
Tools for exploring  
and understanding  

memory models
John Wickerson, Imperial College

Joint work with  
Jade Alglave (UCL), Mark Batty (Cambridge), Alastair Donaldson (Imperial),

Ganesh Gopalakrishnan (Utah), Luc Maranget (INRIA),  
Daniel Poetzl (Oxford) and Tyler Sorensen (Utah)

Outline

• Memory models

• Lem

• Herd

2

Memory models

• Memory model:

• which values might be read from memory

• assembly code / higher-level language

• operational / axiomatic

3

Axiomatic memory model
• Defines predicates over program executions

• Contract between programmer and language

4

C standard §5.1.2.4:22

ISO/IEC 9899:2011 (E) © ISO/IEC 2011 − All rights reserved

19 A visible side effect A on an object M with respect to a value computation B of M
satisfies the conditions:

— A happens before B, and

— there is no other side effect X to M such that A happens before X and X happens
before B.

The value of a non-atomic scalar object M , as determined by evaluation B, shall be the
value stored by the visible side effect A.

20 NOTE 8 If there is ambiguity about which side effect to a non-atomic object is visible, then there is a data
race and the behavior is undefined.

21 NOTE 9 This states that operations on ordinary variables are not visibly reordered. This is not actually
detectable without data races, but it is necessary to ensure that data races, as defined here, and with suitable
restrictions on the use of atomics, correspond to data races in a simple interleaved (sequentially consistent)
execution.

22 The visible sequence of side effects on an atomic object M , with respect to a value
computation B of M , is a maximal contiguous sub-sequence of side effects in the
modification order of M , where the first side effect is visible with respect to B, and for
ev ery subsequent side effect, it is not the case that B happens before it. The value of an
atomic object M , as determined by evaluation B, shall be the value stored by some
operation in the visible sequence of M with respect to B. Furthermore, if a value
computation A of an atomic object M happens before a value computation B of M , and
the value computed by A corresponds to the value stored by side effect X , then the value
computed by B shall either equal the value computed by A, or be the value stored by side
effect Y , where Y follows X in the modification order of M .

23 NOTE 10 This effectively disallows compiler reordering of atomic operations to a single object, even if
both operations are ‘‘relaxed’’ loads. By doing so, we effectively make the ‘‘cache coherence’’ guarantee
provided by most hardware available to C atomic operations.

24 NOTE 11 The visible sequence depends on the ‘‘happens before’’ relation, which in turn depends on the
values observed by loads of atomics, which we are restricting here. The intended reading is that there must
exist an association of atomic loads with modifications they observe that, together with suitably chosen
modification orders and the ‘‘happens before’’ relation derived as described above, satisfy the resulting
constraints as imposed here.

25 The execution of a program contains a data race if it contains two conflicting actions in
different threads, at least one of which is not atomic, and neither happens before the
other. Any such data race results in undefined behavior.

26 NOTE 12 It can be shown that programs that correctly use simple mutexes and
memory_order_seq_cst operations to prevent all data races, and use no other synchronization
operations, behave as though the operations executed by their constituent threads were simply interleaved,
with each value computation of an object being the last value stored in that interleaving. This is normally
referred to as ‘‘sequential consistency’’. However, this applies only to data-race-free programs, and data-
race-free programs cannot observe most program transformations that do not change single-threaded
program semantics. In fact, most single-threaded program transformations continue to be allowed, since
any program that behaves differently as a result must contain undefined behavior.

20 Environment §5.1.2.4

Licensed to John Wickerson. ANSI order X_337666. Downloaded 10/2/2013 9:53 AM. Single user license only. Copying and networking prohibited.

C standard §5.1.2.4:25

ISO/IEC 9899:2011 (E) © ISO/IEC 2011 − All rights reserved

19 A visible side effect A on an object M with respect to a value computation B of M
satisfies the conditions:

— A happens before B, and

— there is no other side effect X to M such that A happens before X and X happens
before B.

The value of a non-atomic scalar object M , as determined by evaluation B, shall be the
value stored by the visible side effect A.

20 NOTE 8 If there is ambiguity about which side effect to a non-atomic object is visible, then there is a data
race and the behavior is undefined.

21 NOTE 9 This states that operations on ordinary variables are not visibly reordered. This is not actually
detectable without data races, but it is necessary to ensure that data races, as defined here, and with suitable
restrictions on the use of atomics, correspond to data races in a simple interleaved (sequentially consistent)
execution.

22 The visible sequence of side effects on an atomic object M , with respect to a value
computation B of M , is a maximal contiguous sub-sequence of side effects in the
modification order of M , where the first side effect is visible with respect to B, and for
ev ery subsequent side effect, it is not the case that B happens before it. The value of an
atomic object M , as determined by evaluation B, shall be the value stored by some
operation in the visible sequence of M with respect to B. Furthermore, if a value
computation A of an atomic object M happens before a value computation B of M , and
the value computed by A corresponds to the value stored by side effect X , then the value
computed by B shall either equal the value computed by A, or be the value stored by side
effect Y , where Y follows X in the modification order of M .

