
Local Rely-Guarantee
Reasoning

A talk by John Wickerson
after work by Xinyu Feng

/ 51

Talk outline

• The RG method and its limitations

• Introduction to LRG

• Formal treatment

• LRG proof rules

2

/ 51

The RG method
and its limitations

3

/ 51

Concurrent programs

instruction 1

instruction 2

Thread A

instruction 1

instruction 2

Thread B

4

/ 51

instruction 1

instruction 2

instruction 1

instruction 2

instruction 1

instruction 2

instruction 1

instruction 2

instruction 1

instruction 2

instruction 1

instruction 2

instruction 1

instruction 2

instruction 1

instruction 2

instruction 1

instruction 1

instruction 2

instruction 2

instruction 1

instruction 1

instruction 2

instruction 2

Number of possible interleavings of n threads,
each executing k instructions, is roughly nnk

5

/ 51

Rely-guarantee

instruction 1

instruction 2

Thread A

R*

R*

R*

R*

any state transition
that can be done by
any other thread, repeated
zero or more times

=

6

Mention that assertions must be stable, which means their validity must be preserved by R*

/ 51

The RG abstraction

• Forget:

• which thread performs the action

• in what order the actions are performed

• how many times the action is performed

• Usually, this is fine...

7

The action may be performed once, a million times, or not at all.

/ 51

The RG abstraction

x := x+1; x := x+1;

Thread A Thread B

assume(x=0);

assert(x=2);

• ...but sometimes too coarse:

8

No method yet for verifying this program without adding auxiliary state.

/ 51

R,G ⊧ {p} C {q}

• execution of C
begins in a state
satisfying p

• environmental
transitions are
limited to those in R

• any transitions
made by C will
be within G

• if C terminates
it will do so in a
state satisfying q

provided: then:

9

Semantics of RG judgement. Still applicable for LRG, but R and G will be slightly different
objects.

RG state model

Thread A Thread B

R/G conditions must
specify all changes to

the state

RGSep state model

Thread A Thread B

R/G conditions must
specify only changes
to the shared state

Used by RGSep. Use separation logic to describe each statelet. Still quite coarse model
though.

/ 51

RGSep state model

• Still quite coarse. State is either local or
shared between all threads

• Shared resource must be globally known.
Makes dynamic allocation of shared resource
difficult

• Hard to make reusable specifications of
modules

12

/ 51

Thread A Thread B

Thread C

13

Suppose we have another thread, C...

/ 51

Thread A Thread B

Thread C

14

... we can’t talk of ‘the state shared between just B and C’. Compare with RGSep’s multiple
regions - can have multiple regions of shared state, but they’re all globally shared.

/ 51

RGSep state model

• Still quite coarse. State is either local or
shared between all threads

• Shared resource must be globally known.
Makes dynamic allocation of shared resource
difficult

• Hard to make reusable specifications of
modules

15

/ 51

RGSep state model

• Still quite coarse. State is either local or
shared between all threads

• Shared resource must be globally known.
Makes dynamic allocation of shared resource
difficult

• Hard to make reusable specifications of
modules

16

when specifying a module, the rely and guarantee must mention the entire shared state, even
if the module accesses only part of it. Limits reuse of that specification in a different (e.g.
larger) shared state.

/ 51

Introduction to LRG

17

/ 51

RGSep actions

R3

5

L1

L2

4

5

L1

L2

R = { (L1↦3) ⇝ (L1↦4) }

18

Action fires on a state if precondition describes *part* of it.

/ 51

LRG actions

R3

5

L1

L2

R = { (L1↦3) ⇝ (L1↦4) }

19

Action only fires on a state described *fully* by the precondition.

/ 51

LRG actions

R
3L1 x 44L1

R = { (L1↦3) ⇝ (L1↦4) }

20

/ 51

LRG actions

R
L1 3 x 44

[L2↦5]
L2 5 x 45

L1

L2

R = { (L1↦3) ⇝ (L1↦4) }

21

/ 51

LRG actions

R∗[L2↦5]L1 3 4

L2 5 5

L1

L2

R = { (L1↦3) ⇝ (L1↦4) }

22

We’ve starred together actions, just like in separation logic. As in the spirit of separation
logic, what we’re going to be able to do is define small actions, that act only on that part of
the state that we need, and then ‘frame in’ other actions that affect other parts of the state.

Specifications of modules will thus specify only the small actions, and then let other actions
be framed in when the module is put into a particular context.

/ 51

Formal treatment

23

/ 51

Programming language

commands, C ::= c
skip

C + C

C*
C ; C
C || C

• Commands affect both the store and the heap

• Basic commands are just elements of
 (store ⨯ heap) ⨯ (store ⨯ heap)

24

Using a generic programming language for simplicity. Discarding ‘variables as resource’, so
store contains both program variables and logical variables.

/ 51

Assertion language

true
false
E = E
E > E
emp

E ↦ E

∃X. p

p ∧ p

p ∨ p

p ∗ p

assertions, p ::=

25

How we describe the state. (E is pure expression.)

