## Ribbon Proofs for Separation Logic

John Wickerson

Joint work with Mike Dodds (University of York) and Matthew Parkinson (Microsoft Research Cambridge)

> Imperial College 18 November 2014

Communications of the ACM October, 1969

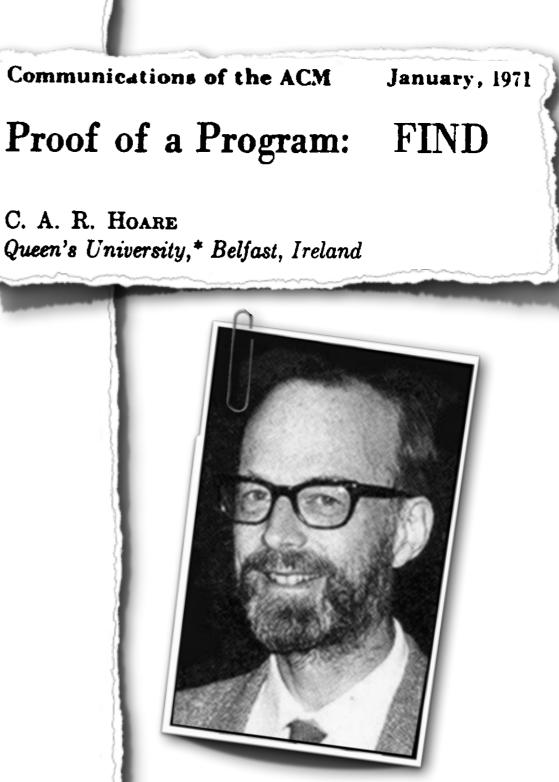
#### An Axiomatic Basis for Computer Programming

