
Cambridge Concurrency Workshop
5-6 July 2010

A dataflow model of concurrency,
communication and weak memory

John Wickerson & Tony Hoare

1

Example

lock s in var x in {
 acq s; acq s;
 write(x,1); read(x,1);
 write(x,2); rel s
 rel s
}

2

Example

write(x,1)

write(x,2)

read(x,1)

rel s

rel s

acq s

acq s

fork

join

new s

del s

new x

del x

lock s in var x in {
 acq s; acq s;
 write(x,1); read(x,1);
 write(x,2); rel s
 rel s
}

3

Example

write(x,1)

write(x,2)

read(x,1)

rel s

rel s

acq s

acq s

new s

del s

new x

del x

fork

join

lock s in var x in {
 acq s; acq s;
 write(x,1); read(x,1);
 write(x,2); rel s
 rel s
}

4

Example

write(x,1)

write(x,2)

read(x,1)

rel s

rel s

acq s

acq s

new s

del s

new x

del x

fork

join

lock s in var x in {
 acq s; acq s;
 write(x,1); read(x,1);
 write(x,2); rel s
 rel s
}

5

Example

write(x,1)

write(x,2)

read(x,1)

rel s

rel s

acq s

acq s

new s

del s

new x

del x

fork

join

lock s in var x in {
 acq s; acq s;
 write(x,1); read(x,1);
 write(x,2); rel s
 rel s
}

6

Example

write(x,1)

write(x,2)

read(x,1)

rel s

rel s

acq s

acq s

new s

del s

new x

del x

fork

join

lock s in var x in {
 acq s; acq s;
 write(x,1); read(x,1);
 write(x,2); rel s
 rel s
}

7

Example

write(x,1)

write(x,2)

read(x,2)

rel s

rel s

acq s

acq s

new s

del s

new x

del x

fork

join

lock s in var x in {
 acq s; acq s;
 write(x,1); read(x,2);
 write(x,2); rel s
 rel s
}

8

Outline
• We model a program as a set of possible

traces
• We separate various kinds of flow
– data flow, control flow, ownership transfer

• Our model is stateless
– good for modelling weak memory and

asynchronous communication

9

Traces
• Represented as a 6-tuple:
– NodeSet, N ∈ fin Node
– ArrowSet, A ∈ fin Arrow
– Labelling, L ∈ N → Label
– Valuation, V ∈ A → Value
– HeadMap, H ∈ A � N
– TailMap, T ∈ A � N

10

• A composition operator:

Traces

n2

a n1

b
◦ =

n2

a n1

b

11

Traces
• A composition operator:

n2

n1

a

n3

n1

b = undefined ◦

12

Traces
• A composition operator:

• Lifted to sets of traces:
 T∗U = {t ◦ u | t∈T, u∈U}

n1

a

n3

a =

n1

a

n3

◦

13

A denotational semantics

〚-〛 : Command → fin(Trace)

14

• C ::= ... | lock s in C | acq s | rel s
• 〚acq s〛 =
• 〚rel s〛 =
• 〚lock s in C〛 =

new s acq s rel s del sacq s rel s

Locks

acq s
own(s)own(s)

rel s
own(s)own(s)

own(s)

new s

own(s)

del s∗ 〚C〛 ∗

∩ lockconstraints(s)

15

Example

write(x,1)

write(x,2)

read(x,1)

rel s

rel s

acq s

acq s

new s

del s

new x

del x

fork

join

lock s in var x in {
 acq s; acq s;
 write(x,1); read(x,1);
 write(x,2); rel s
 rel s
}

16

• 〚acq s〛 = { |
 n ∈ Node,
 a1,a2,a3,a4 ∈ Arrow,
 a1,a2,a3,a4 all distinct }

Locks

acq s
own(s)own(s)

na1

a2

a3

a4

17

Variables
• C ::= ... | var x in C | write(x,v) | read(x,v)

write(x,2) write(x,4)

read(x,2)
read(x,4)

data(x,2)

new(x) del(x)

read(x,4)

data(x,4)

data(x,4)ack(x)

own(x)

ack(x)

ack(x)

own(x) own(x)

18

Variables
• C ::= ... | var x in C | write(x,v) | read(x,v)

write(x,2) write(x,4)

read(x,2)
read(x,4)

data(x,2)

new(x) del(x)

read(x,4)

data(x,4)

data(x,4)ack(x)

own(x)

ack(x)

ack(x)

own(x) own(x)

19

Variables
• C ::= ... | var x in C | write(x,v) | read(x,v)

write(x,2) write(x,4)

read(x,2)
read(x,4)

data(x,2)

new(x) del(x)

read(x,4)

data(x,4)

data(x,4)ack(x)

own(x)

ack(x)

ack(x)

own(x) own(x)

20

Variables
• C ::= ... | var x in C | write(x,v) | read(x,v)
• 〚read(x,v)〛 =
• 〚write(x,v)〛 =
• 〚var x in C〛 =

read(x,v) ack(x)data(x,v)

write(x,v)
data(x,v)ack(x)

own(x) own(x)

own(x)
new x

own(x)

del x∗ 〚C〛 ∗

∩ varconstraints(x)

data(x,0) ack(x)

