
Cambridge Concurrency Workshop
5-6 July 2010

A dataflow model of concurrency,
communication and weak memory

John Wickerson & Tony Hoare

Example

lock s in var x in {
 acq s; acq s;
 write(x,1); read(x,1);
 write(x,2); rel s
 rel s
}

Example

write(x,1)

write(x,2)
read(x,1)

rel s
rel s

acq s
acq s

fork

join

new s

del s

new x

del x

lock s in var x in {
 acq s; acq s;
 write(x,1); read(x,1);
 write(x,2); rel s
 rel s
}

Example

write(x,1)

write(x,2)
read(x,1)

rel s
rel s

acq s
acq s

new s

del s

new x

del x

fork

join

lock s in var x in {
 acq s; acq s;
 write(x,1); read(x,1);
 write(x,2); rel s
 rel s
}

Example

write(x,1)

write(x,2)
read(x,1)

rel s
rel s

acq s
acq s

new s

del s

new x

del x

fork

join

lock s in var x in {
 acq s; acq s;
 write(x,1); read(x,1);
 write(x,2); rel s
 rel s
}

Example

write(x,1)

write(x,2)
read(x,1)

rel s
rel s

acq s
acq s

new s

del s

new x

del x

fork

join

lock s in var x in {
 acq s; acq s;
 write(x,1); read(x,1);
 write(x,2); rel s
 rel s
}

Example

write(x,1)

write(x,2)
read(x,1)

rel s
rel s

acq s
acq s

new s

del s

new x

del x

fork

join

lock s in var x in {
 acq s; acq s;
 write(x,1); read(x,1);
 write(x,2); rel s
 rel s
}

Example

write(x,1)

write(x,2)
read(x,2)

rel s
rel s

acq s
acq s

new s

del s

new x

del x

fork

join

lock s in var x in {
 acq s; acq s;
 write(x,1); read(x,2);
 write(x,2); rel s
 rel s
}

Outline
• We model a program as a set of possible

traces

• We separate various kinds of flow
– data flow, control flow, ownership transfer

• Our model is stateless
– good for modelling weak memory and

asynchronous communication

Traces
• Represented as a 6-tuple:
– NodeSet, N ∈ ℙfin Node
– ArrowSet, A ∈ ℙfin Arrow
– Labelling, L ∈ N → Label
– Valuation, V ∈ A → Value
– HeadMap, H ∈ A ⇀ N
– TailMap, T ∈ A ⇀ N

• A composition operator:

Traces

n2

a
n1

b
◦ =

n2

a n1

b

Traces
• A composition operator:

n2

n1

a

n3

n1

b = undefined ◦

Traces
• A composition operator:

• Lifted to sets of traces:
 T∗U = {t ◦ u | t∈T, u∈U}

n1

a

n3

a =

n1

a

n3

◦

A denotational semantics

〚-〛 : Command → ℙfin(Trace)

• C ::= ... | lock s in C | acq s | rel s

• 〚acq s〛 =

• 〚rel s〛 =

• 〚lock s in C〛 =

new s acq s rel s del sacq s rel s

Locks

acq s
own(s)own(s)

rel s
own(s)own(s)

own(s)

new s

own(s)

del s∗ 〚C〛 ∗

∩ lockconstraints(s)

Example

write(x,1)

write(x,2)
read(x,1)

rel s
rel s

acq s
acq s

new s

del s

new x

del x

fork

join

lock s in var x in {
 acq s; acq s;
 write(x,1); read(x,1);
 write(x,2); rel s
 rel s
}

• 〚acq s〛 = { |
 n ∈ Node,
 a1,a2,a3,a4 ∈ Arrow,
 a1,a2,a3,a4 all distinct }

Locks

acq s
own(s)own(s)

na1

a2

a3

a4

Variables
• C ::= ... | var x in C | write(x,v) | read(x,v)

write(x,2) write(x,4)

read(x,2)
read(x,4)

data(x,2)

new(x) del(x)

read(x,4)

data(x,4)

data(x,4)ack(x)

own(x)

ack(x)

ack(x)

own(x) own(x)

Variables
• C ::= ... | var x in C | write(x,v) | read(x,v)

write(x,2) write(x,4)

read(x,2)
read(x,4)

data(x,2)

new(x) del(x)

read(x,4)

data(x,4)

data(x,4)ack(x)

own(x)

ack(x)

ack(x)

own(x) own(x)

Variables
• C ::= ... | var x in C | write(x,v) | read(x,v)

write(x,2) write(x,4)

read(x,2)
read(x,4)

data(x,2)

new(x) del(x)

read(x,4)

data(x,4)

data(x,4)ack(x)

own(x)

ack(x)

ack(x)

own(x) own(x)

Variables
• C ::= ... | var x in C | write(x,v) | read(x,v)

• 〚read(x,v)〛 =

• 〚write(x,v)〛 =

• 〚var x in C〛 =

read(x,v)
ack(x)data(x,v)

write(x,v)
data(x,v)ack(x)

own(x) own(x)

own(x)

new x

own(x)

del x∗ 〚C〛 ∗

∩ varconstraints(x)

data(x,0) ack(x)