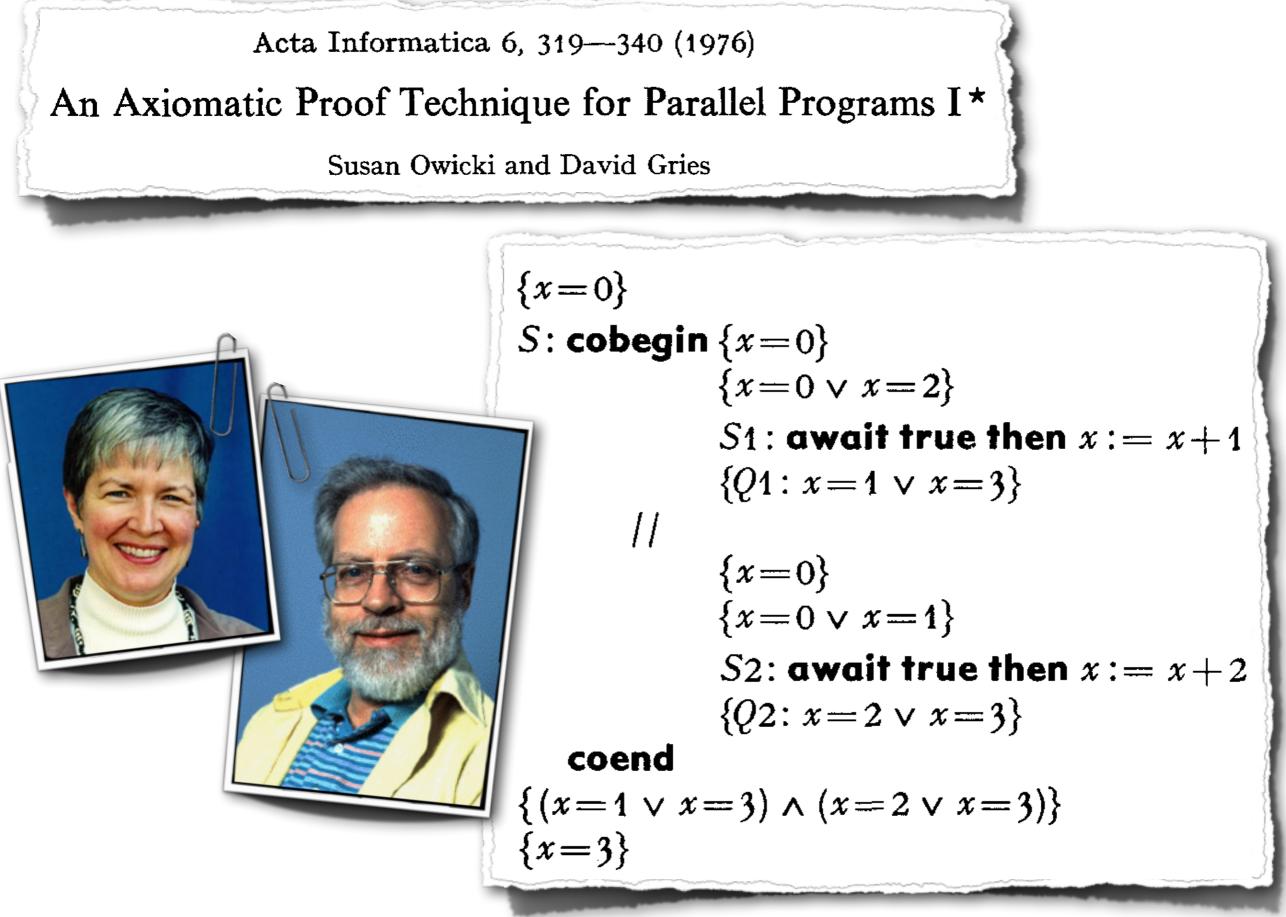
C. A. R. HOARE



| Line<br>number | Formal proof                                                   | Justification |
|----------------|----------------------------------------------------------------|---------------|
| 1              | true $\supset x = x + y \times 0$                              | Lemma 1       |
| 2              | $x = x + y \times 0 \{r := x\} x = r + y \times 0$             | D0            |
| 3              | $x = r + y \times 0 \{q := 0\} x = r + y \times q$             | D0            |
| 4              | true $\{r := x\} x = r + y \times 0$                           | D1 (1, 2)     |
| 5              | true $\{r := x; q := 0\} x = r + y \times q$                   | D2 (4, 3)     |
| 6              | $x = r + y \times q \land y \leqslant r \supset x =$           |               |
|                | $(r-y) + y \times (1+q)$                                       | Lemma 2       |
| 7              | $x = (r-y) + y \times (1+q) \{r := r-y\} x =$                  |               |
|                | $r + y \times (1+q)$                                           | D0            |
| 8              | $x = r + y \times (1+q) \{q := 1+q\} x =$                      |               |
|                | $r + y \times q$                                               | D0            |
| 9              | $x = (r-y) + y \times (1+q) \{r := r-y;$                       |               |
| X              | $q := 1+q \} x = r + y \times q$                               | D2 (7, 8)     |
| 10             | $x = r + y \times q \wedge y \leqslant r \{r := r - y;$        |               |
| ľ?             | $q := 1+q \} x = r + y \times q$                               | D1 (6, 9)     |
| 11             | $x = r + y \times q \text{ {while }} y \leqslant r \text{ do}$ |               |
| 5              | (r := r - y; q := 1 + q)                                       |               |
| 4              | $\neg y \leqslant r \land x = r + y \times q$                  | D3 (10)       |
| 12             | true {( $(r := x; q := 0)$ ; while $y \leq r$ do               |               |
|                | $(r := r-y; q := 1+q)) \} \neg y \leq r \wedge x =$            |               |
|                | $r + y \times q$                                               | D2 (5, 11)    |

begin **comment** This program operates on an array A[1:N], and a value of  $f(1 \le f \le N)$ . Its effect is to rearrange the elements of A in such a way that:  $\forall p,q (1 \le p \le f \le q \le N \supset A[p] \le A[f] \le A[q]);$ integer m, n; comment  $m \leq f \& \forall p,q(1 \leq p < m \leq q \leq N \supset A[p] \leq A[q]),$  $f \leq n \& \forall p,q (1 \leq p \leq n < q \leq N \supset A[p] \leq A[q]);$ m := 1; n := N;while m < n do begin integer r, i, j, w; C. A. R. HOARE comment  $m < i \& \forall p (1 \leq p \leq i \supset A[p] \leq r),$  $j \leq n \& \forall q(j \leq q \leq N \supset r \leq A[q]);$ r := A[f]; i := m; j := n;while  $i \leq j$  do begin while A[i] < r do i := i + 1; while  $\tau < A[j]$  do j := j - 1comment  $A[j] \leq r \leq A[i];$ if  $i \leq j$  then **begin** w := A[i]; A[i] := A[j]; A[j] := w;comment  $A[i] \leq r \leq A[j];$ i := i + 1; j := j - 1;end end increase i and decrease j; if  $f \leq j$  then n := jelse if  $i \leq f$  then m := ielse go to Lend reduce middle part; L: end Find



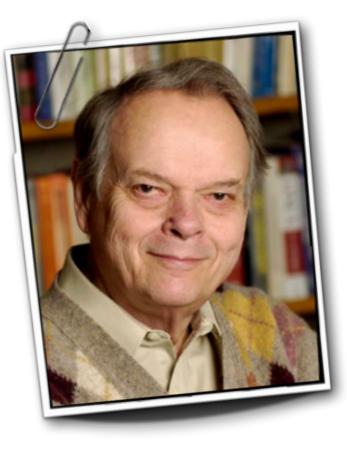


Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science (LICS'02)

Separation Logic: A Logic for Shared Mutable Data Structures

$$\begin{split} \{ \exists \alpha, \beta. \ (\text{list } \alpha \ (\text{i}, \textbf{nil}) \ * \ \text{list } \beta \ (\text{j}, \textbf{nil})) \\ & \land \alpha_0^{\dagger} = \alpha^{\dagger} \cdot \beta \land \textbf{i} \neq \textbf{nil} \} \\ \{ \exists a, \alpha, \beta. \ (\text{list } a \cdot \alpha \ (\textbf{i}, \textbf{nil}) \ * \ \textbf{list } \beta \ (\textbf{j}, \textbf{nil})) \\ & \land \alpha_0^{\dagger} = (\textbf{a} \cdot \alpha)^{\dagger} \cdot \beta \} \\ \{ \exists a, \alpha, \beta, \textbf{k}. \ (\textbf{i} \mapsto \textbf{a}, \textbf{k} \ * \ \textbf{list } \alpha \ (\textbf{k}, \textbf{nil}) \ * \ \textbf{list } \beta \ (\textbf{j}, \textbf{nil})) \\ & \land \alpha_0^{\dagger} = (\textbf{a} \cdot \alpha)^{\dagger} \cdot \beta \} \\ \textbf{k} := [\textbf{i} + 1] \ ; \\ \{ \exists a, \alpha, \beta. \ (\textbf{i} \mapsto \textbf{a}, \textbf{k} \ * \ \textbf{list } \alpha \ (\textbf{k}, \textbf{nil}) \ * \ \textbf{list } \beta \ (\textbf{j}, \textbf{nil})) \\ & \land \alpha_0^{\dagger} = (\textbf{a} \cdot \alpha)^{\dagger} \cdot \beta \} \\ [\textbf{i} + 1] := \textbf{j} \ ; \\ \{ \exists a, \alpha, \beta. \ (\textbf{i} \mapsto \textbf{a}, \textbf{j} \ * \ \textbf{list } \alpha \ (\textbf{k}, \textbf{nil}) \ * \ \textbf{list } \beta \ (\textbf{j}, \textbf{nil})) \\ & \land \alpha_0^{\dagger} = (\textbf{a} \cdot \alpha)^{\dagger} \cdot \beta \} \\ \{ \exists a, \alpha, \beta. \ (\textbf{list } \alpha \ (\textbf{k}, \textbf{nil}) \ * \ \textbf{list } a \cdot \beta \ (\textbf{i}, \textbf{nil})) \\ & \land \alpha_0^{\dagger} = \alpha^{\dagger} \cdot a \cdot \beta \} \\ \{ \exists \alpha, \beta. \ (\textbf{list } \alpha \ (\textbf{k}, \textbf{nil}) \ * \ \textbf{list } \beta \ (\textbf{i}, \textbf{nil})) \land \alpha_0^{\dagger} = \alpha^{\dagger} \cdot \beta \} \\ \{ \exists \alpha, \beta. \ (\textbf{list } \alpha \ (\textbf{k}, \textbf{nil}) \ * \ \textbf{list } \beta \ (\textbf{j}, \textbf{nil})) \land \alpha_0^{\dagger} = \alpha^{\dagger} \cdot \beta \} \\ \} . \end{split}$$

