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Explicit Stabilisation
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Natural specifications
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Natural specifications
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Malloc rounds up to a whole number of words.
Discount, for now, the possibility that malloc fails.

token(x,n) is an abstract spatial predicate, used to prove to free that the block being returned
was allocated by malloc.

Abstract = its definition is out of scope = it cannot be faked.
Spatial = cannot be duplicated.

Hopefully we can reuse some part of the existing state as the token, or else we need some
auxiliary state.

The crux of the proof
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Prove that the call to free(x) won’t crash. The information required to prove this has to come
from the upstream call to malloc, via a sea of other calls to malloc and free.

Include malloc’s internal state. Shows that the block is not actually created out of thin air.



Version 7 Unix malloc Version 7 Unix malloc

token(x,n) = (x-1) % (x+n)

Here’s the internal state. It contains the free blocks, and the linked-list infrastructure. The
allocated blocks belong to the respective clients. We use half of the block’s pointer as a token
—- half must be kept by malloc so it can continue to traverse the list.

Here’s the arena. First-fit strategy. Overhead of one pointer per block (which points to the
next block). Blocks are word-aligned, so redundant LSB is used as “busy” flag.
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“RGSep style” - but don’t go into details of RGSep (nor separation logic). The abstraction is

Explain double-headed arrows and zig zags.
that we have the malloc call, the free call, and inbetween, these actions happen lots of times.

The crux of the proof Stability
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Is the arena-with-gap predicate stable under the actions? No - it’s not stable under Free. But  This is funny because the client’s state is immune to interference from other clients, and yet
crucially, the Free action requires the presence of the token in local state, and it can’t be is crucial to the stability of the module’s state.
present in some other client’s local state if it is here in ours!



Explicit Stability The crux of the proof
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The floor and ceiling brackets act as a certificate of stability under a rely R. Thus the arena- So how can the arena-with-gap predicate reach the call to free? Accompany it with the token,

with-gap predicate will survive. We don’t have to worry about the stability of the block itself, and package them together in stability brackets.
because being local it’s immune to interference. By being outside the brackets, it can be

freely mutated; it doesn’t play a part in the stability argument. But not all local state can be

treated so flippantly, indeed the token is crucial to the stability argument. The brackets thus

delimit which part of the assertion can be safely touched and which mustn’t.

The crux of the proof Doug Lea’s malloc
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So how can the arena-with-gap predicate reach the call to free? Accompany it with the token, Arena is now doubly-linked. Means that when a block becomes free, we can coallesce with a
and package them together in stability brackets. free block to our left and to our right.

Doug Lea’s malloc Doug Lea’s malloc
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Blocks are also indexed by size (so no linear searching any more!) But to lower the overhead, we let the payload of chunks overwrite some of the fields - even
those of the next chunk! The fd and bk fields can be sacrificed, because we are only
interested in searching for *free* chunks of the right size. And we only need to follow the
prev_foot pointer if PINUSE is not set.



Smallbins Treebins
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We have an array of 32 smallbins, which are circular doubly-linked lists of free blocks of Larger free blocks are put into treebins. Unlike smallbins, treebins store a range of bin sizes,
exactly the same size. Element i has blocks of size 8i bytes (block size is always a multiple of approximately logarithmically-spaced, with two bins per power of 2.
8 bytes).

Treebins Treebins
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Within the treebin, nodes are in a trie structure. Each node is a smallbin, containing all the Every left subtree has sizes less than the right subtree, but neither is related to the parent.
blocks of that exact size. So every node holds a unique size. When a node becomes empty, a

leaf node is moved up to fill the gap. So we never have empty nodes. This means that we can

store the entire structure of the trie *within* the payload of the chunks.

Treebins Treebins

So to find the chunk of size 100, it will be *somewhere* along the path 1-0-0. To find the smallest chunk in a tree follow the left-most path (going right when necessary).
The smallest chunk will be somewhere along that path.



Overlaid structures

struct chunk {
size_t prev_foot;
size_t head;
struct chunk* fd;
struct chunk* bk;
struct chunk* child[2];
struct chunk* parent;
unsigned int index;

All but “head” are part of the payload. The prev_foot and head fields locate the chunk in the
arena. The fd and bk pointers locate the chunk in its smallbin, the child and parent pointers
locate it in its treebin (if the chunk is large), and the index identifies which treebin it is in.
Note that the overhead is just 4 bytes per chunk (wow!).

So we have lots of overlaid data structures, which means we don’t have the natural notion of
“separation” that we’re used to.