23 NOTE 10 This effectively disallows compiler reordering of atomic operations to a single object, even if
both operations are ‘‘relaxed’’ loads. By doing so, we effectively make the ‘‘cache coherence’’ guarantee
provided by most hardware available to C atomic operations.

24 NOTE 11 The visible sequence depends on the ‘‘happens before’’ relation, which in turn depends on the
values observed by loads of atomics, which we are restricting here. The intended reading is that there must
exist an association of atomic loads with modifications they observe that, together with suitably chosen
modification orders and the ‘‘happens before’’ relation derived as described above, satisfy the resulting
constraints as imposed here.

25 The execution of a program contains a data race if it contains two conflicting actions in
different threads, at least one of which is not atomic, and neither happens before the
other. Any such data race results in undefined behavior.

26 NOTE 12 It can be shown that programs that correctly use simple mutexes and
memory_order_seq_cst operations to prevent all data races, and use no other synchronization
operations, behave as though the operations executed by their constituent threads were simply interleaved,
with each value computation of an object being the last value stored in that interleaving. This is normally
referred to as ‘‘sequential consistency’’. However, this applies only to data-race-free programs, and data-
race-free programs cannot observe most program transformations that do not change single-threaded
program semantics. In fact, most single-threaded program transformations continue to be allowed, since
any program that behaves differently as a result must contain undefined behavior.

20 Environment §5.1.2.4

Licensed to John Wickerson. ANSI order X_337666. Downloaded 10/2/2013 9:53 AM. Single user license only. Copying and networking prohibited.

C standard §5.1.2.4:19

ISO/IEC 9899:2011 (E) © ISO/IEC 2011 − All rights reserved

19 A visible side effect A on an object M with respect to a value computation B of M
satisfies the conditions:

— A happens before B, and

— there is no other side effect X to M such that A happens before X and X happens
before B.

The value of a non-atomic scalar object M , as determined by evaluation B, shall be the
value stored by the visible side effect A.

20 NOTE 8 If there is ambiguity about which side effect to a non-atomic object is visible, then there is a data
race and the behavior is undefined.

21 NOTE 9 This states that operations on ordinary variables are not visibly reordered. This is not actually
detectable without data races, but it is necessary to ensure that data races, as defined here, and with suitable
restrictions on the use of atomics, correspond to data races in a simple interleaved (sequentially consistent)
execution.

22 The visible sequence of side effects on an atomic object M , with respect to a value
computation B of M , is a maximal contiguous sub-sequence of side effects in the
modification order of M , where the first side effect is visible with respect to B, and for
ev ery subsequent side effect, it is not the case that B happens before it. The value of an
atomic object M , as determined by evaluation B, shall be the value stored by some
operation in the visible sequence of M with respect to B. Furthermore, if a value
computation A of an atomic object M happens before a value computation B of M , and
the value computed by A corresponds to the value stored by side effect X , then the value
computed by B shall either equal the value computed by A, or be the value stored by side
effect Y , where Y follows X in the modification order of M .

23 NOTE 10 This effectively disallows compiler reordering of atomic operations to a single object, even if
both operations are ‘‘relaxed’’ loads. By doing so, we effectively make the ‘‘cache coherence’’ guarantee
provided by most hardware available to C atomic operations.

24 NOTE 11 The visible sequence depends on the ‘‘happens before’’ relation, which in turn depends on the
values observed by loads of atomics, which we are restricting here. The intended reading is that there must
exist an association of atomic loads with modifications they observe that, together with suitably chosen
modification orders and the ‘‘happens before’’ relation derived as described above, satisfy the resulting
constraints as imposed here.

25 The execution of a program contains a data race if it contains two conflicting actions in
different threads, at least one of which is not atomic, and neither happens before the
other. Any such data race results in undefined behavior.

26 NOTE 12 It can be shown that programs that correctly use simple mutexes and
memory_order_seq_cst operations to prevent all data races, and use no other synchronization
operations, behave as though the operations executed by their constituent threads were simply interleaved,
with each value computation of an object being the last value stored in that interleaving. This is normally
referred to as ‘‘sequential consistency’’. However, this applies only to data-race-free programs, and data-
race-free programs cannot observe most program transformations that do not change single-threaded
program semantics. In fact, most single-threaded program transformations continue to be allowed, since
any program that behaves differently as a result must contain undefined behavior.