/ 51

Semantics of assertions
σ ⊧ true ⇔ always

σ ⊧ false ⇔ never

(s,h) ⊧ E1 = E2 ⇔ ⟦E1⟧s = ⟦E2⟧s

(s,h) ⊧ E1 > E2 ⇔ ⟦E1⟧s > ⟦E2⟧s

(s,h) ⊧ emp ⇔ h = { }

(s,h) ⊧ E1 ↦ E2 ⇔ h = {⟦E1⟧s ↦ ⟦E2⟧s}

(s,h) ⊧ ∃X. p ⇔ ∃v. (s ⨄ {X↦v}, h) ⊧ p

σ ⊧ p1 ∧ p2 ⇔ σ ⊧ p1 and σ ⊧ p2

σ ⊧ p1 ∨ p2 ⇔ σ ⊧ p1 or σ ⊧ p2

(s,h) ⊧ p1 ∗ p2 ⇔ h = h1 ⨄ h2 and (s,h1) ⊧ p1 and (s,h2) ⊧ p2

26

/ 51

Action language

p ⇝ p

[p]
∃X. A

A ∧ A

A ∨ A

A ∗ A

actions, A ::=

Emp = emp ⇝ emp

True = true ⇝ true

Id = [true]

Common actions:

27

/ 51

Semantics of actions
((s,h), (s,h’)) ⊧ p1 ⇝ p2 ⇔ (s,h) ⊧ p1 and (s,h’) ⊧ p2

(σ, σ) ⊧ [p] ⇔ σ ⊧ p

((s,h), (s,h’)) ⊧ ∃X. A ⇔ ∃v. ((s ⨄ {X↦v}, h), (s ⨄ {X↦v}, h’)) ⊧ A

(σ, σ’) ⊧ A1 ∧ A2 ⇔ (σ, σ’) ⊧ A1 and (σ, σ’) ⊧ A2

(σ, σ’) ⊧ A1 ∨ A2 ⇔ (σ, σ’) ⊧ A1 or (σ, σ’) ⊧ A2

(σ, σ’) ⊧ A1 ∗ A2 ⇔ σ = σ1 ⨄ σ2 and σ’ = σ’1 ⨄ σ’2 and
(σ1, σ’1) ⊧ A1 and (σ2, σ’2) ⊧ A2

28

Note that actions don’t change the store, but they may still depend on it

/ 51

Stability of assertions

if σ ⊧ p
and (σ, σ’) ⊧ A
then σ’ ⊧ p

p stab A ⇔

29

In order to be able to reason about stability, we’d like various properties to hold.

/ 51

Properties of stability

X

p1 stab A p2 stab A
(p1 ∧ p2) stab A

p stab A1 p stab A2

p stab (A1 ∨ A2)

p1 stab A1 p2 stab A2

(p1 ∗ p2) stab (A1 ∗ A2)
p1 stab A1 p2 stab A2

(p1 ∨ p2) stab (A1 ∧ A2)

30

/ 51

Stability problem

L1 3

L2 5

A1

A2

p1 = L1↦3
p2 = L2↦5

A1 = { (L2↦5) ⇝ (L2↦6) }
A2 = { (L1↦3) ⇝ (L1↦4) }

So p1 stab A1

and p2 stab A2

do hold...

31

/ 51

Stability problem

A1∗A2

p1 = L1↦3
p2 = L2↦5

A1 = { (L2↦5) ⇝ (L2↦6) }
A2 = { (L1↦3) ⇝ (L1↦4) }

L1 3

L2 5

L1 4

L2 6

So p1 stab A1

and p2 stab A2

do hold...
...but

(p1 ∗ p2) stab (A1 ∗ A2)
does not hold

32

Note that all the assertions are precise, and even that doesn’t solve the problem. The
problem is that “p stab A” holds vacuously if p and A talk about different parts of the state.
Need some way to ‘link’ them.

/ 51

Properties of stability

33

X

p1 stab A p2 stab A
(p1 ∧ p2) stab A

p stab A1 p stab A2

p stab (A1 ∨ A2)

p1 stab A1 p2 stab A2

(p1 ∗ p2) stab (A1 ∗ A2)
p1 stab A1 p2 stab A2

(p1 ∨ p2) stab (A1 ∧ A2)

/ 51

Properties of stability

✓

p1 ⇒ i i ▹ A1

p1 stab A1 p2 stab A2

(p1 ∗ p2) stab (A1 ∗ A2)

34

p1 stab A p2 stab A
(p1 ∧ p2) stab A

p stab A1 p stab A2

p stab (A1 ∨ A2)

p1 stab A1 p2 stab A2

(p1 ∨ p2) stab (A1 ∧ A2)

/ 51

Invariant-fenced actions

• Invariants ‘link’ assertions and actions

• i ▹ A means:

• i is a precise assertion

• [i] ⇒ A

• A ⇒ (i ⇝ i)

35

i is precise means “of any state at most one substate satisfies i”
[i] => A means “the action may fire reflexively on any part of the state that satisfies the
invariant”
A => (i ~> i) means “the invariant holds both before and after the action fires”

/ 51

Invariant-fenced actions

A = Listm(L) ∧ m≤n ⇝ Listn(L)

i = List(L)

List0(x) = x=0 ∧ emp

Listn+1(x) = ∃y. x↦y ∗ Listn(y)

List(x) = ∃n. Listn(x)

36

Example.

