
0

The Design and Implementation of a Verification Technique for GPU
Kernels

ADAM BETTS, Imperial College London
NATHAN CHONG, Imperial College London
ALASTAIR F. DONALDSON, Imperial College London
JEROEN KETEMA, Imperial College London
SHAZ QADEER, Microsoft Research Redmond
PAUL THOMSON, Imperial College London
JOHN WICKERSON, Imperial College London

We present a technique for the formal verification of GPU kernels, addressing two classes of correctness
properties: data races and barrier divergence. Our approach is founded on a novel formal operational se-
mantics for GPU kernels termed synchronous, delayed visibility (SDV) semantics, which captures the exe-
cution of a GPU kernel by multiple groups of threads. The SDV semantics provides operational definitions
for barrier divergence and for both inter- and intra-group data races. We build on the semantics to develop
a method for reducing the task of verifying a massively parallel GPU kernel to that of verifying a sequen-
tial program. This completely avoids the need to reason about thread interleavings, and allows existing
techniques for sequential program verification to be leveraged. We describe an efficient encoding of data
race detection and propose a method for automatically inferring the loop invariants that are required for
verification. We have implemented these techniques as a practical verification tool, GPUVerify, that can be
applied directly to OpenCL and CUDA source code. We evaluate GPUVerify with respect to a set of 162 ker-
nels drawn from public and commercial sources. Our evaluation demonstrates that GPUVerify is capable of
efficient, automatic verification of a large number of real-world kernels.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs

General Terms: Theory, Verification

Additional Key Words and Phrases: Verification, GPUs, concurrency, data races, barrier synchronization

ACM Reference Format:
Betts, A., Chong, N., Donaldson, A. F., Ketema, J., Qadeer, S., Thomson, P., Wickerson, J. 2014. The Design
and Implementation of a Verification Technique for GPU Kernels. ACM Trans. Program. Lang. Syst. 0, 0,
Article 0 (December 2014), 49 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
In recent years, massively parallel accelerator processors, primarily graphics process-
ing units (GPUs) from companies such as AMD, Nvidia and ARM, have become widely

This work was supported by the EU FP7 STREP project CARP (project number 287767), by EPSRC project
EP/G051100/2, and by two EPSRC-funded PhD studentships. Part of the work was carried out while Alastair
Donaldson was a Visiting Researcher at Microsoft Research Redmond. This paper is a revised and extended
version of [Betts et al. 2012].
Author’s addresses: A. Betts, N. Chong, A. F. Donaldson, J. Ketema, P. Thomson, J. Wickerson, Department
of Computing, Imperial College London, UK; S. Qadeer, Microsoft Research, Redmond, USA.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 0164-0925/2014/12-ART0 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

0:2 Adam Betts et al.

available to end-users. Accelerators offer significant compute power at a low cost,
and algorithms in domains such as medical imaging [Cates et al. 2004], computer
vision [Salas-Moreno et al. 2013], computational fluid dynamics [Harris 2004] and
DNA sequence alignment [Li and Durbin 2009; Klus et al. 2012] can be accelerated
to beat CPU performance, sometimes by orders of magnitude. Importantly, GPUs en-
able performance improvements not only in terms of run-time, but also energy effi-
ciency [Lokhmotov 2011].

GPUs present a serious challenge for software developers. A system may contain one
or more of the plethora of devices on the market. Applications must exhibit portable
correctness, operating correctly on any GPU accelerator. Software bugs in media, en-
tertainment and business domains can have serious financial implications, and bugs
in safety critical domains, such as medical applications, can be more drastic still. Be-
cause GPUs are being used increasingly in such areas, there is an urgent need for
verification techniques to aid the construction of correct GPU software.

In this work we address the problem of static verification of GPU kernels written
using mainstream programming models such as OpenCL [Khronos OpenCL Working
Group 2012], CUDA [Nvidia 2012a] and C++ AMP [Microsoft Corporation 2012]. We
focus on two classes of bugs that make writing correct GPU kernels harder than writ-
ing correct sequential code: data races and barrier divergence.

In contrast to the well-understood notion of data races, there does not appear to
be a formal definition of barrier divergence for GPU programming. Our work gives a
precise characterization of barrier divergence via an operational semantics based on
predicated execution, which we call synchronous, delayed visibility (SDV) semantics.
The SDV semantics models the execution of a kernel by multiple groups of threads,
and provides operational definitions for inter- and intra-group data races as well as
barrier divergence. While predicated execution has been used for code generation by
GPU kernel compilers, our work is the first to use predicated operational semantics
for the purpose of specification and verification.

Founded on the SDV semantics, we present a verification method which transforms
a massively parallel GPU kernel into a sequential program such that correctness of the
sequential program implies data race- and barrier divergence-freedom of the kernel.
Our method achieves scalability by exploiting the fact that data races and barrier
divergence are pairwise properties, allowing a reduction to an arbitrary pair of threads.
For this reduction to be sound, it is necessary to use abstraction to model the possible
effects of other threads. We consider two practical abstraction methods, the adversarial
abstraction and the more refined equality abstraction, and prove formally that the
reduction to a pair of threads is sound when combined with these abstractions.

Reducing the analysis of a highly concurrent program to the verification of a se-
quential program completely avoids the need to reason about thread interleavings, and
enables reuse of existing verification techniques for sequential programs. We present
novel heuristics for automatically inferring loop invariants required for verification.

We discuss the design and implementation of GPUVerify, a practical tool for ver-
ifying GPU kernels using our method, which can be applied directly to OpenCL and
CUDA source code. GPUVerify builds on the Clang/LLVM compiler infrastructure1, the
Boogie verification system [Barnett et al. 2005] and the Z3 theorem prover [de Moura
and Bjørner 2008].

