A dataflow model of concurrency,
communication and weak memory

Microsoft 2 ; dCambridge Concurrency Workshop
Research "§75-6 July 2010

lock s in var x in {

Example ™.

acq s;
write(x,1); || read(x,1);
write(x,2); || rel s
new x | | new s | rel s

write(x,2)

Example

lock s in var x in {
acq s; acq s;
write(x,1); || read(x,1);
write(x,2); || rel s
rel s

lock s in var x in {

Example "<

acq s;
write(x,1); || read(x,1);
write(x,2);||rel s
new x | | new s | rel s

¥

read(x,1)

lock s in var x in {

Example "%

acq s;
write(x,1); || read(x,1);
write(x,2); [[rel s
new x | | news | rel s
¥

write(x,
=
rel s

lock s in var x in {

Example "<

acq s;
write(x,1); |[read(x,1);
write(x,2); |[rel s
new x | | news | rel s
¥

acq s
acq s

-write(x,l)
T fredon |

rel s

lock s in var x in {

Example "<

write(x,1);

lock s in var x in {
Example "
read(x,1); write(x,1);
rel s write(x,2);
rel s

acq s;
read(x,2);
rel s

write(x,2);

new x | | news | rel s

new x | | news |

}

|

write(x,2)

read(x,2)

Outline Traces
* We model a program as a set of possible * Represented as a 6-tuple:
traces — NodeSet, € Pfin Node

* We separate various kinds of flow — ArrowSet, € Psin Arrow
€ N — Label

N

A

— data flow, control flow, ownership transfer — Labelling, L
—Valuation, V € A — Value

I

T

e Our model is stateless

. — HeadMap, e A—N
— good for modelling weak memory and _
asynchronous communication — TailMap, cA—N
Traces Traces
* A composition operator: * A composition operator:
& &
2]

A ° b = undefined

Traces

¢ A composition operator:

a o a = a

 Lifted to sets of traces:
TxU = {tou | teT, ueU}

Locks

e Cu=..|locksinC|acqs]|rels
O TN

+ Jrel o] =

* Jlock sin C] = * [C] *

n lockconstraints(s)

A denotational semantics

[-] : Command — Psin(Trace)

lock s in var x in {
Example "
write(x,1);
write(x,2);
rel s
}

acq s;
read(x,1);
rel s

new x | | new s |

-acq s
T e]

newsi acqsi | rel s | |acqs| | rel s i | dels |
15
Locks
al 0 a
. [[acq S]] = { = acg's S |
a
n € Node,

al,a2,a3,a4 € Arrow,
al,a2,a3,a4 all distinct }

Variables

e Cu= .. |varxin C | write(x,v) | read(x,v)

Variables

e Cu= .. |varxin C | write(x,v) | read(x,v)

data(x,2)

data(x,4)

read(x,4)

Variables
o Cu= .. |varxin C| write(x,v) | read(x,v)
* [read(x,v)] = datan) L1290 2
" Dwrite(ov)] = e L) BRI

[var x in C] = data(x 0) ack(x)
i] % [C] x
own(x) own(x)

n varconstralnts

Variables

e Cu= ... |varxin C | write(x,v) | read(x,v)

| new(x) lm write(x,2) |M>| write(x,4) own(x)

ack(x)

data(x,4)

20

2

lock s in var x in {
Example " ™.
write(x,1); || read(x,1);
write(x,2);||rel s
new x | | new s | rel s

Illlili!%lli!llll
- 2*-read(x,l)
vvnte X

Variables

® [[Wt‘ite(x,v)]] = own(x) own(x)

ack(x) data(x,v)

e own(x) write(x,v) own(x)
own(x) write(x,v own(x)
v ack(x) data(x,v)
U OVB"ElSE‘)Z) write(x,v) own(x)
ack(x)

23

22

Assignments and assumptions

o [x:=f(y1, ... yn)] =

U{[read(y1,v1); ...