John C. Reynolds\*



#### Tiny example

# [x]:=1; [y]:=1; [z]:=1;

>

$$\begin{cases} \mathbf{x} \mapsto \mathbf{0} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \\ [\mathbf{x}] := 1; \\ \{ \mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{y}] := 1; \\ \{ \mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{z}] := 1; \\ \{ \mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{1} \} \end{cases}$$

$$\begin{cases} \mathbf{x} \mapsto \mathbf{0} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \\ [\mathbf{x}] := 1; \\ \mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \\ [\mathbf{y}] := 1; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{z}] := 1; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{1} \} \end{cases}$$

$$\begin{cases} \mathbf{x} \mapsto \mathbf{0} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \\ [\mathbf{x}] := 1; \\ \{ \mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{y}] := 1; \\ \{ \mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{z}] := 1; \\ \{ \mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{1} \} \end{cases}$$

$$\begin{cases} \mathbf{x} \mapsto \mathbf{0} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \\ [\mathbf{x}] := 1; \\ \{ \mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{y}] := 1; \\ \{ \mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{z}] := 1; \\ \{ \mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{1} \} \end{cases}$$

$$\begin{cases} \mathbf{x} \mapsto \mathbf{0} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \\ [\mathbf{x}] := \mathbf{1}; \\ [\mathbf{x}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \} \\ \{\mathbf{y} \mapsto \mathbf{0} \} \\ [\mathbf{y}] := \mathbf{1}; \\ \{\mathbf{y} \mapsto \mathbf{1} \} \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{z}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{0} \} \end{cases}$$
for heap update   
$$\begin{bmatrix} \mathbf{z} := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{1} \} \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{1} \} \end{cases}$$

$$\begin{cases} \mathbf{x} \mapsto \mathbf{0} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \\ [\mathbf{x}] := 1; \\ \{ \mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{y}] := 1; \\ \{ \mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{z}] := 1; \\ \{ \mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{1} \} \end{cases}$$

mchunkptr b, p; idx += ~smallbits & 1; /\* Uses next bin if idx empty \*/  $\begin{cases} \exists \{U_i \mid i \in [0, 63)\}, n. \ arena(A_{\mathsf{a}} \uplus (\biguplus_{i=0}^{64}, U_i)_{\mathsf{u}}) \ \ast \ \texttt{least\_addr} = 5\mathsf{w} \\ \ast \ n\mathsf{w} = \lceil \mathsf{bytes} \rceil_{\mathsf{w}} \ \ast \ \texttt{8idx} \ge (n+1)\mathsf{w} \ \ast \ 2 \le \texttt{idx} < 32 \ \ast \ \texttt{smallmap}_{[\texttt{idx}]} = 1 \\ \ast \ \ast_{i=0}^{32} \ smallbin_i(U_i) \ \ast \ \ast_{i=0}^{32} \ treebin_i(U_{i+32}) \end{cases}$ b = smallbin\_at(gm, idx);  $\exists \{U_i \mid i \in [0, 63)\}, n. arena(A_a \uplus (\biguplus_{i=0}^{64}, U_i)_u) * \texttt{least\_addr} = 5w$  $\begin{array}{ll} * \ n \texttt{w} = \lceil \texttt{bytes} \rceil_{\texttt{w}} & * \ \texttt{8idx} \geq (n+1)\texttt{w} & * \ 2 \leq \texttt{idx} < 32 & * \ \texttt{smallmap}_{[\texttt{idx}]} = 1 \\ * \ \texttt{b} = \texttt{smallbins} + \texttt{8idx} & * \ bin(|\texttt{idx}|,\texttt{b},U_{\texttt{idx}}) & * \ U_{\texttt{idx}} \neq \{\} \end{array}$ \*  $*_{i \in [0..32) - idx}$ . smallbin<sub>i</sub>(U<sub>i</sub>) \*  $*_{i=0}^{32}$ . treebin<sub>i</sub>(U<sub>i+32</sub>) // rename U\_idx to U\_idx++[p+2w->8idx-1w]  $\exists \{U_i \mid i \in [0, 63)\}, p, n. arena(A_a \uplus (\biguplus_{i=0}^{64}, U_i)_u \uplus \{p + 2\mathsf{w} \mapsto_{\mathsf{u}} \mathtt{Sidx} - 1\mathsf{w}\})$  $* \; \texttt{least\_addr} = 5\texttt{w} \; * \; n\texttt{w} = \lceil\texttt{bytes}\rceil_\texttt{w} \; * \; \texttt{8idx} \geq (n+1)\texttt{w} \; * \; 2 \leq \texttt{idx} < 32$ \*  $\operatorname{smallmap}_{[\operatorname{idx}]} = 1$  \* b =  $\operatorname{smallbins} + 8\operatorname{idx}$ \* b  $\xrightarrow{\operatorname{fd}} p$  \* p  $\xrightarrow{\operatorname{bk}}$  b \*  $(\operatorname{bnode} |\operatorname{idx}|)^*(p, b, U_{\operatorname{idx}} \uplus \{p + 2w \mapsto 8\operatorname{idx} - 1w\})$ \*  $*_{i \in [0..32) - \operatorname{idx}}$ .  $\operatorname{smallbin}_i(U_i)$  \*  $*_{i=0}^{32}$ .  $\operatorname{treebin}_i(U_{i+32})$ p = b - fd; $\exists \{U_i \mid i \in [0, 63)\}, n, F. arena(A_{\mathsf{a}} \uplus (\biguplus_{i=0}^{64}. U_i)_{\mathsf{u}} \uplus \{\mathsf{p} + 2\mathsf{w} \mapsto_{\mathsf{u}} \mathtt{8idx} - 1\mathsf{w}\})$ \* least\_addr = 5w \*  $nw = \lceil bytes \rceil_w * 8idx \ge (n+1)w * 2 \le idx < 32$ \* smallmap<sub>[idx]</sub> = 1 \* b = smallbins + 8idx  $* \begin{array}{c} \mathbf{b} \xrightarrow{\mathsf{fd}} \mathbf{p} & * \begin{array}{c} \mathbf{p} \xrightarrow{\mathsf{bk}} \mathbf{b} \\ * \end{array} \mathbf{b} \xrightarrow{\mathsf{bk}} \mathbf{b} \\ * \end{array} \mathbf{b} & * \begin{array}{c} \frac{1}{2} (\mathbf{p} \xrightarrow{\mathsf{size}} 8 \operatorname{idx}) \\ * \end{array} \mathbf{b} \xrightarrow{\mathsf{fd}} F \\ * \begin{array}{c} \mathbf{p} \\ * \end{array} \mathbf{b} \xrightarrow{\mathsf{bk}} \mathbf{p} \\ * \end{array} \mathbf{b} \\ * \begin{array}{c} (bnode |\operatorname{idx}|)^* (F, \mathbf{b}, U_{\operatorname{idx}}) \\ * \end{array} \mathbf{b} \\ * \begin{array}{c} \mathbf{b} \\ \mathbf{b} \\ \mathbf{c} \end{array} \mathbf{b} \\ * \begin{array}{c} \mathbf{b} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{b} \\ * \begin{array}{c} \mathbf{b} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{b} \\ * \begin{array}{c} \mathbf{b} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{b} \\ * \begin{array}{c} \mathbf{b} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{b} \\ * \begin{array}{c} \mathbf{b} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{b} \\ * \begin{array}{c} \mathbf{b} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{b} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{b} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{b} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{b} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \\ \mathbf{c} \end{array} \mathbf{c} \\ * \begin{array}{c} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{c} \\ * \end{array} \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \end{array} \mathbf{$ \*  $*_{i \in [0..32) - idx}$ . smallbin<sub>i</sub>(U<sub>i</sub>) \*  $*_{i=0}^{32}$ . treebin<sub>i</sub>(U<sub>i+32</sub>) //assert(chunksize(p) == small\_index2size(idx)); unlink\_first\_small\_chunk(gm, b, p, idx);  $\exists \{U_i \mid i \in [0, 63)\}, n. \ arena(A_{\mathsf{a}} \uplus (\biguplus_{i=0}^{64}, U_i)_{\mathsf{u}} \uplus \{\mathsf{p} + 2\mathsf{w} \mapsto_{\mathsf{u}} 8\mathsf{idx} - 1\mathsf{w}\})$  $\begin{array}{l} * \; \texttt{least\_addr} = 5\texttt{w} \; * \; n\texttt{w} = \lceil\texttt{bytes}\rceil_{\texttt{w}} \; * \; \texttt{8idx} \geq (n+1)\texttt{w} \; * \; 2 \leq \texttt{idx} < 32 \\ * \; \frac{1}{2}(\texttt{p} \stackrel{\texttt{size}}{\longmapsto} \texttt{8idx}) \; * \; \texttt{p} \stackrel{\texttt{fd}}{\longmapsto} \_ \; * \; \texttt{p} \stackrel{\texttt{bk}}{\longmapsto} \_ \; * \; \texttt{*}_{i=0}^{32} . \, smallbin_i(U_i) \; * \; \texttt{*}_{i=0}^{32} . \, treebin_i(U_{i+32}) \end{array}$  $\exists \{U_i \mid i \in [0, 63)\}, B_1, B_2, n. \ coallesced(A_{\mathsf{a}} \uplus (\biguplus_{i=0}^{64}, U_i)_{\mathsf{u}} \uplus \{\mathsf{p} + 2\mathsf{w} \mapsto_{\mathsf{u}} \mathtt{8idx} - 1\mathsf{w}\})$ \* start  $\xrightarrow{\text{prevfoot}}$  \* start  $\xrightarrow{\text{pinuse}}$  1 \*  $ublock(\text{top}, \text{top} + \text{topsize}, \_)$ \*  $block^*(\texttt{start}, p, B_1)$  \*  $ublock(p, p + 8idx, \{p + 2w \mapsto_u 8idx - 1w\})$ \*  $block^*(p+8idx, top, B_2)$  \*  $B_1 \uplus B_2 = A_a \uplus (\biguplus_{i=0}^{64}, U_i)_u$ \* least\_addr = 5w \*  $nw = \lceil bytes \rceil_w$  \*  $8idx \ge (n+1)w$  \*  $2 \le idx < 32$ \*  $\frac{1}{2}(p \xrightarrow{size} 8idx)$  \*  $p \xrightarrow{fd} \_$  \*  $p \xrightarrow{bk} \_$  \*  $\overset{32}{*_{i=0}}$ .  $smallbin_i(U_i)$  \*  $\overset{32}{*_{i=0}}$ .  $treebin_i(U_{i+32})$ .

