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lock s in var x in {

Example ™.

acq s;
write(x,1); || read(x,1);
write(x,2); || rel s
new x | | new s | rel s

write(x,2)
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lock s in var x in {

Example "<

write(x,1);

lock s in var x in {
Example "
read(x,1); write(x,1);
rel s write(x,2);
rel s

acq s;
read(x,2);
rel s

write(x,2);

new x | | news | rel s

new x | | news |

}

|

write(x,2)

read(x,2)

Outline Traces
* We model a program as a set of possible * Represented as a 6-tuple:
traces — NodeSet, € Pfin Node

* We separate various kinds of flow — ArrowSet, € Psin Arrow
€ N — Label

N

A

— data flow, control flow, ownership transfer — Labelling, L
—Valuation, V € A — Value

I

T

e Our model is stateless

. — HeadMap, e A—N
— good for modelling weak memory and _
asynchronous communication — TailMap, cA—N
Traces Traces
* A composition operator: * A composition operator:
& &
2]

A ° b = undefined




Traces

¢ A composition operator:

a o a = a

 Lifted to sets of traces:
TxU = {tou | teT, ueU}

Locks

e Cu=..|locksinC|acqs]|rels
O TN

+ Jrel o] =

* Jlock sin C] = * [C] *

n lockconstraints(s)

A denotational semantics

[-] : Command — Psin(Trace)

lock s in var x in {
Example "
write(x,1);
write(x,2);
rel s
}

acq s;
read(x,1);
rel s

new x | | new s |

-acq s
T e ]

newsi acqsi | rel s | |acqs| | rel s i | dels |
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Locks
al 0 a
. [[acq S]] = { = acg's S |
a
n € Node,

al,a2,a3,a4 € Arrow,
al,a2,a3,a4 all distinct }

Variables

e Cu= .. |varxin C | write(x,v) | read(x,v)




Variables

e Cu= .. |varxin C | write(x,v) | read(x,v)

data(x,2)

data(x,4)

read(x,4)

Variables
o Cu= .. |varxin C| write(x,v) | read(x,v)
* [read(x,v)] = datan) L1290 2
" Dwrite(ov)] = e L) BRI

[var x in C] = data(x 0) ack(x)
i ] % [C] x
own(x) own(x)

n varconstralnts

Variables

e Cu= ... |varxin C | write(x,v) | read(x,v)

| new(x) lm write(x,2) |M>| write(x,4) own(x)

ack(x)

data(x,4)
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lock s in var x in {
Example " ™.
write(x,1); || read(x,1);
write(x,2);||rel s
new x | | new s | rel s

Illlili!%lli!llll
- 2*-read(x,l)
vvnte X

Variables

® [[Wt‘ite(x,v)]] = own(x) own(x)

ack(x) data(x,v)

e own(x) write(x,v) own(x)
own(x) write(x,v own(x)
v ack(x) data(x,v)
U OVB"ElSE‘)Z) write(x,v) own(x)
ack(x)
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Assignments and assumptions

o [x:=f(y1, ... yn)] =

U{[read(y1,v1); ...

* [assume p(xi, ...
U{[read(x1,v1); ...

; read(yn,vn); write(x,v)]
| f(vi,....vn) = v }

, Xn)] =
; read(xn,vn)]

| p(vi,...,va) = true }
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Sequential composition
* [CuCa =[G *seq [Co]
where t1 0seq t2 is only defined when:
outCtrl(t1) = inCtrl(t2)

and *seq is the lifted version of o
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Sequential composition

¢ [x:=5; assume x=0]

own(x) own(x)

= *seq read(x,6)

ack(x) ack(x)

data(x,5) data(x,6)

own(x own(x)

)
= Ea write(x,5) [/—>| read(x,6) l:g
)

ack(x) ack(x)

data(x,5) data(x,6)

Sequential composition

« Examples:

a . by 0seq C__)D_d>= undefined

a_ by oeq B d, - a__J]b . d
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Sequential composition

¢ [var x in {x:=b; assume x=6}] =

data(x,0) own(x) own(x) @ack(x)
* Ea write(x,5) I/—>| read(x,6) |§> *
own(x) f

ack(x) ack(x) ‘own(x)

data(x,5) data(x,6)

n varconstraints(x)
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Parallel composition
- (GG =
*seq ([C1] *par [C2]) *seq

where t1 opar t2 is only defined when:
danglingCtrl(t1) n danglingCtrl(t2) = @
and *par is the lifted version of opar
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Weak memory
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Weak memory

var x in var y in {
write(x,1); write(y,1);
read(y,0) read(x,0)

¥

new x |~
—>| fork

new y

write(x,1) I——)I read(y,0) I\
] join |—>
write(y,1) l—)l read(x,0) |/

5| dely
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Weak memory

var x in var y in {

Variables

data(x,2)

Triangle Property.
If write;—> read
and read—> write:

then write;1—> writez
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Weak memory

var x in var y in {
write(x,1);
read(y,0)

¥

write(y,1);
read(x,0)

new x |~
—>| fork
newy

del X

write(x,1) |—>| read(y,0)

JOIn

write(y,1) |—>| read(x,0)

del y
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write(x,1); write(y,1);
read(y,0) read(x,0)
}
new x del x
| write(x,1) I——>| read(y,0) |
| fork | | join |
| write(y,1) |—>| read(x,0) |
new y dely
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Variables
own(x)
own(x)/y > \own(x)
| new(x) M write(x,2) | | write(x,4)
ack(x)
data(x,2)

data(x,4)

Relaxed Triangle Property.
If write;—> read

and read—> write2

then writei—>* write;
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Summary

* A model of concurrency, communication and
weak memory, based on dataflow

* Next steps:
— automate the generation of traces?

— use as a basis for a program logic for weak
memory?
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Spare slides
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Use of separation logic laws

data(x,0) ack(x)
¢ [varxin C] = x [C] =
own(x) own(x)

n varconstraints(x)

Use of separation logic laws

* We can use laws of separation logic to prove
theorems about our model, such as
commutativity of local variable declarations
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Use of separation logic laws

¢ [var x in C] = ([C] * ndx) n v«
e [varyinvar xin C] = [var x invary in C] 7

((([C] * ndx) n vx) * ndy) n vy
= ([C] * ndx * ndy) n vk N vy

* (PAQ) *x R = PxR A Q+R
(provided R is precise)

Communication
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Well-behaved channel
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Lossy channel

[ 3] [ 7 | [ o |

\ close ¢

c?3 c?9
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Stuttering channel

c!3 c!9

open ¢ \ \ close ¢

[ o3 | [ o3 | IE

\/

a7 |

Singly-buffered channel

N

[[3 ]
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[ o7 | [ 9
Re-ordering channel
[ ] [ a7 | N
a7 [ a3 | BN
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