21

Example

write(x,1)

write(x,2)

read(x,1)

rel s

rel s

acq s

acq s

new s

del s

new x

del x

fork

join

lock s in var x in {
 acq s; acq s;
 write(x,1); read(x,1);
 write(x,2); rel s
 rel s
}

22

• 〚write(x,v)〛 =

Variables
write(x,v)

data(x,v)ack(x)
own(x) own(x)

write(x,v)own(x) own(x)

write(x,v)
data(x,v)ack(x)

own(x) own(x)

write(x,v)
ack(x)

own(x) own(x)

=

∪

∪

∪ ...
ack(x)

23

Assignments and assumptions
• 〚x := f(y1, ..., yn)〛 =

 ⋃{〚read(y1,v1); ... ; read(yn,vn); write(x,v)〛
 | f(v1,...,vn) = v }

• 〚assume p(x1, ..., xn)〛 =
 ⋃{〚read(x1,v1); ... ; read(xn,vn)〛
 | p(v1,...,vn) = true }

24

Sequential composition
• 〚C1;C2〛 = 〚C1〛 ∗seq 〚C2〛

where t1 ◦seq t2 is only defined when:

 outCtrl(t1) = inCtrl(t2)

and ∗seq is the lifted version of ◦seq

25

Sequential composition
• Examples:

= undefinedb ca d◦seq

=b ba d◦seq ba d

26

= ∗seq

Sequential composition
• 〚x:=5; assume x=6〛

read(x,6)
ack(x)

write(x,5)

ack(x)

own(x) own(x)

= read(x,6)
ack(x)

data(x,6)

write(x,5)

data(x,5)

ack(x)

own(x) own(x)

data(x,6)data(x,5)

27

Sequential composition
• 〚var x in {x:=5; assume x=6}〛 =

own(x)

new x

own(x)

del x

∩ varconstraints(x)

data(x,0) ack(x)

read(x,6)
ack(x)

data(x,6)

write(x,5)

data(x,5)

ack(x)

own(x) own(x)

∗ ∗

28

Parallel composition
• 〚C1||C2〛 =

where t1 ◦par t2 is only defined when:

 danglingCtrl(t1) ∩ danglingCtrl(t2) = ∅

and ∗par is the lifted version of ◦par

fork join∗seq (〚C1〛 ∗par 〚C2〛) ∗seq

29

Weak memory

30

Weak memory
var x in var y in {
 write(x,1); write(y,1);
 read(y,0) read(x,0)
}

write(x,1)

new x del x

write(y,1)

read(y,0)

read(x,0)

new y del y

fork join

31

Weak memory
var x in var y in {
 write(x,1); write(y,1);
 read(y,0) read(x,0)
}

write(x,1)

new x del x

write(y,1)

read(y,0)

read(x,0)

new y del y

fork join

32

Variables

write(x,2) write(x,4)

read(x,2)
read(x,4)

data(x,2)

new(x) del(x)

read(x,4)

data(x,4)

data(x,4)ack(x)

own(x)

ack(x)

ack(x)

own(x) own(x)

Triangle Property.
If write1 read
and read write2
then write1 write2

33

own(x)
own(x)

own(x)

Variables

write(x,2) write(x,4)

read(x,2)
read(x,4)

data(x,2)

new(x) del(x)

read(x,4)

data(x,4)

data(x,4)ack(x)

own(x)

ack(x)

ack(x)

own(x)

Triangle Property.
If write1 read
and read write2
then write1 write2

Relaxed Triangle Property.
If write1 read
and read write2
then write1 + write2

34

Weak memory
var x in var y in {
 write(x,1); write(y,1);
 read(y,0) read(x,0)
}

write(x,1)

new x del x

write(y,1)

read(y,0)

read(x,0)

new y del y

fork join

35

Summary
• A model of concurrency, communication and

weak memory, based on dataflow
• Next steps:
– automate the generation of traces?
– use as a basis for a program logic for weak

memory?

36

Spare slides

37

Use of separation logic laws
• We can use laws of separation logic to prove

theorems about our model, such as
commutativity of local variable declarations

38

Use of separation logic laws
• 〚var x in C〛 =

own(x)

new x

own(x)

del x∗ 〚C〛 ∗

∩ varconstraints(x)

data(x,0) ack(x)

39

Use of separation logic laws
• 〚var x in C〛 = (〚C〛 ∗ ndx) ∩ vx

• 〚var y in var x in C〛 = 〚var x in var y in C〛 ?
• (((〚C〛 ∗ ndx) ∩ vx) ∗ ndy) ∩ vy

= (〚C〛 ∗ ndx ∗ ndy) ∩ vx ∩ vy

• (P∧Q) ∗ R = P∗R ∧ Q∗R
 (provided R is precise)

40

Communication

41

Well-behaved channel

c!3

c?3

c!7

c?7

c!9

c?9

open c close c

42

Lossy channel

c!3

c?3

c!7 c!9

c?9

open c close c

43

Singly-buffered channel

c!3

c?3

c!7

c?7

c!9

c?9

open c close c

44

Stuttering channel

c!3

c?3 c?3

c!9

c?9

open c close c

45

Re-ordering channel

c!3

c?7

c!7

c?3

c!9

c?9

open c close c

46