We have used GPUVerify to analyze a set of 162 OpenCL and CUDA kernels. We
summarize an experiment with the initial implementation of GPUVerify (which was
limited to intra-group race checking [Betts et al. 2012]) where we divided these kernels
into separate training and evaluation sets, tuned the capabilities of the tool to the

1http://clang.llvm.org/

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

The Design and Implementation of a Verification Technique for GPU Kernels 0:3

training set and then ran the tool blindly on the evaluation set (none of our team
were familiar with the kernels in the evaluation set). We found that fully automatic
verification was achieved for 49 out of 70 kernels from the evaluation set (69%). We
also present a comparison of the initial GPUVerify implementation with PUG, a formal
analysis tool for CUDA kernels by Li and Gopalakrishnan [2010]. GPUVerify performs
competitively with PUG when verifying correct kernels and rejects defective kernels in
several cases where PUG reports false negatives. Additionally, the equality abstraction
offered by GPUVerify is more refined than the shared state abstraction supported by
PUG, allowing verification of real-world kernels for which PUG reports false positives.

We also report on a more recent version of GPUVerify, which supports inter-group
race checking, to analyze our benchmarks, using a combination of improved invariant
inference and manual invariant annotations to achieve verification across the entire
benchmark set. We report on the performance of GPUVerify, assess the overhead asso-
ciated with performing inter-group race checking on top of intra-group race checking,
and compare the performance and precision of GPUVerify when the adversarial vs.
equality abstractions are used.

In summary, our paper makes the following contributions:

— Synchronous, delayed visibility (SDV) semantics: a formal operational semantics for
GPU kernels based on predicated execution, inter- and intra-group data-race free-
dom, and barrier divergence freedom.

— The two-thread reduction: an abstract version of the SDV semantics that models
a pair of threads, and a soundness theorem showing that data race- and barrier
divergence-freedom of a massively parallel kernel according to the SDV semantics
can be established by proving data race- and barrier divergence-freedom for each
pair of threads using the abstract semantics.

— A verification method for GPU kernels which exploits the SDV semantics and two-
thread reduction to transform analysis to a sequential program verification task,
allowing reuse of existing analysis techniques based on verification condition gener-
ation and automated theorem proving.

— A method for automatically inferring the invariants needed for our verification
method.

— An extensive evaluation of our verifier on a collection of 162 publicly available and
commercial GPU kernels.

Contributions in Relation to Prior Work
We make explicit how the current article significantly extends a previous conference
version [Betts et al. 2012] and complements other papers that have arisen from the
GPUVerify project [Collingbourne et al. 2013; Chong et al. 2013; Bardsley and Donald-
son 2014; Bardsley et al. 2014a; Chong et al. 2014].

Treatment of Multi-Group GPU Kernels. The original presentation of our verification
method was restricted to the analysis of single-group GPU kernels. Here we treat the
multi-group case by extending the formal semantics for kernels, implementing inter-
group race checking in the GPUVerify tool, and conducting an experimental evaluation
to assess the overhead associated with handling multiple groups vs. just a single group.

A Full Soundness Proof for the Two-Thread Reduction. The scalability of our verifica-
tion method hinges on reducing the analysis to consider an arbitrary pair of threads.
Only a short proof sketch for the soundness of this “two-thread reduction” was pre-
sented in our prior work. In the current article we present, for the first time, a detailed
formal soundness proof. This is an important contribution, because a similar reduction

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

0:4 Adam Betts et al.

is also employed by other methods, such as the PUG verifier of Li and Gopalakrishnan
[2010].

Mechanical Checking of the Language and Semantics Definitions. We have used the
Isabelle proof assistant to type check all the definitions, semantic rules and theorem
statements appearing in the paper. The result is published in the Archive of Formal
Proofs [Wickerson 2014]. We have also conducted a partial mechanization of the sound-
ness proof for the two-thread reduction.

New Experimental Evaluation. Rather than repeating the extensive experimental
evaluation presented in our prior work [Betts et al. 2012], we instead summarize the
results of this evaluation and present a new evaluation in which we assess the verifica-
tion performance of a more recent version of the GPUVerify tool, as well as evaluating
the overhead associated with inter-group race checking and performance characteris-
tics of two shared state abstractions used by the tool.

Relation to Other Papers Arising from the GPUVerify Project. In addition to the orig-
inal version of the paper [Betts et al. 2012], we have published three technical articles
that extend the GPUVerify verification method, each in a distinct manner [Colling-
bourne et al. 2013; Chong et al. 2013; Bardsley and Donaldson 2014]. Each of these
extensions is separate from, and complementary to, the new contributions made in the
current article.

Following our prior work [Betts et al. 2012], the results presented in this paper apply
to structured GPU kernels expressed using if and while constructs. In related work,
we have generalized the lock-step execution semantics used by our method to apply to
unstructured control flow graphs, allowing the technique to be applied at the level of
the intermediate representation used by a compiler [Collingbourne et al. 2013].

We have proposed barrier invariants [Chong et al. 2013] as a mechanism to allow
users to improve on the precision offered by the adversarial and equality abstractions
used in this work. The shared state abstractions discussed here are straightforward
to apply automatically, but are inflexible. Barrier invariants are instead provided by
a user; they offer a tunable, but heavy-weight and manually-driven, approach to GPU
kernel verification.

These works, like the current contribution, are restricted to a barrier synchronizing
programming model. We have conducted a preliminary investigation into lifting the
method beyond this model to cater for kernels in which threads communicate using
atomic operations and warp-based synchronization [Bardsley and Donaldson 2014].

As well as technical articles that extend the core verification method, a recent
tool paper discusses engineering experience and insight gained during the GPUVer-
ify project [Bardsley et al. 2014a], and an invited article provides a tutorial overview
of the technique [Donaldson 2014]. We have also applied GPUVerify as a component in
an automatic verification method for parallel prefix sum kernels [Chong et al. 2014].

