuzz generates random quantum programs with
higher-level abstractions like subroutines, and more complex circuit-level manipulation like control flows (i.e
if-else, switch), all with varying depths of nesting and a variety of gates. These new generation strategies
combine to allow for a breadth of test cases not achieved before and thus exposing bugs in previously unseen
areas.

Seventeen bugs, including unexpected compiler crashes and silent miscompilations, were found in simulators
and compilers used by Pytket, Qiskit, and Cirq combined. Some of these bugs have been verified and fixed by
their respective developers, although some remain unfixed but acknowledged. These findings suggest that
there is great potential in fuzzing quantum compilers, especially through the random generation of quantum
circuits using more complex circuit elements.

1 INTRODUCTION
With the advancements seen in the quantum computing space, there is a greater push to allow
users to easily write, compile and run quantum circuits on quantum hardware and simulators, led
mainly by Pytket [20], Qiskit [11], and Cirq [2].

However, quantum processors are in the Noisy Intermediate-Scale Quantum (NISQ) era, which
means that there aren’t that many qubits to work with, and their states are easily corrupted by
noise and decoherence. Despite this, researchers and enthusiasts get reliable results from their
experiments thanks to quantum compilers, whose main role is to optimise the circuit by reducing
two-qubit gate count and circuit depth.
Quantum compilers, much like their classical counterparts, are prone to mistakes that could

alter the semantics of the circuit i.e., the result obtained is different from what the user expects.
This issue, known as miscompilation, was a motivator for tools such as CSmith[4] to fuzz test C
compilers. Additionally, work by Wang et al. [21] and a study by Paltenghi and Pradel [18] showed
that quantum compilers can also crash, which creates a poor user experience for quantum compilers
that should be avoided.

As such, several efforts have been made to fuzz test quantum compilers to detect miscompilations
and crashing bugs. QDiff [21] is one such notable example, where quantum compilers were tested
by applying semantics-changing and semantics-preserving mutations on 6 hand-written programs,
generating 15,000 test cases divided into 730 equivalence classes. These circuits were then differential
tested, which led to the discovery of bugs while also showcasing the feasibility of fuzz testing
quantum compilers. Subsequent works like MorphQ [19] builds upon this work by generating

Authors’ address: Ilan Iwumbwe, ilan.iwumbwe22@imperial.ac.uk; Benny Zong Liu, benny.liu21@imperial.ac.uk; John
Wickerson, j.wickerson@imperial.ac.uk, Imperial College London, UK.

2 Ilan Iwumbwe, Benny Zong Liu, and John Wickerson

a large and diverse set of valid quantum programs with subroutines, onto which metamorphic
mutations are made to produce 8000 program pairs.
QuteFuzz is a fully open-source tool that we have developed which specifically focuses on

generating quantum circuits control flow (if-else, switch statements) and subroutines. This has led
to the discovery of several bugs in widely used quantum compilers that existing tools would have
missed. This paper will therefore dive into how QuteFuzz was developed and discuss some of the
results that it has achieved.

The repository for QuteFuzz is on Github:
https://github.com/QuteFuzz/QuteFuzz

2 QUTEFUZZ
QuteFuzz is a quantum compiler fuzzer, which was built to generate a large number of semantically
diverse test cases that test the limits of the compiler. QuteFuzz can generate circuits with subroutines
and control flow, which are more complex quantum circuit elements that could increase the
likelihood of exposing more bugs.
QuteFuzz consists of two main components: the program generator and the differential tester.

The program generator, which is written in C++, generates Python code that adheres to the API
given by the specific QSS being tested. The differential tester will then put the program through a
quantum compiler, testing optimisation levels and specific optimisations passes and trying to find
miscompilation bugs or catch crashes.

2.1 Random circuit generation
QuteFuzz’s random program generator creates complex, randomized quantum circuits containing
control flow and subcircuits to rigorously test compiler capabilities. In order to do that effectively and
consistently across all three target QSSes, QuteFuzz was designed with modularity and generality
in mind.
It is observed that a quantum circuit follows a general structure:

• Import the quantum circuit and qubit class abstraction
• Define any subcircuits to be used
• Define the top-level circuit that will be tested

The program generator, which follows the following key steps, is written in such a way that its
core algorithms can be reused:

(1) Instantiate a quantum circuit object and choose a certain number of resources (qubits or
bits) to use. While this is done, a struct circuit_info keeps track of all available resources
that the circuit can use.