14

$$\begin{cases} \mathbf{x} \mapsto \mathbf{0} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \\ [\mathbf{x}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{y}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{z}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{z}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{1} \} \end{cases}$$

$$\begin{aligned} \mathbf{x} \mapsto \mathbf{0} \\ \mathbf{x} \mapsto \mathbf{1} \\ \mathbf{y} \mapsto \mathbf{1} \\ \mathbf{z} \mapsto \mathbf{1} \\ \mathbf{z} \mapsto \mathbf{1} \end{aligned}$$

$$\begin{aligned} \mathbf{y} \mapsto \mathbf{0} \\ \mathbf{z} \mapsto \mathbf{z} \mapsto \mathbf{0} \\ \mathbf{z} \mapsto \mathbf{0} \\ \mathbf{z} \mapsto \mathbf{z} \mapsto$$

A proof outline

A ribbon proof

$$\begin{cases} \mathbf{x} \mapsto \mathbf{0} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \\ [\mathbf{x}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{y}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{z}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{1} \} \end{cases} \qquad \mathbf{x} \mapsto \mathbf{1} \\ \mathbf{x} \mapsto \mathbf{1} \\ \mathbf{z} \mapsto \mathbf{1} \end{cases} \mathbf{z} \mapsto \mathbf{1}$$

A proof outline

A ribbon proof

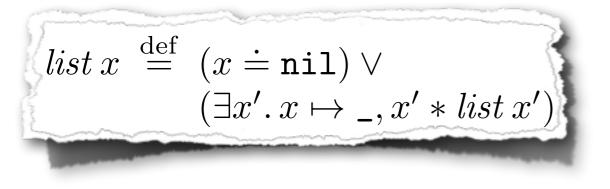
$$\begin{cases} \mathbf{x} \mapsto \mathbf{0} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \\ [\mathbf{x}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{0} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{y}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{z}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{0} \} \\ [\mathbf{z}] := \mathbf{1}; \\ \{\mathbf{x} \mapsto \mathbf{1} * \mathbf{y} \mapsto \mathbf{1} * \mathbf{z} \mapsto \mathbf{1} \} \end{cases} \qquad \mathbf{x} \mapsto \mathbf{1} \qquad \mathbf{y} \mapsto \mathbf{1} \qquad \mathbf{z} \mapsto \mathbf{1}$$