Reproducibility
The GPUVerify tool is open source and available online:

http://multicore.doc.ic.ac.uk/tools/GPUVerify
On the tool web page we make available the versions of GPUVerify used for the exper-
iments reported in this paper, together with the non-commercial benchmarks used for
our evaluation.

2. GPU KERNEL PROGRAMMING
A typical GPU (see Figure 1) consists of a large number of simple processing elements
(PEs), sometimes referred to as cores. Subsets of the PEs are grouped together into

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

The Design and Implementation of a Verification Technique for GPU Kernels 0:5

Multiprocessor 1

PE 1

Private
memory

Shared memory

GPU

Global off-chip GPU memory
C

PU
C

PU
 m

em
ory

. . .

. . .

PE M

Private
memory

Multiprocessor N

PE 1

Private
memory

Shared memory
. . .

PE M

Private
memory

Fig. 1. Schematic overview of a typical GPU architecture

Table I. Equivalent terms for what we shall call
private, shared and global memory in CUDA,
OpenCL and C++ AMP

Term CUDA OpenCL C++ AMP
private local private local
shared shared local tile static
global global global global

Table II. Equivalent terms for thread, group and (where appli-
cable) sub-group in CUDA, OpenCL and C++ AMP

Term CUDA OpenCL C++ AMP
thread thread work-item thread
group thread block work-group tile
sub-group warp N/A N/A

multiprocessors, such that all PEs within a multiprocessor execute in lock-step, in sin-
gle instruction multiple data (SIMD) fashion. Distinct multiprocessors on a GPU can
execute independently. Each PE is equipped with a small private memory, and PEs
located on the same multiprocessor can access a portion of shared memory dedicated
to that multiprocessor. All PEs on the GPU have access to a large amount of off-chip
memory known as global memory, which is usually separate from main CPU memory.

Today, there are three major GPU programming models: OpenCL, an industry stan-
dard proposed by the Khronos OpenCL Working Group [2012] and widely supported
(in particular, OpenCL is AMD’s primary high-level GPU programming model); CUDA,
from Nvidia [2012a]; and C++ AMP, from Microsoft [2012]. Table I summarizes the
terms used in the programming models to refer to private, shared and global memory
as described above.

Threads and Groups. All three programming models provide a similar high-level
abstraction for mapping computation across GPU hardware, centered around the no-
tion of a kernel program being executed by many parallel threads, together with a
specification of how these threads should be partitioned into groups. The kernel is a
template specifying the behavior of an arbitrary thread, parameterized by thread and
group id variables. Expressions over these ids allow distinct threads to operate on sep-
arate data and follow differing execution paths through the kernel. Threads in the
same group can synchronize during kernel execution, while threads in distinct groups
execute completely independently.

The runtime environment associated with a GPU programming model must inter-
face with the driver of the available GPU to schedule execution of kernel threads across
processing elements. Typically each group of threads is assigned to one of the multi-
processors of the GPU, so that distinct groups execute in parallel on different multipro-
cessors. If the number of threads in a group is N and the number of PEs in a multipro-

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

0:6 Adam Betts et al.

Table III. Predicated forms for conditionals and loops

Program fragment Predicated form
if (lid > N)
x = 0;

else
x = 1;

p = (lid > N);
p ⇒ x = 0;
!p ⇒ x = 1;

while (i < x) {
i++;

}

p = (i < x);
while (∃ t::t.p) {
p ⇒ i++;
p ⇒ p = (i < x);

}

cessor is M , then a group is divided into
⌈
N
M

⌉
sub-groups, each consisting of up to M

threads. Execution of a single group on a multiprocessor then proceeds by scheduling
the sub-groups in an interleaving manner. Each thread in a given sub-group is pinned
to a distinct PE, and all threads in the same sub-group execute together in lock-step,
following exactly the same control path. Distinct sub-groups may follow different con-
trol paths.

Table II summarizes the specific terms used by the three main GPU programming
models to refer to threads, groups and (in the case of CUDA) sub-groups. OpenCL and
C++ AMP aim for portability across GPUs from multiple vendors, so do not allow a
kernel to query the device-specific size or structure of thread sub-groups.2 As CUDA is
Nvidia-specific, CUDA programmers can write kernels that make assumptions about
the division of threads into sub-groups. However, such kernels will not easily port to
general-purpose GPU programming languages, and may break when executed on fu-
ture generations of Nvidia hardware using a different sub-group size. Thus GPU ker-
nels that do not make assumptions about the size of thread sub-groups are preferable.

Predicated Execution. Recall that the PEs in a GPU multiprocessor execute in lock-
step, as a SIMD processor array. Threads within a sub-group occupy the PEs of a
multiprocessor, and thus must also execute in lock-step. Conditional statements and
loops through which distinct threads in the same sub-group should take different paths
must therefore be simulated, and this is achieved using predicated execution.

Consider the conditional statement in the top-left of Table III, where lid denotes the
local id of a thread within its group and x is a local variable stored in private memory.
This conditional can be transformed into the straight-line code shown in the top-right
of the figure, which can be executed by a sub-group in lock-step. The meaning of a
statement predicate ⇒ command is that a thread should execute command if predicate
holds for that thread, otherwise the thread should execute a no-op. All threads evalu-
ate the condition lid > N into a local Boolean variable p, then execute both the then
and else branches of the conditional, predicated by p and !p, respectively.

Loops are turned into predicated form by dictating that all threads in a sub-group
continue to execute the loop body until the loop condition is false for all threads in
the sub-group, with threads for whom the condition does not hold becoming disabled.
This is illustrated for the loop in the bottom-left of Table III (where i and x are local
variables) by the code fragment shown in the bottom-right of the figure. First, the
condition i < x is evaluated into local variable p. Then the sub-group loops while p
remains true for some thread in the sub-group, indicated by ∃t::t.p. The loop body
is predicated by p, and thus has an effect only for enabled threads.