(2) Parameters that will be used in the circuit are defined. These will be used for parametric
gates instead of literal constants and bound to constants after the entire circuit is generated.

(3) When a new gate is to be added to the circuit, a valid one is randomly chosen from the
gateset stored in circuit_info. The gate will only be written into the circuit if there are
enough qubit resources for it to use, and if adding it wouldn’t go over the expected total
gate count. Any random gate chosen isn’t necessary a primitive gate, since all subcircuits
are converted into gates and added into the top-level circuit’s gateset.

(4) Bind all previously defined parameters used within the circuit to constant float values.

https://github.com/QuteFuzz/QuteFuzz

QuteFuzz: Fuzzing quantum compilers using randomly generated circuits with control flow and subcircuits 3

from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.circuit import Parameter, ParameterVector
from helpers.qiskit_helpers import run_pass_on_simulator
from pathlib import Path
from math import pi

subcirc0 = QuantumCircuit(0)
Adding qregs
qreg_0 = QuantumRegister(4)
subcirc0.add_register(qreg_0)
Adding creg resources
subcirc0.u(pi/2,-0.699000,-0.635000, qreg_0[2])
subcirc0.u(pi/2,0.573000,-0.226000, qreg_0[0])
subcirc0.u(-0.379000,-0.962000,0.418000, qreg_0[1])
subcirc0.ry(0.666000, qreg_0[2])
subcirc0.x(qreg_0[0])

main_circ = QuantumCircuit(2)
Adding qregs
qreg_0 = QuantumRegister(1)
main_circ.add_register(qreg_0)
qreg_1 = QuantumRegister(3)
main_circ.add_register(qreg_1)
Adding creg resources
creg_0 = ClassicalRegister(1)
main_circ.add_register(creg_0)
creg_1 = ClassicalRegister(1)
main_circ.add_register(creg_1)
Adding symbols
param_0 = Parameter("param_0")
param_1 = Parameter("param_1")
param_2 = Parameter("param_2")

main_circ.cx(1, 0)
main_circ.x(2)
main_circ.x(0)
main_circ.cx(2, 0)
main_circ.measure(0, creg_1[0])
with main_circ.if_test((creg_1[0],0)) as else_2:

main_circ.u(-0.969000,param_2,param_1, qreg_1[1])

with else_2:
main_circ.measure(1, creg_1[0])
with main_circ.if_test((creg_1[0],0)) as else_1:

main_circ.h(0)
main_circ.id(1)
main_circ.append(subcirc0,[qreg_1[1],0,1,qreg_0[0]])

with else_1:
main_circ.u(param_0,0.076000,-0.803000, 1)
main_circ.barrier(qreg_1[1])

bindings = {param_0: -0.127000, param_1: 0.233000, param_2: 0.733000,}
main_circ = main_circ.assign_parameters(bindings)

print(Path(__file__).name, " results:")
main_circ.measure_active()
run_pass_on_simulator(main_circ, 5, "HoareOptimizer")

Listing 1. Example Qiskit circuit generated byQuteFuzz

4 Ilan Iwumbwe, Benny Zong Liu, and John Wickerson

To explain the function of subcircuits and control flows, a brief overview summarising their
functionalities is shown below:

• Control flow measures the state of a particular qubit and applies a different set of gate
operations on another qubit, based on the result state of the qubit measurement.

• Subcircuits are abstractions of more complex quantum circuits, which can be called upon and
appended to other quantum circuits without having to rewrite code. This greatly reduces the
code length for repeated circuit sections and allows for compartmentalisation of different
parts of circuits that may do different things.