A proof outline

A ribbon proof

#### Example: in-place list reversal

 $list \mathbf{x}$ 



| list x                      |  |
|-----------------------------|--|
| y := nil;                   |  |
| while (x != nil) {          |  |
| z := [x+1];                 |  |
| [x+1] := y;                 |  |
| y := x;                     |  |
| $\mathbf{x} := \mathbf{z};$ |  |
| }                           |  |
| <i>list</i> y               |  |

$$list x \stackrel{\text{def}}{=} (x \doteq \texttt{nil}) \lor \\ (\exists x' . x \mapsto \_, x' * list x')$$

| list x                      |
|-----------------------------|
| y := nil;                   |
| while (x != nil) {          |
| z := [x+1];                 |
| [x+1] := y;                 |
| y := x;                     |
| $\mathbf{x} := \mathbf{z};$ |
| }                           |
| <i>list</i> y               |

 $list\,{\tt x}$ 

y:=nil *list* y

$$list x \stackrel{\text{def}}{=} (x \doteq \texttt{nil}) \lor \\ (\exists x'. x \mapsto \_, x' * list x')$$

| $list \mathbf{x}$           |  |
|-----------------------------|--|
| y := nil;                   |  |
| while (x != nil) {          |  |
| z := [x+1];                 |  |
| [x+1] := y;                 |  |
| y := x;                     |  |
| $\mathbf{x} := \mathbf{z};$ |  |
| }                           |  |
| <i>list</i> y               |  |

 $\mathit{list}\, \mathtt{x}$ 

y:=nil

*list* y

#### while (x!=nil) {

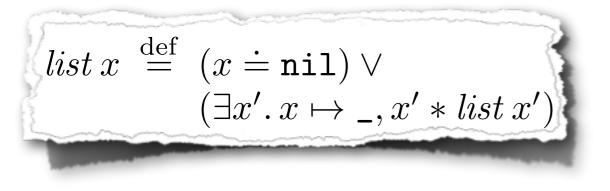
}



$$list x \stackrel{\text{def}}{=} (x \doteq \texttt{nil}) \lor \\ (\exists x'. x \mapsto \_, x' * list x')$$

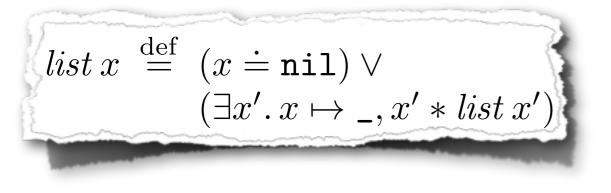
| list x                      |
|-----------------------------|
| y := nil;                   |
| while (x != nil) {          |
| z := [x+1];                 |
| [x+1] := y;                 |
| y := x;                     |
| $\mathbf{x} := \mathbf{z};$ |
| }                           |
| <i>list</i> y               |

| while (x!=nil)<br>$\dot{x \neq nil}$ | i<br>list x | <i>list</i> y |
|--------------------------------------|-------------|---------------|
| $x \neq nil$                         | list x      | <i>list</i> y |
|                                      |             |               |
|                                      |             |               |



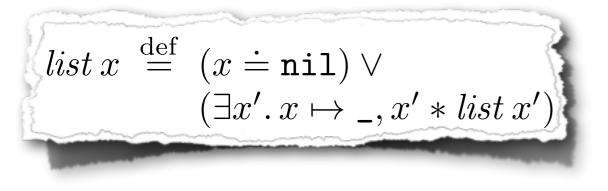
| list x                      |
|-----------------------------|
| y := nil;                   |
| while (x != nil) {          |
| z := [x+1];                 |
| [x+1] := y;                 |
| y := x;                     |
| $\mathbf{x} := \mathbf{z};$ |
| }                           |
| <i>list</i> y               |

|                                      | list x | y:=nil<br><i>list</i> y |
|--------------------------------------|--------|-------------------------|
| while (x!=r                          | il) {  |                         |
| $\dot{\mathtt{x} \neq \mathtt{nil}}$ | list x | <i>list</i> y           |
|                                      |        |                         |
|                                      | list x | <i>list</i> y           |
| }                                    |        |                         |



| $list \mathbf{x}$           |
|-----------------------------|
| y := nil;                   |
| while (x != nil) {          |
| z := [x+1];                 |
| [x+1] := y;                 |
| y := x;                     |
| $\mathbf{x} := \mathbf{z};$ |
| }                           |
| <i>list</i> y               |

|                                | list x            | y:=nil<br><i>list</i> y |
|--------------------------------|-------------------|-------------------------|
| while (x!=n                    | il) {             |                         |
| $\dot{	ext{x} \neq 	ext{nil}}$ | list x            | <i>list</i> y           |
|                                |                   |                         |
|                                | $list \mathbf{x}$ | <i>list</i> y           |
| }                              |                   |                         |
| $\mathtt{x}\doteq\mathtt{nil}$ | list x            | <i>list</i> y           |



| list x                      |
|-----------------------------|
| y := nil;                   |
| while (x != nil) {          |
| z := [x+1];                 |
| [x+1] := y;                 |
| y := x;                     |
| $\mathbf{x} := \mathbf{z};$ |
| }                           |
| <i>list</i> y               |

 $list \mathbf{x}$ y:=nil *list* y while (x!=nil) {  $\dot{x \neq nil}$  $list \mathbf{x}$ *list* y  $\mathtt{x} \doteq \mathtt{nil}$ 