We present precise operational semantics for predicated execution in Section 3.

2The recent OpenCL 2.0 extension specification [Khronos OpenCL Working Group 2014b, Section 9.17,
p. 133] contains an optional extension to support sub-groups of threads.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

The Design and Implementation of a Verification Technique for GPU Kernels 0:7

Barrier Synchronization. When a thread t1 writes to an address in shared or global
memory, the result of this write is not guaranteed to become visible to another thread
t2 unless t1 and t2 synchronize. As noted above, there is no mechanism for threads in
distinct groups to synchronize during kernel execution.3 Threads in the same group
can synchronize via barriers. Intuitively, a kernel thread belonging to group g waits at
a barrier statement until every thread in g has reached the barrier. Passing the barrier
guarantees that all writes to shared and global memory by threads in g occurring
before execution of the barrier have been committed.

Our analysis through writing GPU kernels and talking to GPU developers is that
there are two specific classes of bugs that make writing correct GPU kernels more
difficult than writing correct sequential code: data races and barrier divergence.

2.1. Data Races
We distinguish between two kinds of data races in GPU kernels. An inter-group data
race occurs if there are two threads t1 and t2 from different groups such that t1 writes
to a location in global memory and t2 writes to or reads from this location. An intra-
group data race occurs if there are two threads t1 and t2 from the same group such
that t1 writes to a location in global or shared memory, t2 writes to or reads from this
location, and no barrier statement is executed between these accesses. Races can lead
to non-deterministic kernel behavior, and computation of incorrect results.

2.2. Barrier Divergence
If threads in the same group diverge, reaching different barriers as in the following
kernel fragment:

if ((lid%2) == 0)
barrier(); // Even threads hit first barrier

else
barrier(); // Odd threads hit second barrier

then kernel behavior is undefined. According to CUDA [Nvidia 2012a]:

“execution is likely to hang or produce unintended side effects.”

While there is clarity across all programming models as to the meaning of barrier
divergence in loop-free code, the situation is far from clear for code with loops. Consider
the example kernel shown on the left of Figure 2. This kernel is intended to be executed
by one group of four threads, and declares an array A of two shared buffers, each of
size four. Private variable buf is an index into A, representing the current buffer. The
threads execute a nest of loops. On each inner loop iteration a thread reads the value
of the current buffer at index lid+1 modulo 4 and writes the result into the non-
current buffer at index lid. A barrier is used to avoid data races on A. Notice that
local variables x and y are set to 4 and 1, respectively, for thread 0, and to 1 and
4, respectively, for all other threads. As a result, we expect thread 0 to perform four
outer loop iterations, each involving one inner loop iteration, while other threads will
perform a single outer loop iteration, consisting of four inner loop iterations.

According to the guidance in the CUDA documentation such a kernel appears to
be valid: all threads will hit the barrier statement four times. Taking a snapshot of
the array A at each barrier and at the end of the kernel, we might expect to see the

3In OpenCL 2.0, limited forms of inter-work-group synchronization can be implemented using atomic op-
erations [Khronos OpenCL Working Group 2014a]. However, an inter-work-group barrier still cannot be
reliably implemented due to lack of progress guarantees between groups.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

0:8 Adam Betts et al.

shared int A[2][4];

void kernel() {
int buf, x, y, i, j;
x = (lid == 0 ? 4 : 1);
y = (lid == 0 ? 1 : 4);
buf = i = 0;
while (i < x) {
j = 0;
while (j < y) {
barrier();
A[1-buf][lid]
= A[buf][(lid+1)%4];

buf = 1 - buf;
j++;

}
i++;

}
}

...
p = (i < x);
while (∃ t::t.p) {
p ⇒ j = 0;
q = p && (j < y);
while (∃ t::t.q) {
q ⇒ barrier();
q ⇒ A[1-buf][lid]

= A[buf][(lid+1)%4];
q ⇒ buf = 1 - buf;
q ⇒ j++;
q ⇒ q = p && (j < y);

}
p ⇒ i++;
p ⇒ p = (i < x);

}

Fig. 2. Illustration of the subtleties of barriers in nested loops

following:

A = {{0, 1, 2, 3}, {−,−,−,−}}
→ {{0, 1, 2, 3}, {1, 2, 3, 0}} → {{2, 3, 0, 1}, {1, 2, 3, 0}}

→ {{2, 3, 0, 1}, {3, 0, 1, 2}} → {{0, 1, 2, 3}, {3, 0, 1, 2}} ,

under the assumption that, during each inner loop iteration, threads 1, 2 and 3 wait at
the barrier until thread 0 reaches the barrier again by proceeding to the next iteration
of the outer loop.

However, consider the predicated version of the kernel shown in part on the right of
Figure 2. This is the form in which the kernel executes on an Nvidia GPU. The four
threads comprise a single sub-group. All threads will enter the outer loop and execute
the first inner loop iteration. Then thread 0 will become disabled (q becomes false)
for the inner loop. Thus the barrier will be executed with some, but not all, threads
in the sub-group enabled. On Nvidia hardware, a barrier is compiled to a bar.sync
instruction in the PTX (Parallel Thread Execution) assembly language. According to
the PTX documentation [Nvidia 2012b],

“if any thread in a [sub-group] executes a bar instruction, it is as if all the
threads in the [sub-group] have executed the bar instruction.”