Fig. 1. Printed Qiskit circuit shown in Listing 1, containing control flow and subcircuits

Shown in figure 1 is the Qiskit circuit in Listing 1. The circuit contains both control flow and
subcircuits working together in a complex quantum circuit. It can be seen that there is an If-1
block in the circuit, which checks if the classical bit c0 is equal to 0x0, after being measured with
the M block located before it. If that is evaluated to be true, a subcircuit named circuit-160, which
is an abstracted element of a more complex circuit section, will be applied to the qubits q10 and
q11, with qubits q_0, q_1 and q_2 controlling it. If not, the circuit elements enveloped between the
Else-1 and End-1 blocks will be applied, which is simply a Hadamard gate H and an identity gate
I applied to qubits q_0 and q_1 respectively.
Some circuit generation exceptions had to be made for some QSSes, due to severe limitations

imposed by bugs or a lack of features. For example, control flow in Pytket was omitted because it
was found to be buggy, making it impossible to generate circuits with this construct [9]. Since this
bug was not fixed before the conclusion of this project, it was decided that control flow generation
for Pytket would be removed.
During circuit generation, circuits also pick a subset of gates from a pool of available gates

to use throughout the generation loop – an idea reminiscent of swarm-testing [5]. Additionally,
the number of qubits, gates, subroutines and amount of nesting for Qiskit control flow is varied.
These techniques were used together to allow for the exploration of various complex structural
combinations of circuits while minimising the risk of generating overly average circuits, which
would increase the likelihood of exposing more bugs.

2.2 Differential testing
QuteFuzz needs to find bugs in quantum compilers, and this is done through differential testing.
Differential testing is where a single program is put through different compiler configurations,
generating two differing programs that should produce the same output. The output of two programs
is then compared, and a difference would indicate semantic difference between the two programs.
When used on quantum programs, differential testing can help detect subtle miscompilation bugs
that do not crash.

QuteFuzz: Fuzzing quantum compilers using randomly generated circuits with control flow and subcircuits 5

(a) No optimisation (b) Optimisation level 3

Fig. 2. Example of differing Output distributions of two optimization levels due to miscompilation in Qiskit

These different compiler configurations could be applying a particular compiler pass or opti-
mization level. In that case, a quantum circuit without any changes is used as ground truth, and its
results are compared against its copy that has been optimised using the compiler configuration
being tested. The comparison of their outputs can then be done in one of two ways:

(1) Run the original circuit and the optimised on a state-vector simulator, which gives two
vectors that denote the probability distributions of results from the circuits. A dot product
is taken between them, whose value should be 1 if the circuits semantics were unchanged.
Any deviation would suggest possible miscompilations.

(2) Run the circuit on a shot-based simulator, which generate two sample distributions describ-
ing the resultant state of the circuits’ qubits. Then by using the Kolmogorov–Smirnov test
(KS test) [16], it can be determined if the circuits’ output are equivalent and by extension,
are produced by semantically identical circuits.

Shown in figure 2 is an example of differential testing using a shot-based simulator in Qiskit,
showing the effect of miscompilation. These results are obtained by running the circuit in Listing 1.
The graph labelled (a) shows the output distribution of a circuit without any changes, while (b)
shows the output distribution of a modified circuit with optimisation level 3 applied onto it by
the compiler. The resulting graphs differs greatly, which shows how the compiler had completely
altered the semantics of the circuit. This discrepancy can be detected by QuteFuzz’s differential
tester and logged into a results file and analysed later.

3 RESULTS
In total, seventeen bugs have been found by QuteFuzz between the three tested QSSes, including
bugs from simulators. These bugs include compiler crashes, miscompilations as well as simulator
errors. Figure 3 shows a breakdown of the nature of the bugs found in all the QSSes tested. All
the tests were run on an Intel-Xeon based server, over the period of up to 48 hours over multiple
runs ranging from 50,000 to 100,000 circuits each. It is estimated that an excess of 500,000 circuits
were run across all three QSSes for these bugs to be found. Since these bugs are rare, it was
determined that manually searching through the output result file is sufficient for finding crashes
and miscompilations. This is typically done by searching for keywords such as "error", "exception",
or small decimal numbers with "e-" for KS tests.

As of this writing, 3 of the 17 bugs reported have been fixed, while the rest are acknowledged.