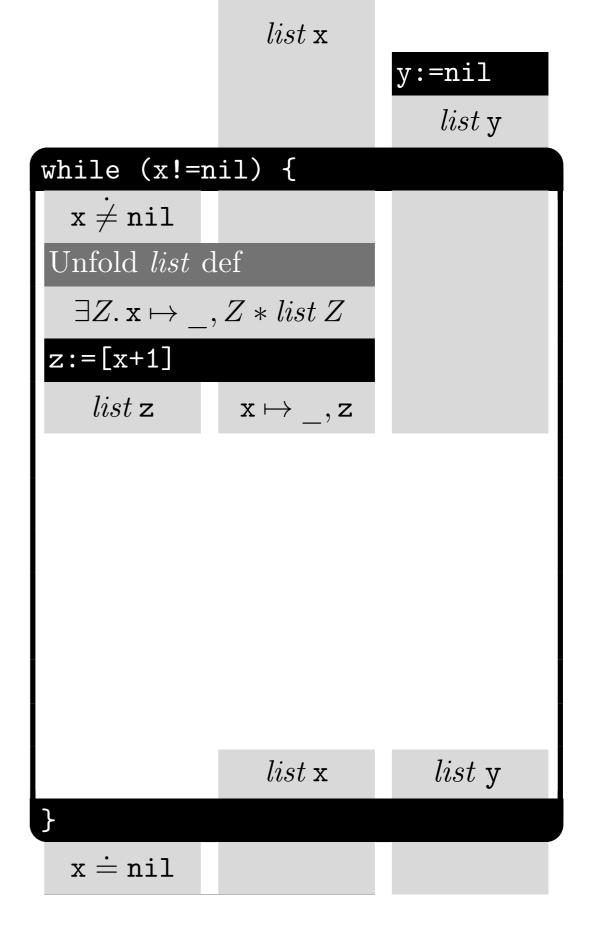
$$list x \stackrel{\text{def}}{=} (x \doteq \texttt{nil}) \lor \\ (\exists x'. x \mapsto \_, x' * list x')$$

| $list \mathbf{x}$           |  |
|-----------------------------|--|
| y := nil;                   |  |
| while (x != nil) {          |  |
| z := [x+1];                 |  |
| [x+1] := y;                 |  |
| y := x;                     |  |
| $\mathbf{x} := \mathbf{z};$ |  |
| }                           |  |
| list w                      |  |

|                                     | $list \mathbf{x}$ |               |
|-------------------------------------|-------------------|---------------|
|                                     |                   | y:=nil        |
|                                     |                   | <i>list</i> y |
| while (x!=n                         | il) {             |               |
| $\dot{	ext{x} \neq 	ext{nil}}$      |                   |               |
| Unfold <i>list</i> d                | ef                |               |
| $\exists Z. \mathbf{x} \mapsto \_,$ | Z * list Z        |               |
|                                     |                   |               |
|                                     |                   |               |
|                                     |                   |               |
|                                     |                   |               |
|                                     |                   |               |
|                                     |                   |               |
|                                     |                   |               |
|                                     |                   |               |
|                                     |                   |               |
|                                     | $list \mathbf{x}$ | <i>list</i> y |
| }                                   |                   |               |
| $\mathtt{x}\doteq\mathtt{nil}$      |                   |               |

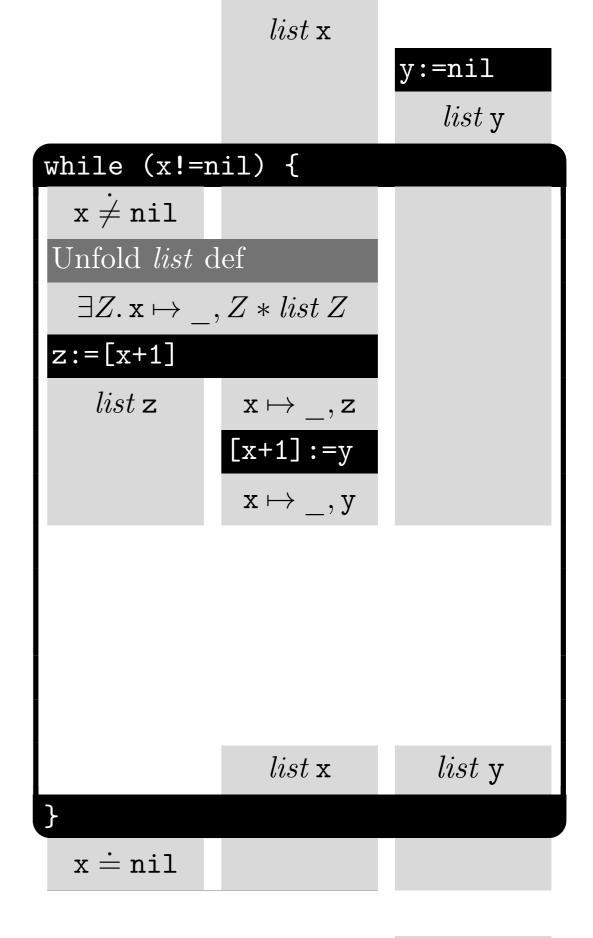
$$list x \stackrel{\text{def}}{=} (x \doteq \texttt{nil}) \lor \\ (\exists x'. x \mapsto \_, x' * list x')$$

| list x                      |  |
|-----------------------------|--|
| y := nil;                   |  |
| while (x != nil) {          |  |
| z := [x+1];                 |  |
| [x+1] := y;                 |  |
| y := x;                     |  |
| $\mathbf{x} := \mathbf{z};$ |  |
| }                           |  |
| list v                      |  |



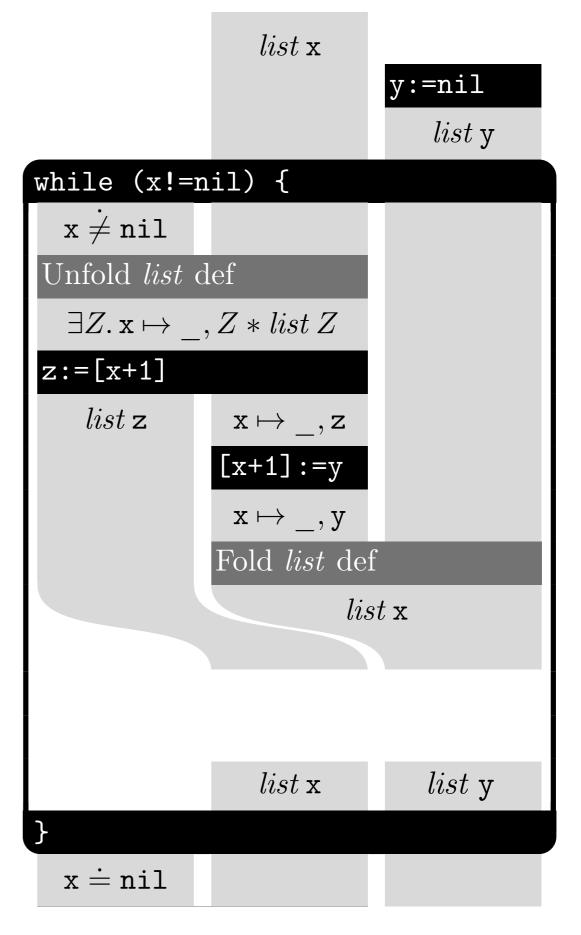
$$list x \stackrel{\text{def}}{=} (x \doteq \texttt{nil}) \lor \\ (\exists x'. x \mapsto \_, x' * list x')$$

| $list \mathbf{x}$           |  |
|-----------------------------|--|
| y := nil;                   |  |
| while (x != nil) {          |  |
| z := [x+1];                 |  |
| [x+1] := y;                 |  |
| y := x;                     |  |
| $\mathbf{x} := \mathbf{z};$ |  |
| }                           |  |
| list v                      |  |