* [assume p(xi, ...
U{[read(x1,v1); ...

; read(yn,vn); write(x,v)]
| f(vi,....vn) = v }

, Xn)] =
; read(xn,vn)]

| p(vi,...,va) = true }

24

Sequential composition
* [CuCa =[G *seq [Co]
where t1 0seq t2 is only defined when:
outCtrl(t1) = inCtrl(t2)

and *seq is the lifted version of o

25

Sequential composition

¢ [x:=5; assume x=0]

own(x) own(x)

= *seq read(x,6)

ack(x) ack(x)

data(x,5) data(x,6)

own(x own(x)

)
= Ea write(x,5) [/—>| read(x,6) l:g
)

ack(x) ack(x)

data(x,5) data(x,6)

Sequential composition

« Examples:

a . by 0seq C__)D_d>= undefined

a_ by oeq B d, - a__J]b . d

26

Sequential composition

¢ [var x in {x:=b; assume x=6}] =

data(x,0) own(x) own(x) @ack(x)
* Ea write(x,5) I/—>| read(x,6) |§> *
own(x) f

ack(x) ack(x) ‘own(x)

data(x,5) data(x,6)

n varconstraints(x)

27

28

Parallel composition
- (GG =
*seq ([C1] *par [C2]) *seq

where t1 opar t2 is only defined when:
danglingCtrl(t1) n danglingCtrl(t2) = @
and *par is the lifted version of opar

29

Weak memory

30

Weak memory

var x in var y in {
write(x,1); write(y,1);
read(y,0) read(x,0)

¥

new x |~
—>| fork

new y

write(x,1) I——)I read(y,0) I\
] join |—>
write(y,1) l—)l read(x,0) |/

5| dely

31

Weak memory

var x in var y in {

Variables

data(x,2)

Triangle Property.
If write;—> read
and read—> write:

then write;1—> writez

33

Weak memory

var x in var y in {
write(x,1);
read(y,0)

¥

write(y,1);
read(x,0)

new x |~
—>| fork
newy

del X

write(x,1) |—>| read(y,0)

JOIn

write(y,1) |—>| read(x,0)

del y

35

write(x,1); write(y,1);
read(y,0) read(x,0)
}
new x del x
write(x,1) I——>	read(y,0)	
fork		join
write(y,1)	—>	read(x,0)
new y dely		
32		
Variables		
own(x)		
own(x)/y > \own(x)		
new(x) M write(x,2)		write(x,4)
ack(x)
data(x,2)

data(x,4)

Relaxed Triangle Property.
If write;—> read

and read—> write2

then writei—>* write;

34

Summary

* A model of concurrency, communication and
weak memory, based on dataflow

* Next steps:
— automate the generation of traces?

— use as a basis for a program logic for weak
memory?

36

Spare slides

37

Use of separation logic laws

data(x,0) ack(x)
¢ [varxin C] = x [C] =
own(x) own(x)

n varconstraints(x)

Use of separation logic laws

* We can use laws of separation logic to prove
theorems about our model, such as
commutativity of local variable declarations

38

39

Use of separation logic laws

¢ [var x in C] = ([C] * ndx) n v«
e [varyinvar xin C] = [var x invary in C] 7

((([C] * ndx) n vx) * ndy) n vy
= ([C] * ndx * ndy) n vk N vy

* (PAQ) *x R = PxR A Q+R
(provided R is precise)

Communication

41

40

Well-behaved channel

o]
L |

[(o3]

\
(]

az | [«
1

[
I |
a3 | [o7 | @9

42

Lossy channel

[3] [7 | [o |

\ close ¢

c?3 c?9

43

Stuttering channel

c!3 c!9

open ¢ \ \ close ¢

[o3 | [o3 | IE

\/

a7 |

Singly-buffered channel

N

[[3]

45

[o7 | [9
Re-ordering channel
[] [a7 | N
a7 [a3 | BN

46

