Separation Logic and Graphical Models
John Wickerson and Tony Hoare

data(x,5)

data(x,6)

N

ctrl

read(x,5)
ctrl

ack(x)

Semantics Lunch, 25th October 2010

Trace composition

Problem: Composition is non-deterministic.

data(x,5)

ack(x)

data(x,6)

read(x,6) [ctrl

ack(x)

N

ctrl

Trace composition

Problem: Composition is non-deterministic.

data(x,5)

N

ctrl

ack(x)

Trace composition

Problem: Composition is non-deterministic.

data(x,5)

data(x,6)

BN

ctrl

read(x,5) read(x,6)
ctrl

ack(x)

Trace composition

Problem: Composition is non-deterministic.

Trace composition

Problem: Composition is non-deterministic.

data(x,5)

data(x,6)

BN

ctrl

read(x.5) read(x,6)
ctrl

ack(x)

Trace composition

Problem: Composition is non-deterministic.

Fix: Give nodes and arrows unique identities.

5 23

data(x,6)

Trace representation

A trace is a 6-tuple:
set of nodes, N € Pau(Node)
set of arrows, A € Prin(Arrow)
node labelling, NL e N — NodeLabel
arrow labelling, AL € A — ArrowLabel
head map, HeA—N
tail map, T e A—N

We require that dom(H) U dom(T) = A
and we forbid cycles

Trace disjointness

Composition is defined iff the operands are
‘disjoint’, which means:
1. there are no common nodes
2. any common arrows have the same label
3. any common arrows can be connected
(i.e. dangle out of one trace and into the other)

4. composition would not introduce a cycle

Trace composition

Problem: Composition is non-deterministic.

Fix: Give nodes and arrows unique identities.

Trace representation

A trace is a 6-tuple:
set of nodes, N = {e}
set of arrows, A= {4,6,8, 13}
node labelling, NL = {e~read(x,6)}
arrow labelling, AL = {4~ctrl, 6-ctrl, 8~data(x,6), 13~ack(x)}
head map, H = {6-e, 8¢}
tail map, T = {4re, 13me}

Trace composition

ti oty =
if t; and ¢4 are disjoint then
let (N1, Ay, NL, AL, H,,T1) =t;
and (N3, Ao, NLo, ALy, Hy, To) = to
in (Ny UNy, Ay UAy, NL1 UNL,,
AL1 U ALy, Hy U Hy, Ty UTy)
else undefined

Quiz (1 of 4) Quiz (1 of 4)

data(x,6)

Quiz (2 of 4) Quiz (2 of 4)

data(x,6)

Quiz (2 of 4) Quiz (3 of 4)

data(x,6)

data(x,6)

4

o 3-/‘i|e_xead(x,6) ctrl
data(x,5) ctrl
! 13/2ck(x)

C

12
T

Quiz (3 of 4)

e) 7 “read(x,6)

Quiz (4 of 4)

data(x,6)

Properties of composition

The composition operator:

e is a partial binary operator of type
Trace x Trace — Trace

e is commutative and associative

e has unit u = (@, @, @, @, @,)

e is cancellative (that is: if ¢ o t3 and & o t3 are
defined and equal, then t = t)

Quiz (3 of 4)

data(x,6) .'.

Quiz (4 of 4)

So... {(Trace, o, u) is a separation algebra

Models of separation logic

Heap model: (Heap, o, u)

where a heap is a partial mapping from memory
addresses to values, o composes heaps that have
disjoint domains, and u is the empty heap

Trace model: (Trace, o, u)

where o composes disjoint traces, and u is the
empty trace

There are several others.

The "x" operator x in pictures

We lift o to sets:

PxQE {t|3t,eP3treQ.t =10t}
data(x,6)
* i
ack(x)
x' in pictures The "« operator

We lift o to sets:

i *’*i’*’“ﬁ%{éum‘ﬁ? P+QY{t|3t,e Py eQ.t =1t 0t}
In the heap model, P and @ are sets of heaps;
u ﬁ;ﬁ' u u H@#‘

i.e., assertions about the heap.