20 Environment §5.1.2.4

Licensed to John Wickerson. ANSI order X_337666. Downloaded 10/2/2013 9:53 AM. Single user license only. Copying and networking prohibited.

let visible_side_effect_set actions hb =
 { (A,B) | forall ((A,B) IN hb) |
 is_write A && is_read B && (loc_of A = loc_of B) &&
 not (exists (X IN actions). not (X IN {A;B}) &&
 is_write X && (loc_of X = loc_of B) &&
 (A,X) IN hb && (X,B) IN hb) }

Lem

Lem

Herd

C standard §5.1.2.4:19

ISO/IEC 9899:2011 (E) © ISO/IEC 2011 − All rights reserved

19 A visible side effect A on an object M with respect to a value computation B of M
satisfies the conditions:

— A happens before B, and

— there is no other side effect X to M such that A happens before X and X happens
before B.

The value of a non-atomic scalar object M , as determined by evaluation B, shall be the
value stored by the visible side effect A.

20 NOTE 8 If there is ambiguity about which side effect to a non-atomic object is visible, then there is a data
race and the behavior is undefined.

21 NOTE 9 This states that operations on ordinary variables are not visibly reordered. This is not actually
detectable without data races, but it is necessary to ensure that data races, as defined here, and with suitable
restrictions on the use of atomics, correspond to data races in a simple interleaved (sequentially consistent)
execution.

22 The visible sequence of side effects on an atomic object M , with respect to a value
computation B of M , is a maximal contiguous sub-sequence of side effects in the
modification order of M , where the first side effect is visible with respect to B, and for
ev ery subsequent side effect, it is not the case that B happens before it. The value of an
atomic object M , as determined by evaluation B, shall be the value stored by some
operation in the visible sequence of M with respect to B. Furthermore, if a value
computation A of an atomic object M happens before a value computation B of M , and
the value computed by A corresponds to the value stored by side effect X , then the value
computed by B shall either equal the value computed by A, or be the value stored by side
effect Y , where Y follows X in the modification order of M .

23 NOTE 10 This effectively disallows compiler reordering of atomic operations to a single object, even if
both operations are ‘‘relaxed’’ loads. By doing so, we effectively make the ‘‘cache coherence’’ guarantee
provided by most hardware available to C atomic operations.

24 NOTE 11 The visible sequence depends on the ‘‘happens before’’ relation, which in turn depends on the
values observed by loads of atomics, which we are restricting here. The intended reading is that there must
exist an association of atomic loads with modifications they observe that, together with suitably chosen
modification orders and the ‘‘happens before’’ relation derived as described above, satisfy the resulting
constraints as imposed here.

25 The execution of a program contains a data race if it contains two conflicting actions in
different threads, at least one of which is not atomic, and neither happens before the
other. Any such data race results in undefined behavior.

26 NOTE 12 It can be shown that programs that correctly use simple mutexes and
memory_order_seq_cst operations to prevent all data races, and use no other synchronization
operations, behave as though the operations executed by their constituent threads were simply interleaved,
with each value computation of an object being the last value stored in that interleaving. This is normally
referred to as ‘‘sequential consistency’’. However, this applies only to data-race-free programs, and data-
race-free programs cannot observe most program transformations that do not change single-threaded
program semantics. In fact, most single-threaded program transformations continue to be allowed, since
any program that behaves differently as a result must contain undefined behavior.

20 Environment §5.1.2.4

Licensed to John Wickerson. ANSI order X_337666. Downloaded 10/2/2013 9:53 AM. Single user license only. Copying and networking prohibited.

let hbl = hb & loc
let vse = [W];hbl;[R] & ~(hbl;[W];hbl)

Herd

Herd
(a,b) ∈ R (b,c) ∈ S

(a,c) ∈ R ; S a ∈ s
(a,a) ∈ [s]

[zone-4] ; northern; [step-free] ; central ; [zone-6]

Herd

R & S R | S R ; S [s]
!
~R R^-1 R* R+ R?

Herd
M.write(1)

M.read(1)

N.write(3)

let hbl = hb & loc
let vse = [W];hbl;[R] & ~(hbl;[W];hbl)

Herd

M.write(2)

hb
loc loc

hb

hb hblhbl
vse

loc

Herd
M.write(1)

M.read(1)

N.write(3)

let hbl = hb & loc
let vse = [W];hbl;[R] & ~(hbl;[W];hbl)

Herd

M.write(2)

hb
loc loc

loc

hb

hb hblhbl

hb

hbl

The POWER of Herd

Lem vs. Herd
• Lem:

• Expressive language → match prose

• Herd:

• Concise → optimise model, compare models

• Efficient simulation

Our work

• C/C++ memory model in Herd, prove equivalent to
existing Lem version

• OpenCL memory model in Lem and Herd

• NVIDIA's PTX memory model

Tools for exploring  
and understanding  

memory models
John Wickerson, Imperial College

Joint work with  
Jade Alglave (UCL), Mark Batty (Cambridge), Alastair Donaldson (Imperial),

Ganesh Gopalakrishnan (Utah), Luc Maranget (INRIA),  
Daniel Poetzl (Oxford) and Tyler Sorensen (Utah)