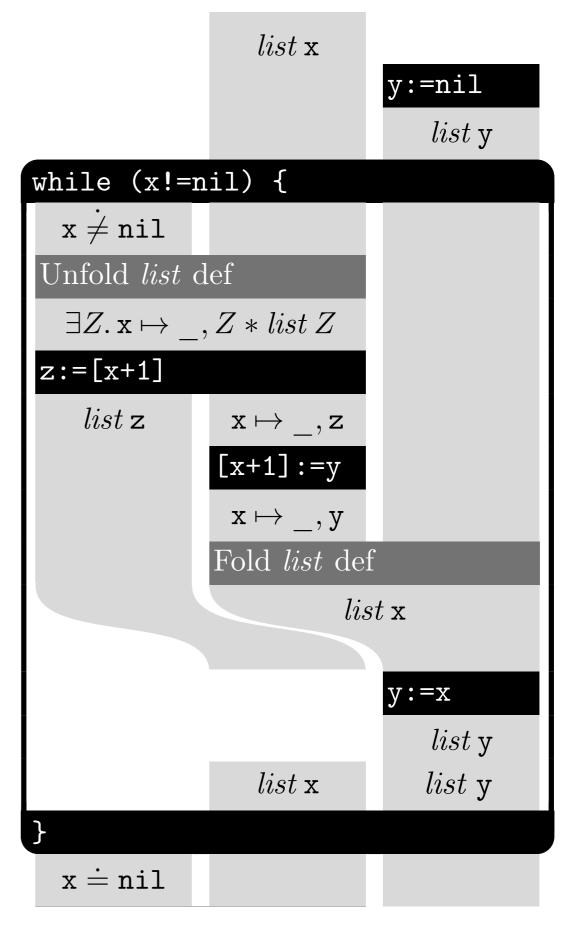
$$list x \stackrel{\text{def}}{=} (x \doteq \texttt{nil}) \lor \\ (\exists x' . x \mapsto \_, x' * list x')$$

| $list \mathbf{x}$           |
|-----------------------------|
| y := nil;                   |
| while (x != nil) {          |
| z := [x+1];                 |
| [x+1] := y;                 |
| y := x;                     |
| $\mathbf{x} := \mathbf{z};$ |
| }                           |
| <i>list</i> y               |



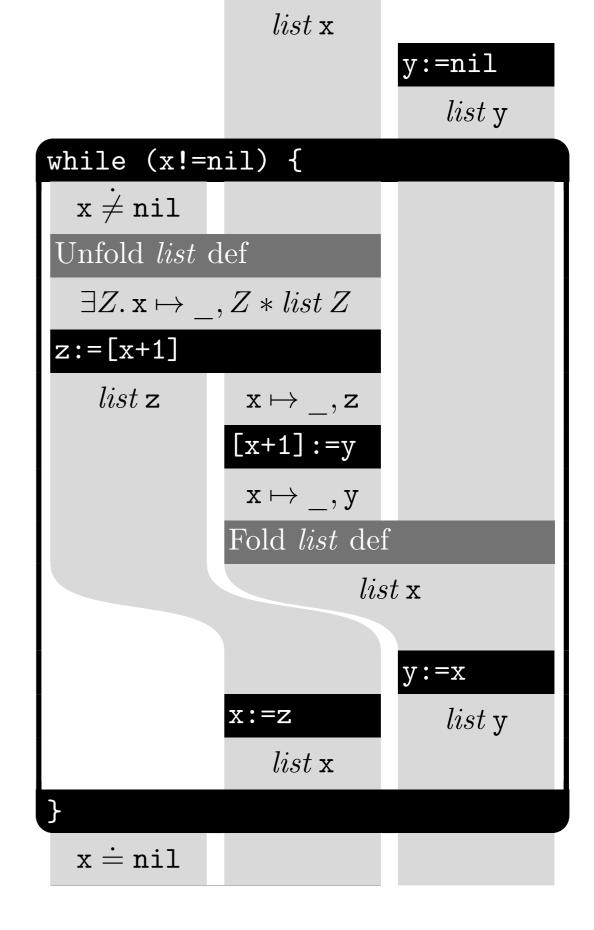
$$list x \stackrel{\text{def}}{=} (x \doteq \texttt{nil}) \lor \\ (\exists x'. x \mapsto \_, x' * list x')$$

| $list \mathbf{x}$           |
|-----------------------------|
| y := nil;                   |
| while (x != nil) {          |
| z := [x+1];                 |
| [x+1] := y;                 |
| y := x;                     |
| $\mathbf{x} := \mathbf{z};$ |
| }                           |
| <i>list</i> y               |



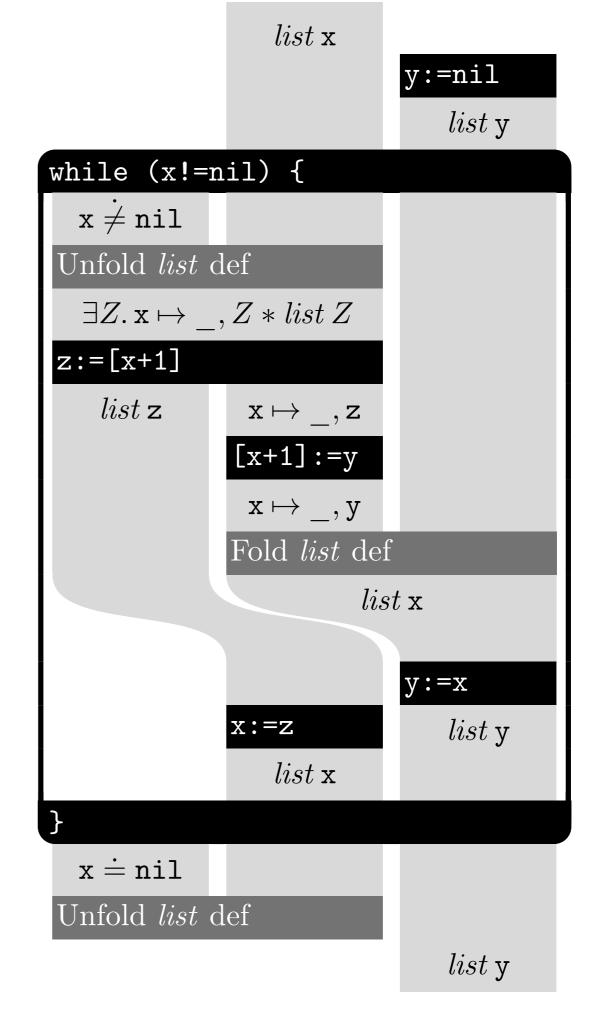
$$list x \stackrel{\text{def}}{=} (x \doteq \texttt{nil}) \lor \\ (\exists x'. x \mapsto \_, x' * list x')$$