6 Ilan Iwumbwe, Benny Zong Liu, and John Wickerson

Fig. 3. Graph breakdown of bugs found

Some of the bugs that were found included bugs in the simulators. These are indicated in figure
3 by the three rightmost columns, which only contain crashing bugs.
One of the bugs we found was with the HoareOptimizer pass in Qiskit Terra. The root cause

was identified to be a simplification step in the compiler; if the control qubit of a CX gate is 1, then
the gate would be replaced with an X gate, but keep track of this mutation incorrectly [6]. The
effect of this bug is shown Figure 2.
Another bug that changed the circuit semantics was introduced while refactoring code for the

ConsolidateBlocks transpiler pass in Qiskit Terra, which is often used at higher optimization level
configurations. Specifically, it was because two parameters had been swapped around accidentally,
which wasn’t caught during unit testing since they both had the same value.

Existance of the latter points to the need for tools in the same vein as work by Fortunato et al.[3]
that can test the coverage of test suites used during development of these QSSes.

4 DISCUSSION
4.1 Analysis of new circuit generation methods
Our novel approach we use generates circuits with complex control flow and subroutines. These
are some bugs that would not have been found otherwise.

4.1.1 Generating circuits with subroutines. The bugs below are examples that would not have been
found if QuteFuzz did not generate circuits with subroutines.

• Tket’s KAKDecomposition compiler pass: The compiler crashes when it applies this pass
on a circuit that has 2 subroutines next to each other [13].

• Tket’s GlobalisePhasedX compiler pass: This changed the circuit semantics when a sub-
routine was applied before a single-qubit gate on the same qubit [12].

• Cirq simulator crashes: When the circuit contains an empty subroutine, and is later applied
with a classical control bit, the simulator would crash. [7]

• Qiskit’s ConsolidateBlocks compiler pass: This bug was due to the fact that two param-
eters had been swapped around accidentally while refactoring code for this pass, which
wasn’t caught during unit testing since they both had the same value. [14]

These bugs are varied and seem to come from various parts of the compiler, suggesting the
effectiveness of the testing strategies employed in hitting different parts of the compiler. Moreover,

QuteFuzz: Fuzzing quantum compilers using randomly generated circuits with control flow and subcircuits 7

the universality of subroutines across different QSSes means that subroutines can and should be an
essential part of future quantum fuzzing tools.

4.1.2 Generating circuits with control flow. Circuits with control flow proved to be an important
testing outlet as shown by the number of bugs that were found. These are a few examples:

• Generating nested control flow blocks allowed QuteFuzz to expose a transpiler bug in Qiskit
[10] which would not have been caught otherwise.

• QuteFuzz utilizing classical operators in Pytket circuits helped expose a runtime bug stem-
ming from incorrect type conversion[8] in the symbol_substitution construct.

The proportionally large number of bugs that are found from generating random circuits using
these two features alone, suggests that this is an area for further exploration that could be fruitful.
It is also crucial that these new features are tested, since the existence of tools like QuteFuzz could
potentially increase the confidence of developers and help lead to more optimisations in these new
areas.

4.2 Related Works
Unsurprisingly, this is a critical area of interest that has seen many works, which we attempt to
expand and improve upon. Works like QDiff [21] and MorphQ[19] typically use semantics-changing
mutations to generate their test cases. QuteFuzz extends upon the idea and greatly increases the
diversity of the programs by introducing random circuit generation and introducing new circuit
elements.

Inspired by several other works characterising bugs found typically in quantum software stacks,
including a study [18] into the sources of bugs in quantum software stacks, QuteFuzz significantly
extends upon some limitations of past attempts at fuzzing. Specifically, the diversity of the programs
generated by QuteFuzz and the increase in circuit generation/execution speeds differentiates
QuteFuzz from other similar works.
Measuring the effectiveness of QuteFuzz could be of an area of interest, as explored before by

Fortunato [3]. Their work applied semantics-changing mutations to Qiskit programs in a test-suite,
then checks are made to see if programs still pass tests. This would help to indicate how good the
test-suite is, since semantics-changes should always be caught. Indeed, some of the bugs found by
QuteFuzz point to the need for work like this that focuses on testing robustness of test suites.