Thus threads 1, 2 and 3 will not wait at the barrier until thread 0 returns to the inner
loop: they will simply continue to execute past the barrier, performing three more inner
loop iterations. In effect, thread 0 is disabled while threads 1, 2 and 3 perform these
additional loop iterations, because in practice the threads execute in lock step. This
yields the following sequence of state-changes to A:

A = {{0, 1, 2, 3}, {−,−,−,−}}
→ {{0, 1, 2, 3}, {1, 2, 3, 0}} → {{0, 3, 0, 1}, {1, 2, 3, 0}}

→ {{0, 3, 0, 1}, {1, 0, 1, 0}} → {{0, 1, 0, 1}, {1, 0, 1, 0}} .

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

The Design and Implementation of a Verification Technique for GPU Kernels 0:9

Table IV. The litmus test of Figure 2 yields a range of
results across varying platforms

Architecture Final state of A
Nvidia Tesla C2050 {{0, 1, 0, 1}, {1, 0, 1, 0}}
AMD Tahiti {{0, 1, 2, 3}, {1, 2, 3, 0}}
ARM Mali-T600 {{0, 1, 2, 3}, {3, 0, 1, 2}}
Intel Xeon X5650 {{∗, ∗, ∗, 1}, {3, 0, 1, 2}}

After the inner loop exits, thread 0 becomes enabled, but all other threads become
disabled, for a further three outer loop iterations, during each of which thread 0 exe-
cutes a single inner loop iteration. The state of A thus remains {{0, 1, 0, 1}, {1, 0, 1, 0}}.

The OpenCL standard [Khronos OpenCL Working Group 2012] gives a better,
though still informal definition, stating:

“If barrier is inside a loop, all [threads] must execute the barrier for each
iteration of the loop before any are allowed to continue execution beyond the
barrier,”

which at least can be interpreted as rejecting the example of Figure 2.
To investigate this issue in practice, we implemented the litmus test of Figure 2 in

both CUDA and OpenCL and (with help from contacts in the GPU industry; see Ac-
knowledgments) ran the test on GPU architectures from Nvidia, AMD and ARM, and
on an Intel Xeon CPU (for which there is an OpenCL implementation). Our findings
are reported in Table IV. Observe that the test result does not agree between any two
vendors. The Nvidia results match our above prediction. The AMD result also appears
to stem from predicated execution. ARM’s Mali architecture does not use predicated
execution [Lokhmotov 2011], so perhaps unsurprisingly gives the ‘intuitive’ result we
might expect. For Intel Xeon, we found that different threads reported different values
for certain array elements in the final shared state, indicated by asterisks in Table IV,
which we attribute to cache effects.

The example of Figure 2 is contrived in order to be small enough to explain concisely
and examine exhaustively. It does, however, illustrate that barrier divergence is a sub-
tle issue, and that non-obvious misuse of barriers can compromise correctness and
lead to implementation-dependent results. Clearly a more rigorous notion of barrier
divergence is required than the informal descriptions found in the CUDA and OpenCL
documentation.

We give a precise, operational definition for barrier divergence in Section 3 which
clears up this ambiguity. In essence, our definition states that if a barrier is encoun-
tered by a group of threads executing in lock-step under a predicate, the predicate
must hold uniformly across the group, i.e., the predicate must be true for all threads,
or false for all threads. This precise definition facilitates formal verification of barrier
divergence-freedom and is incorporated in the GPUVerify tool we present in Section 5.
GPUVerify can accurately analyze the kernel of Figure 2, flagging the barrier diver-
gence issue.

3. OPERATIONAL SEMANTICS FOR GPU KERNELS
Our aim is to verify data race- and barrier divergence-freedom for GPU kernels. In
order to do this, we require an operational semantics for GPU kernels that specifies
precisely the conditions under which data races and barrier divergence occur.

For checking barrier divergence, the least conservative assumption we can safely
make is that a thread group consists of a single sub-group, so that all threads in a
group execute in lock-step. Thus, when analyzing barrier divergence-freedom for a
kernel in which each thread group consists ofN threads, we assume for the purposes of
analysis that the sub-group size is also N (so that each thread group trivially contains

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

0:10 Adam Betts et al.

just one sub-group), regardless of the sub-group size associated with any particular
architecture. We can then define barrier divergence to occur if and only if the lock-
step thread group executes a barrier and the threads are not uniformly enabled: the
current predicate of execution holds for some threads but not others. Clearly if we
can prove barrier divergence-freedom for a kernel under this strong assumption of
lock-step behavior, the kernel will be free from barrier divergence if thread groups are
divided into sub-groups at a finer level of granularity.

For example, when analyzing barrier divergence for a kernel in which thread blocks
have size 1024, we assume that the threads execute in lock step as a single sub-group
size of 1024. Recent GPUs from AMD, Nvidia and ARM exhibit sub-group sizes of 64,
32 and 1, respectively [AMD 2013; Nvidia 2012a; Lokhmotov 2011]. Our worst-case
assumption thus caters for the AMD scenario with the largest sub-group size, as well
as the smaller sub-group sizes exhibited by Nvidia and ARM GPUs. Furthermore, the
conservative assumption also caters for possible sub-group sizes associated with any
other (present or future) architectures.

For race checking, the scenario is reversed: the least conservative safe assumption
is that threads in the same group interleave completely asynchronously between pairs
of barriers, with no guarantees as to the relative order of statement execution between
threads (so that essentially every sub-group consists of just a single thread). This is
the case, for example, on ARM’s Mali GPU architecture [Lokhmotov 2011]. Clearly
if race-freedom can be proved under this most general condition, then a kernel will
remain race-free if, in practice, certain threads in a group execute synchronously.