Show i ▹ A

Let

i is precise because in any heap there is only one way to chase pointers through the heap
until you reach the null pointer.

[i] => A because the action allows m=n

A => (i ~> i) because the heap comprises a list from L both before and after the action.

Note that requiring actions to be invariant-fenced doesn’t prohibit them from changing the
size of the resource.

/ 51

LRG proof rules

37

/ 51

Proof rules

• Of the form:
 R, G, i ⊦ {p} C {q}

• Well-formedness condition:
 i ▹ R and i ▹ G and p∨q ⇒ i ∗ true

• Soundness:
 R, G, i ⊦ {p} C {q}
 ⇒ R∗Id, G∗True ⊧ {p} C {q}

38

i describes the shared state.

Well-formedness condition is implicit side-condition on all proof rules.

R and G only describe changes to shared state, but p and q include local state, hence *True.

Note that i doesn’t feature in the semantics of the judgement.

R and G act only over the shared state; the “overall” rely and guarantee conditions are R*Id
(environment cannot do anything to local state) and G*True (we can do anything to our local
state).

/ 51

Proof rules
Basic command

⊦ {p} c {q}
p stab R∗Id
q stab R∗Id

p⇝q ⇒ G∗True

R, G, i ⊦ {p} c {q}

39

/ 51

Proof rules
Non-deterministic choice

R, G, i ⊦ {p} C1 {q}
R, G, i ⊦ {p} C2 {q}

R, G, i ⊦ {p} C1 + C2 {q}

40

/ 51

Proof rules
Non-deterministic looping

R, G, i ⊦ {p} C {p}
p stab R∗Id

R, G, i ⊦ {p} C* {p}

41

Stability check not actually in paper. Required by case when C* executes as ‘skip’.

/ 51

Proof rules
Skip

Emp, Emp, emp ⊦ {emp} skip {emp}

42

Skip doesn’t change anything, so everything else can be framed in. Vacuously stable.

/ 51

Proof rules
Sequential composition

R, G, i ⊦ {p} C1 {r}
R, G, i ⊦ {r} C2 {q}

R, G, i ⊦ {p} C1 ; C2 {q}

43

/ 51

Proof rules
Parallel composition

R∨G2, G1, i ⊦ {p1 ∗ r} C1 {q1 ∗ r’}
R∨G1, G2, i ⊦ {p2 ∗ r} C2 {q2 ∗ r’}

r ∨ r’ ⇒ i
R, G1∨G2, i ⊦ {p1 ∗ p2 ∗ r} C1 || C2 {q1 ∗ q2 ∗ r’}

44

p’s and q’s describe local states, r’s describe shared state.

/ 51

Proof rules
Hiding

R∗R’, G∗G’, i∗i’ ⊦ {p} C {q}
R, G, i ⊦ {p} C {q}

45

Allows arbitrary shared state to be claimed as local. Inappropriate hiding detected at point of
parallel composition: if the local states are not disjoint from each other and the shared state,
then they can’t be starred together. Common pattern is to make a bit of shared state for child
threads to use.

/ 51

Proof rules
Frame

R, G, i ⊦ {p} C {q}
r stab R’∗Id

R∗R’, G∗G’, i∗i’ ⊦ {p ∗ r} C {q ∗ r}

46

Can frame in shared state or local state.

/ 51

Proof rules
Weakening

R’, G’, i’ ⊦ {p’} C {q’}
p ⇒ p’ R ⇒ R’ G’ ⇒ G q’ ⇒ q

R, G, i ⊦ {p} C {q}

47

/ 51

Proof rules
Disjunction

R, G, i ⊦ {p1} C {q1}
R, G, i ⊦ {p2} C {q2}

R, G, i ⊦ {p1 ∨ p2} C {q1 ∨ q2}

48

/ 51

Proof rules
Conjunction

R, G, i ⊦ {p1} C {q1}
R, G, i ⊦ {p2} C {q2}

R, G, i ⊦ {p1 ∧ p2} C {q1 ∧ q2}

49

/ 51

Proof rules
Existential quantification

R, G, i ⊦ {p} C {q}
x not free in R, G or i

R, G, i ⊦ {∃x. p} C {∃x. q}

50

/ 51

Concluding remarks

• Local rely/guarantee conditions

• More refined state model

• Improved ability to reason modularly ...

• ... but precise invariants are restrictive.

51

Talk about inelegance of equating ‘False’ with ‘Id’ in ordinary RG reasoning.

Can modularly verify a multi-threaded module (e.g. ConcurrentGCD in paper)

In CSL, can relax 4th point. Use supported assertions as invariants, and intuitionistic
assertions for private state. Can’t do this in LRG, for reasons to do with the asymmetry of the
rely and guarantee.