4.3 Future Work
There are areas which QuteFuzz can improve. For example, a set of arbitrarily chosen ranges
and values were used to control the circuit generation, such as the number of gates added in any
subroutine and nested command depth, among others. Providing users with command-line options
to modify these values could unlock ways of testing the scalability and robustness of quantum
compilers.

Additionally, QuteFuzz’s modularity which allows for the support of multiple QSS APIs, could be
further improved. This could pave way to cross-QSS differential testing across different quantum
compilers [17], serving as an open-source cross-platform benchmark.

Potentially more control over the critical path of the program could also be gained by generating
the graph representation of a circuit before generating the circuit. This idea could expand even
more for higher level languages like Q# and Guppy [15], where it might be a better idea to generate
the Abstract Syntax Tree (AST) of the program instead.

Alternatively, QuteFuzz can be combined with concepts explored in work done by Daniel Black-
well et al. [1], which used a grammar-aware AFL fuzzer to generate syntactically valid quantum
programs. This presents another approach to testing quantum compilers, which removes the need

8 Ilan Iwumbwe, Benny Zong Liu, and John Wickerson

to manually provide arbitrary parameters to generate random circuits and pave the way to highly
automated and effective test-suites.

5 ACKNOWLEDGMENTS
This project was supported by the Undergraduate Research Opportunities Programme (UROP) at
Imperial College London. We thank Michalis Pardalos for access to servers for running the circuits.
We also thank George Constantinides for his support.

REFERENCES
[1] Daniel Blackwell, Justyna Petke, Yazhuo Cao, and Avner Bensoussan. 2024. Fuzzing-Based Differential Testing For

Quantum Simulators. https://kclpure.kcl.ac.uk/ws/portalfiles/portal/270709916/SSBSE_24_Challenge_Track_Fuzzing_
quantum_programs.pdf

[2] Cirq Developers. 2020. https://doi.org/10.5281/zenodo.4064322
[3] Daniel Fortunato et al. 2022. Mutation Testing of Quantum Programs: A Case Study With Qiskit. https://ieeexplore.

ieee.org/stamp/stamp.jsp?tp=&arnumber=9844849
[4] Xuejun Yang et al. 2011. Finding and Understanding bugs in C Compilers. https://users.cs.utah.edu/~regehr/papers/

pldi11-preprint.pdf
[5] Alex Groce, Chaoqiang Zhang, Eric Eide, Yang Chen, and John Regehr. [n. d.]. Swarm Testing. https://users.cs.utah.

edu/~regehr/papers/swarm12.pdf
[6] Alexander Ivrii. 2024. Bug fix in HoareOptimizer. https://github.com/Qiskit/qiskit/pull/13083
[7] Ilan Iwumbwe. 2024. Controlled empty subroutine causes ValueError on simulator. https://github.com/quantumlib/

Cirq/issues/6730
[8] Ilan Iwumbwe. 2024. Quantum circuit with conditionals can cause RunTime error. https://github.com/CQCL/tket/

issues/1536
[9] Ilan Iwumbwe. 2024. Running circuit with classical condition can cause KeyError. https://github.com/CQCL/pytket-

qiskit/issues/375
[10] Ilan Iwumbwe. 2024. Transpiler sometimes produces circuit that causes AerError. https://github.com/Qiskit/qiskit/

issues/13162
[11] Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J. Wood, Jake Lishman, Julien Gacon, Simon Martiel,

Paul D. Nation, Lev S. Bishop, Andrew W. Cross, Blake R. Johnson, and Jay M. Gambetta. 2024. Quantum computing
with Qiskit. https://doi.org/10.48550/arXiv.2405.08810 arXiv:2405.08810 [quant-ph]

[12] Benny Zong Liu. 2024. Circuit semantics changed when applying GlobalisePhasedX. https://github.com/CQCL/tket/
issues/1554

[13] Benny Zong Liu. 2024. Runtime error when using KAKDecomposition on Circboxes. https://github.com/CQCL/tket/
issues/1553

[14] Benny Zong Liu. 2024. Transpiler changes circuit semantics. https://github.com/Qiskit/qiskit/issues/13118
[15] Quantinuum Ltd. [n. d.]. https://github.com/CQCL/guppylang
[16] National Institute of Standards and Technology. [n. d.]. Kolmogorov-Smirnov Goodness-of-Fit Test. https://www.itl.

nist.gov/div898/handbook/eda/section3/eda35g.htm
[17] Matteo Paltenghi. 2022. Cross-Platform Testing of Quantum Computing Platforms. https://dl.acm.org/doi/abs/10.