In our model, P and @ are sets of traces;
i.e., programs.

Command language

C ::= acq(l) acquiring a lock
| rel(l) releasing a lock
Denotational semantics | lock [in C lock declaration
| read(z,v) reading a specific value
of an imperative |anguage | write(z,v) writing a specific value
. | var z in C variable declaration
with concurrency | skip empty command
| ¥iel.C non-deterministic choice
| C* non-deterministic looping
| CsC sequential composition

|cnce parallel composition

Meaning of commands Denotational semantics (1)

[[C]] I'xI'—]P)(TI'&CG) open())
. ‘ . s , N o ctrl(y) ctrl(y’)
where T is a set of ‘control arrow identifiers laca I] (v,7') = | acq0 |—
closed())

[C] (v,7") = a set of traces that have:

one incoming control arrow, labelled ctrl(), and

one outgoing control arrow, labelled ctrl(+") . ctrl‘(t;sedw B,
[rel I] (v,7") = rel() |—
open()

Denotational semantics (2) Denotational semantics (3)

HlOCk [in C]] ("}/, ")//) = data(x,v)

[[read(x, ’U)]] (,7’ '}/) _ ctrl(y) ctrl(y’)
* [[C]] (/) % open()) laCk(X)
open(l) SEN

N hide(1)

own(x) ack(x)

[write(z,v)] (v,7) = Y umenn]™y’

own(x) t data(x,v)

| new() |—>| acq() |—>| rel() |—>| acq() |—>| rel() |—>| del() |

Denotational semantics (4) The triangle property
[var z in C] (v,7') = triangle(x) holds for traces such as this one:
F , own(x)| T ack(x) \’ctrl w ctrlz
own(x) tdata(x,O) * [[C]] (7’ v) * |new(x) an(X))I write(x,2) It:|;| write(x,4) awntx)

own(x)

data(x,2) ack(x)

k
B ey o

ctrl

N hide(z) N triangle(x)

The triangle property Denotational semantics (5)

triangle(x) holds for traces such as this one:

[skip] (7.7) = 1

|new(x)|Ln(X)>|write(x,2)] write(x,4) ownG)

own(x)

[¥ieI1.Ci] (v,y) =Ui e L.[Ci] (7,7)

data(x,2)\, ~ ackx

data(x,4)

Denotational semantics (6) Example
[C15 Co] = [C1] 5 [C2] [vrite(w,5) ; read(z, 6)] (v,7)
where F' 5 G = A(v,7/). ownt || F acken

_ 1 / ctrl(y). ctrl(y”) ctrl(y”
Uy & {v.7'} (B ")« Gy, 7)) N hade(y") =Ur" ¢ {7} *

[C*](v.7) = Uk 2 0.[CT" (v.7)
where FO = [skip] and F**! = F; F*

Example Denotational semantics (7)

[var z in {write(z,5) ; read(z,6)}] (v,7) [Cy 1 Co] (1,7") = U1, 72, 735 va Y1, 2 -

own(x) ack(x)

me-n(;ewmmww % ctrly) ctrlly’) % owk(x) ctrl(y) Cm(h) ctrl(ys)
own], datatxs) Jackeo * [[Cl]] (717 ’)/3) * [[CQ]] (727 74) *

ctr\(yw)uctrl(yv) ctrl(y")
N hide(z) N triangle(x)

=0 mhide(71772773774)

Future directions

A model of weak memory?

| new(x) m write(x,2) 5| write(x,4) own(x)

own(x) data(x,4)

ack(x)

data(x,2)

data(x,4)

The End

A model of weak memory?

|new(x)|w)|write(x,2) [write(x,4) own(x)

own(x) data(x,4)

data(x,2) ack(x)

data(x,4)

A model of processes?

cl5 * c?5 —
data(c,5) data(c,5)

T
data(c,5)
o [5—
data(c,5)

c?5

data(c,5)