Example

write(x,1)

write(x,2)
read(x,1)

rel s
rel s

acq s
acq s

new s

del s

new x

del x

fork

join

lock s in var x in {
 acq s; acq s;
 write(x,1); read(x,1);
 write(x,2); rel s
 rel s
}

• 〚write(x,v)〛 =

Variables
write(x,v)

data(x,v)ack(x)
own(x) own(x)

write(x,v)own(x) own(x)

write(x,v)
data(x,v)ack(x)

own(x) own(x)

write(x,v)
ack(x)

own(x) own(x)

=

∪

∪

∪ ...
ack(x)

Assignments and assumptions
• 〚x := f(y1, ..., yn)〛 =

 ⋃{〚read(y1,v1); ... ; read(yn,vn); write(x,v)〛
 | f(v1,...,vn) = v }

• 〚assume p(x1, ..., xn)〛 =
 ⋃{〚read(x1,v1); ... ; read(xn,vn)〛
 | p(v1,...,vn) = true }

Sequential composition
• 〚C1;C2〛 = 〚C1〛 ∗seq 〚C2〛

where t1 ◦seq t2 is only defined when:

 outCtrl(t1) = inCtrl(t2)

and ∗seq is the lifted version of ◦seq

Sequential composition
• Examples:

= undefinedb ca d◦seq

=b ba d◦seq ba d

= ∗seq

Sequential composition
• 〚x:=5; assume x=6〛

read(x,6)
ack(x)

write(x,5)
ack(x)

own(x) own(x)

= read(x,6)
ack(x)

data(x,6)

write(x,5)

data(x,5)
ack(x)

own(x) own(x)

data(x,6)data(x,5)

Sequential composition
• 〚var x in {x:=5; assume x=6}〛 =

own(x)

new x

own(x)

del x

∩ varconstraints(x)

data(x,0) ack(x)

read(x,6)
ack(x)

data(x,6)

write(x,5)

data(x,5)
ack(x)

own(x) own(x)

∗ ∗

Parallel composition
• 〚C1||C2〛 =

where t1 ◦par t2 is only defined when:

 danglingCtrl(t1) ∩ danglingCtrl(t2) = ∅

and ∗par is the lifted version of ◦par

fork join∗seq (〚C1〛 ∗par 〚C2〛) ∗seq

Weak memory

Weak memory
var x in var y in {
 write(x,1); write(y,1);
 read(y,0) read(x,0)
}

write(x,1)

new x del x

write(y,1)

read(y,0)

read(x,0)

new y del y

fork join

Weak memory
var x in var y in {
 write(x,1); write(y,1);
 read(y,0) read(x,0)
}

write(x,1)

new x del x

write(y,1)

read(y,0)

read(x,0)

new y del y

fork join

Variables

write(x,2) write(x,4)

read(x,2)
read(x,4)

data(x,2)

new(x) del(x)

read(x,4)

data(x,4)

data(x,4)ack(x)

own(x)

ack(x)

ack(x)

own(x) own(x)

Triangle Property.
If write1 read
and read write2
then write1 write2

own(x)
own(x)

own(x)

Variables

write(x,2) write(x,4)

read(x,2)
read(x,4)

data(x,2)

new(x) del(x)

read(x,4)

data(x,4)

data(x,4)ack(x)

own(x)

ack(x)

ack(x)

own(x)

Triangle Property.
If write1 read
and read write2
then write1 write2

Relaxed Triangle Property.
If write1 read
and read write2
then write1 + write2

Weak memory
var x in var y in {
 write(x,1); write(y,1);
 read(y,0) read(x,0)
}

write(x,1)

new x del x

write(y,1)

read(y,0)

read(x,0)

new y del y

fork join

Summary
• A model of concurrency, communication and

weak memory, based on dataflow

• Next steps:
– automate the generation of traces?
– use as a basis for a program logic for weak

memory?

Spare slides

Use of separation logic laws
• We can use laws of separation logic to prove

theorems about our model, such as
commutativity of local variable declarations

Use of separation logic laws
• 〚var x in C〛 =

own(x)

new x

own(x)

del x∗ 〚C〛 ∗

∩ varconstraints(x)

data(x,0) ack(x)

Use of separation logic laws
• 〚var x in C〛 = (〚C〛 ∗ ndx) ∩ vx

• 〚var y in var x in C〛 = 〚var x in var y in C〛 ?

• (((〚C〛 ∗ ndx) ∩ vx) ∗ ndy) ∩ vy

= (〚C〛 ∗ ndx ∗ ndy) ∩ vx ∩ vy

• (P∧Q) ∗ R = P∗R ∧ Q∗R
 (provided R is precise)

Communication

Well-behaved channel

c!3

c?3

c!7

c?7

c!9

c?9

open c close c

Lossy channel

c!3

c?3

c!7 c!9

c?9

open c close c

Singly-buffered channel

c!3

c?3

c!7

c?7

c!9

c?9

open c close c

Stuttering channel

c!3

c?3 c?3

c!9

c?9

open c close c

Re-ordering channel

c!3

c?7

c!7

c?3

c!9

c?9

open c close c