We propose a semantics which we call synchronous, delayed visibility (SDV). Under
SDV, group execution is synchronous, allowing precise barrier divergence checking.
The shared memory accesses of all threads are logged, and when a thread writes to
shared memory, the visibility of this write to other threads in the group is delayed until
the group reaches a barrier. Delaying the visibility of writes ensures that threads do
not see a synchronized view of shared and global memory between barriers, catering
for the fact that execution might not really be fully synchronous. Logging accessed
locations allows racing accesses to be detected. The SDV semantics does not attempt
to directly capture the manner in which threads execute on real GPU architectures
which exhibit a mixture of synchronous and interleaving execution in practice; instead
the semantics provides a basis for proving data race- and barrier divergence-freedom.

To describe the SDV semantics formally, we define the Kernel Programming Lan-
guage (KPL), which captures the essential features of mainstream languages for writ-
ing GPU kernels such as CUDA and OpenCL.

3.1. Syntax
The syntax for KPL is shown in Figure 3. A KPL kernel declares the number of groups
(groups: number) and the number of threads in each group (threads: number) that will
execute the kernel. Thus, the total number of threads that will execute the kernel is
equal to the number of declared groups multiplied by the number of declared threads.
The group and thread declarations are followed by a list of procedure declarations and
a main statement. Each procedure has a name, a single parameter and a body; for
brevity we do not model multiple parameters or return values.

For simplicity, but without loss of generality, threads have access to a single shared
array sh which we refer to as global memory. We make no distinction between shared
and global memory (cf. Figure 1) in our programming language; from a verification
perspective, it suffices to view shared memory as being part of global memory (by
employing the ids of groups in the calculation of memory addresses). We assume that
every local variable and each indexable element of global memory has type Word, the
type of memory words. Any value of type Word can be interpreted as an integer or a

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

The Design and Implementation of a Verification Technique for GPU Kernels 0:11

kernel ::= groups: number
threads: number
proc∗

main: stmt
proc ::= procedure name var stmt
stmt ::= basic stmt | stmt; stmt

| local name stmt
| if local expr stmt else stmt
| while local expr stmt
| while local expr stmt
| call name(local expr)
| barrier
| break | continue | return

basic stmt ::= loc := local expr
| loc := sh[local expr]
| sh[local expr] := local expr

local expr ::= lid | gid | loc
| constant literal of type Word
| local expr op local expr

loc ::= name | V
name ::= any valid C name
number ::= any positive number

Fig. 3. Syntax for Kernel Programming Language

Boolean. In practice, Word will also represent floating point numbers; structured data
will be represented by sequences of values of type Word.

Local expressions are built from constant literals, locations, and the built-in vari-
ables lid and gid which refer to the local id of a thread within its group and the id of
the group in which the thread occurs, respectively. Compound expressions are build
using an unspecified set of binary operators; the syntax could easily be extended to
accommodate operators of other arities.

A thread may update one of its local variables by performing a local computation
(v := e, where e is a local expression), or by reading from global memory (v := sh[e],
where e is a local expression determining which index to read from). A thread may
also update global memory (sh[e1] := e2, where e1, e2 are expressions over local vari-
ables, with e1 determining which index to write to, and e2 the value to be written). For
simplicity, we assume that all local variables are scalar.

Compound statements are constructed via sequencing, conditional branches, lo-
cal variable introduction, loops, and procedure calls in the standard way. KPL pro-
vides a number of other statements: barrier, which is used to synchronize threads
in a group; break, which causes execution to break out of the closest enclosing loop;
continue, which causes execution to jump to the head of the closest enclosing loop; and
return, which causes execution to return from the closest enclosing procedure call.

Figure 3 specifies two syntactic elements which should not appear directly in a KPL
program; they are used in the semantic rules of Figure 6 which we will explain in
Section 3.2. These are: a special while statement, used to model the dynamic seman-
tics of while loops in which we have to distinguish between the first and subsequent
iterations of a loop, and a set V of locations from which storage for local variables is
allocated as they come into scope dynamically.

We assume that programs are well-formed according to the usual rules, e.g., state-
ments should only refer to declared variables and variable introduction should not

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

0:12 Adam Betts et al.

hide a variable introduced earlier in an enclosing scope. In addition, we require the
main statement not to contain a return; this non-consequential restriction simplifies
our presentation somewhat (it avoids having to apply the function relim of Figure 6,
discussed in Section 3.2 below, to the main statement).

We do not formalize features of GPU kernels such as multi-dimensional groups and
arrays. However, our verification method and implementation, described in Section 5,
handles both.

3.2. Semantics
Given a function f : A→ B and elements a ∈ A, b ∈ B, we write f [a 7→ b] to denote the
function g : A→ B such that g(x) = f(x) for all x ∈ A \ {a}, and g(a) = b otherwise. We
abbreviate f [a 7→ b][c 7→ d] with a 6= c to f [a 7→ b, c 7→ d]. Viewing a tuple with named
components as a function mapping names to element values, we also use this notation
to specify updates to tuples. We use 〈s1, s2, . . . , sk〉 to denote a sequence of length k, and
write 〈〉 for the empty sequence. We write s : ss for a sequence whose first element is s,
and whose remaining elements form the sequence ss; the operator ‘:’ associates to the
right.

In our semantics, each thread is equipped with a shadow copy of global memory. At
the start of kernel execution, the shadow memory of all threads is identical. During
execution, a thread reads and modifies its shadow memory locally, and maintains a
read set and a write set recording those addresses in global memory that the thread
has accessed. During each access the read and write sets are checked for data races.
If a race has occurred, execution aborts. When a barrier statement is reached with all
threads in a group enabled, the write sets are used to build a consistent view of global
memory between the threads in a group, the shadow memories are all updated to agree
with this view, and the read and write sets are cleared with regard to the accesses of
threads within groups.

In what follows let P be a KPL kernel.