1145/3510454.3517061#:~:text=The%20final%20approach%20for%20cross,returned%20as%20the%20output%20of
[18] Matteo Paltenghi and Michael Pradel. 2022. Bugs in Quantum Computing Platforms: An Empirical Study. https:

//arxiv.org/abs/2110.14560
[19] Matteo Paltenghi and Michael Pradel. 2023. MorphQ: Metamorphic Testing of the Qiskit Quantum Computing Platform.

https://arxiv.org/pdf/2206.01111
[20] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan,Will Simmons, Alec Edgington, and Ross Duncan. 2020. A Retargetable

Compiler for NISQ Devices. IOPScience (2020).
[21] Jiyuan Wang, Qian Zhang, Guoqing Harry Xu, and Miryung Kim. 2021. QDiff: Differential Testing of Quantum

Software Stacks p. https://web.cs.ucla.edu/~miryung/Publications/ase2021-qdiff.pdf

https://kclpure.kcl.ac.uk/ws/portalfiles/portal/270709916/SSBSE_24_Challenge_Track_Fuzzing_quantum_programs.pdf
https://kclpure.kcl.ac.uk/ws/portalfiles/portal/270709916/SSBSE_24_Challenge_Track_Fuzzing_quantum_programs.pdf
https://doi.org/10.5281/zenodo.4064322
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9844849
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9844849
https://users.cs.utah.edu/~regehr/papers/pldi11-preprint.pdf
https://users.cs.utah.edu/~regehr/papers/pldi11-preprint.pdf
https://users.cs.utah.edu/~regehr/papers/swarm12.pdf
https://users.cs.utah.edu/~regehr/papers/swarm12.pdf
https://github.com/Qiskit/qiskit/pull/13083
https://github.com/quantumlib/Cirq/issues/6730
https://github.com/quantumlib/Cirq/issues/6730
https://github.com/CQCL/tket/issues/1536
https://github.com/CQCL/tket/issues/1536
https://github.com/CQCL/pytket-qiskit/issues/375
https://github.com/CQCL/pytket-qiskit/issues/375
https://github.com/Qiskit/qiskit/issues/13162
https://github.com/Qiskit/qiskit/issues/13162
https://doi.org/10.48550/arXiv.2405.08810
https://arxiv.org/abs/2405.08810
https://github.com/CQCL/tket/issues/1554
https://github.com/CQCL/tket/issues/1554
https://github.com/CQCL/tket/issues/1553
https://github.com/CQCL/tket/issues/1553
https://github.com/Qiskit/qiskit/issues/13118
https://github.com/CQCL/guppylang
https://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm
https://dl.acm.org/doi/abs/10.1145/3510454.3517061#:~:text=The%20final%20approach%20for%20cross,returned%20as%20the%20output%20of
https://dl.acm.org/doi/abs/10.1145/3510454.3517061#:~:text=The%20final%20approach%20for%20cross,returned%20as%20the%20output%20of
https://arxiv.org/abs/2110.14560
https://arxiv.org/abs/2110.14560
https://arxiv.org/pdf/2206.01111
https://web.cs.ucla.edu/~miryung/Publications/ase2021-qdiff.pdf

	Abstract
	1 INTRODUCTION
	2 QUTEFUZZ
	2.1 Random circuit generation
	2.2 Differential testing

	3 RESULTS
	4 DISCUSSION
	4.1 Analysis of new circuit generation methods
	4.2 Related Works
	4.3 Future Work

	5 Acknowledgments
	References