| $list \mathbf{x}$           |  |
|-----------------------------|--|
| y := nil;                   |  |
| while (x != nil) {          |  |
| z := [x+1];                 |  |
| [x+1] := y;                 |  |
| y := x;                     |  |
| $\mathbf{x} := \mathbf{z};$ |  |
| }                           |  |
| list v                      |  |

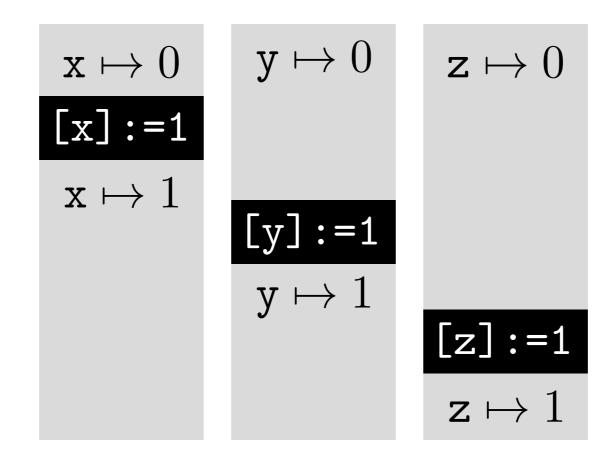


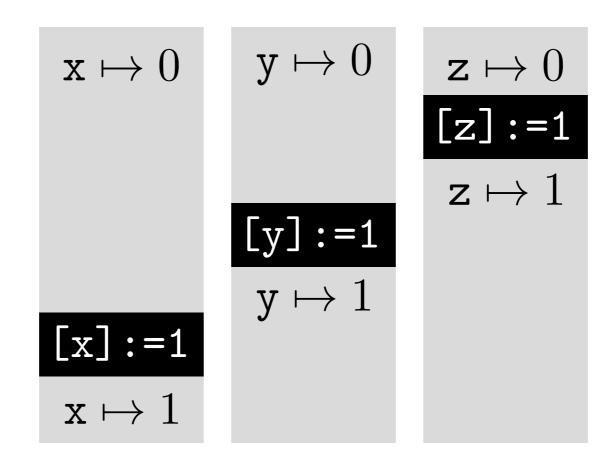
$$list x \stackrel{\text{def}}{=} (x \doteq \texttt{nil}) \lor \\ (\exists x' . x \mapsto \_, x' * list x')$$

| $list \ {f x}$     |  |
|--------------------|--|
| y := nil;          |  |
| while (x != nil) { |  |
| z := [x+1];        |  |
| [x+1] := y;        |  |
| y := x;            |  |
| x := z;            |  |
| }                  |  |
| liet T             |  |



### Dealing with program variables





$$b = 1$$
  $c = 2$   
 $a :=b$   
 $a = 1$   
 $b :=c$   
 $b = 2$ 

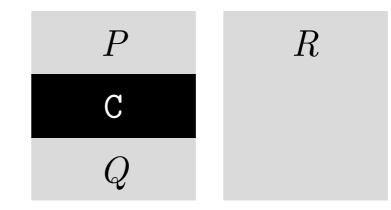
b = 1 
$$c = 2$$
  
b:=c  
b:=c  
b = 2  
 $b = 2$   
a = 1

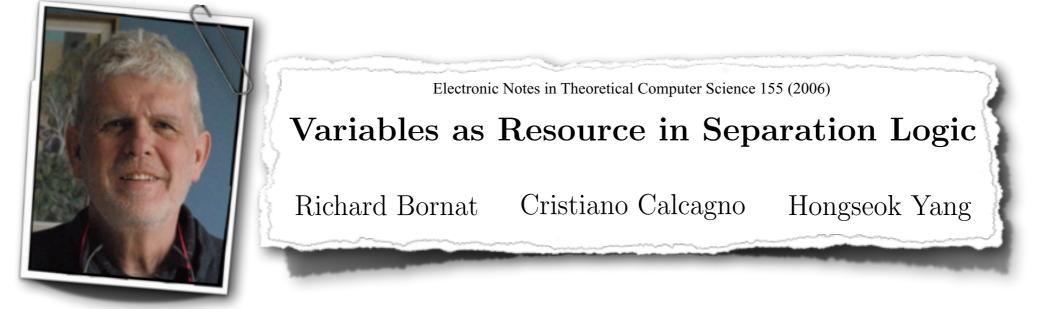
$$\begin{array}{l} \displaystyle \{P\} \ {\tt C} \ \{Q\} \\ \hline \{P \ast R\} \ {\tt C} \ \{Q \ast R\} \end{array}$$
providing  $fv(R) \cap modified({\tt C}) = \{\}$ 

$$b = 1$$
  $c = 2$   
 $a :=b$   
 $a = 1$   
 $b :=c$   
 $b = 2$ 

$$b = 1$$
 $c = 2$  $b:=c$  $b = 2$  $a:=b$  $a = 1$ 

 $\frac{\{P\} \ \mathsf{C} \ \{Q\}}{\{P \ast R\} \ \mathsf{C} \ \{Q \ast R\}}$ providing for  $\mu_{ent}(\mathbf{C}) \equiv$ 





$$b = 1$$
  $c = 2$   
 $a :=b$   
 $a = 1$   
 $b :=c$   
 $b = 2$ 

## Conclusion

- Scalable and readable separation logic proofs
- Possible application to parallelisation, providing side-conditions on the Frame rule are dealt with (e.g. by variables-as-resource)