3.2.1. Thread, Group and Kernel States. Let gs denote the number of groups executing P ,
specified via groups: gs in the definition of P . Similarly, let ts denote the number of
threads in each group, specified via threads: ts. Let G denote the set {0, 1, . . . , gs − 1},
and for each i ∈ G let Ti denote the set {0, 1, . . . , ts − 1}.4 Together, G and T specify the
identifiers of all the threads running the kernel, via the function

tids(G, T) , {(i, j) | i ∈ G ∧ j ∈ Ti}.

We now define thread, group and kernel states.

Thread States. A thread state is a tuple (l, sh, R,W) where:

— l : V → Word is the local variable store of the thread (recall that V is a set of loca-
tions); included are locations gid and lid specifying, respectively, the id of the group
to which the thread belongs, and the id of the thread within this group.

— sh : N→Word is the shadow copy of global memory owned by the thread.
—R,W ⊆ N are the read and write sets of the thread recording the global addresses the

thread has accessed since the last barrier; these sets are used to detect intra-group
data races.

We use τ to denote a thread state, and τ.l, τ.sh, τ.R, τ.W to refer to the components
of τ . The set of all thread states is denoted by ThreadStates. Given a local expression

4Observe that it is not strictly necessary to parameterize T in i, as Ti = {0, 1, . . . , ts − 1} for all i ∈ G.
However, the parameterization will simplify the presentation of the kernel abstractions presented below.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

The Design and Implementation of a Verification Technique for GPU Kernels 0:13

e and a thread state τ , we write eτ for the result of evaluating e according to τ.l. We
do not provide a concrete definition of eτ , which depends on the nature of the base
type Word and the available operators, except we specify that, for a storage location v,
vτ = τ.l(v).

Group States. A group state of a group i ∈ G is a tuple (γts , R,W) where:

— γts : Ti → ThreadStates records a thread state for each thread in group i.
—R,W ⊆ N × Ti are the read and write sets of group i. These are used to detect inter-

group data races. Each element (x, j) records a global address x accessed by thread j
in the group since the start of the kernel. It is necessary to store the local id j so that
when we later reduce executions to just two threads, accesses by threads other than
the two selected ones can be identified and removed from R and W .

We use γ (without a subscript) to denote a group state. Given γ = (γts , R,W), we
use γ(j) to refer to γts(j) and we refer to R and W by γ.R and γ.W , respectively. A
group state γ of a group i is valid if γ(j).l(gid) = i and γ(j).l(lid) = j for all j ∈ Ti,
i.e., knowledge of the group id i is consistent across the threads in the group and each
thread has a unique local id corresponding to its location in the group.

The set of all valid group states for a group i is denoted GroupStatesi, and we use
GroupStates to denote

⋃
i∈G GroupStatesi, the set of all valid group states.

Kernel States. A predicated statement is a pair (s, p), with s ∈ stmt and p ∈ local expr.
Intuitively, (s, p) denotes a statement s that should be executed if p holds, and other-
wise should have no effect. The set of all predicated statements is denoted PredStmts.

A kernel state is a tuple (κ, ss) where:

— κ : G → GroupStates records a group state for each group in the kernel.
— ss ∈ PredStmts∗ is a sequence of predicated statements to be executed by the kernel.

A kernel state (κ, ss) is valid if, for each i ∈ G, κ(i) ∈ GroupStatesi, i.e., each group
has a unique id. The set of all valid kernel states is denoted KernelStates.

Observe that a kernel state does not include a single, definitive global memory com-
ponent: global memory is represented via the shadow copies held by the individual
threads in groups, which are initially consistent, and are made consistent again at
barriers for threads within a group.

A kernel state (κ, ss) ∈ KernelStates is a valid initial state of P if:

— ss = 〈(s, true)〉, where s is declared in P via main : s.
— κ(i).R = κ(i).W = ∅ for all i ∈ G.
— κ(i)(j).R = κ(i)(j).W = ∅ for all i ∈ G and j ∈ Ti.
— κ(i)(j).sh = κ(i′)(j′).sh for all i, i′ ∈ G and j ∈ Ti, j′ ∈ Ti′ .
— κ(i)(j).l(v) = false for all i ∈ G, j ∈ Ti and v ∈ V .

The first requirement ensures that the kernel executes the main statement. The sec-
ond and third requirement guarantee that the read and write sets of both groups and
threads are initially empty. The fourth requirement ensures that threads have a con-
sistent but arbitrary initial view of global memory. We single out the final requirement
as it impacts on our semantics in a somewhat subtle manner:

Remark 3.1 (Local Storage Locations are Initially false). The fifth requirement en-
sures that local storage locations are initialized to the value of type Word correspond-
ing to false. Thus whenever fresh variables are introduced by the semantic rules of
Figure 6 these variables initially store the value false. This requirement simplifies our
presentation of break and continue in the rules of Figure 6.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

0:14 Adam Betts et al.

¬pτ

(τ, basic stmt, p)→t τ
(T-DISABLED)

pτ l′ = τ.l[v 7→ eτ]

(τ, v := e, p)→t τ [l 7→ l′]
(T-ASSIGN)

pτ l′ = τ.l[v 7→ τ.sh(eτ)] R′ = τ.R ∪ {eτ}
(τ, v := sh[e], p)→t τ [l 7→ l′, R 7→ R′]

(T-READ)

pτ sh ′ = τ.sh[eτ1 7→ eτ2] W ′ = τ.W ∪ {eτ1}
(τ, sh[e1] := e2, p)→t τ [sh 7→ sh ′,W 7→W ′]

(T-WRITE)

Fig. 4. Rules for predicated execution of basic statements by threads

∀ j ∈ Ti . (γ(j), basic stmt, p)→t γ
′(j) group racei(γ

′)

(γ, basic stmt, p)→g(i) error
(G-RACE)

∀ j ∈ Ti . (γ(j), basic stmt, p)→t γ
′(j) ¬group racei(γ

′)
γ′.R = γ.R ∪

⋃
j∈Ti

(γ′(j).R× {j}) γ′.W = γ.W ∪
⋃
j∈Ti

(γ′(j).W × {j})
(γ, basic stmt, p)→g(i) γ

′ (G-BASIC)

(a) Rules for basic statements

∀ j ∈ Ti . ¬pγ(j)

(γ,barrier, p)→g(i) γ
(G-NO-OP)

∃ j 6= k ∈ Ti . pγ(j) ∧ ¬pγ(k)

(γ,barrier, p)→g(i) error
(G-DIVERGENCE)

∀ j ∈ Ti . pγ(j) ∀ j ∈ Ti . γ′(j) = γ(j)[sh 7→ mergei(γ), R 7→ ∅,W 7→ ∅]
(γ,barrier, p)→g(i) γ

′ (G-SYNC)

(b) Rules for barriers

Fig. 5. Rules for lock-step execution of basic statements and barriers by groups

3.2.2. Predicated Execution. We now describe predicated execution of threads, groups,
and kernels.

Predicated Execution of Threads. The rules of Figure 4 define the binary relation

→t ⊆ (ThreadStates× PredStmts)× ThreadStates

describing the evolution of one thread state to another under execution of a predicated
basic statement. For readability, given a thread state τ and predicated statement (s, p),
we write (τ, s, p) instead of (τ, (s, p)).

Rule T-DISABLED ensures that a predicated statement has no effect if the predi-
cate does not hold, indicated by ¬pτ in the premise of the rule; T-ASSIGN updates τ.l
according to the assignment; T-READ updates the local store of the thread with the
appropriate element from the shadow copy of shared memory owned by the thread,
and records the address that was read from; rule T-WRITE is analogous.

Predicated Execution of Groups. Figure 5 defines the binary relation

→g(i) ⊆ (GroupStatesi × PredStmts)× (GroupStatesi ∪ {error})
describing how a group state of a group i mutates into another as a result of executing
a predicated basic statement or barrier, where error is a designated error state. As for

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

The Design and Implementation of a Verification Technique for GPU Kernels 0:15

threads, given a group state γ and predicated statement (s, p), we write (γ, s, p) instead
of (γ, (s, p)).

Intra-group data races are detected via rule G-RACE. An intra-group race occurs if
there is a thread j in group i such that the write set of j intersects with either the
read or write set of a thread k different from j but in the same group. The predicate
group racei(γ) used to detect intra-group races is formally defined as:

group racei(γ) , ∃ j 6= k ∈ Ti . γ(j).W ∩ (γ(k).R ∪ γ(k).W) 6= ∅ .
Rule G-RACE states that if the execution of a basic statement by all threads in a group
leads to a group state γ′ in which group racei(γ

′) holds, then the error state is reached.
Lock-step execution of basic statements by a group is achieved by having each thread

in the group execute the statement; the order in which they do so is irrelevant due to
delayed visibility (G-BASIC). The rule requires the execution of the basic statement to
be free from intra-group data races. The rule also records which addresses of global
memory were read from or written to by the threads in the group; this is achieved by
propagating the addresses from the read and write sets of the individual threads into
the read and write set of the group.

Execution of barrier with all threads in a group disabled has no effect (G-NO-OP). If
the group is due to execute a barrier statement under predicate p but not all threads
agree on the truth of p, then the error state is reached (G-DIVERGENCE). This precisely
captures the notion of barrier divergence discussed in Section 2.

Rule G-SYNC captures the effect of barrier synchronization under predicate p in
the case where all threads in the group agree that p is valid. A new group state γ′

is constructed, in which for each thread j, the read and write sets of j are empty in
γ′(j) and the local component γ′(j).l is identical to the local component for the thread
before the barrier. The barrier also enforces a consistent view of shared memory across
the group by setting the shadow memories of all threads to the same value. This is
achieved by the function mergei. If thread j has recorded a write to a shared memory
location z, i.e., z ∈ γ(j).W , then mergei(γ) maps z to the value at address z in the
shadow memory of thread j, i.e., to γ(j).sh(z).

Formally, mergei(γ) is a map satisfying the following constraints:

j ∈ Ti z ∈ γ(j).W
mergei(γ)(z) = γ(j).sh(z)

∀ j ∈ Ti . z /∈ γ.W
mergei(γ)(z) = γ(0).sh(z)

The value of mergei(γ) is guaranteed to be unique, otherwise there exists a z belonging
to γ(j).W and γ(k).W for j 6= k, in which case execution would have aborted earlier via
G-RACE. Observe that, in the second constraint, γ(0) is arbitrary, and could have been
chosen to be any γ(i); the value of sh(z) is consistent across threads in this case, since
no thread has written to the memory location z.

Predicated Execution of Kernels. Figure 6 defines the binary relation

→k ⊆ KernelStates× (KernelStates ∪ {error}) ,
where error is again a designated error state. This relation describes the evolution of
a kernel as it executes a sequence of predicated statements.

Inter-group races are detected via rule K-INTER-GROUP-RACE. An inter-group race
occurs if there is a group i such that the write set of i intersects with either the read
or write set of a group j different from i (ignoring the particular thread responsible
for each read and write). The predicate kernel race(κ) used to detect inter-group races
is formally defined as:

kernel race(κ) , ∃ i 6= j ∈ G . fst(κ(i).W) ∩ fst(κ(j).R ∪ κ(j).W) 6= ∅

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

0:16 Adam Betts et al.

∀ i ∈ G . (κ(i), basic stmt, p)→g(i) κ
′(i) kernel race(κ′)

(κ, (basic stmt, p) : ss)→k error
(K-INTER-GROUP-RACE)

∃ i ∈ G . (κ(i), basic stmt, p)→g(i) error

(κ, (basic stmt, p) : ss)→k error
(K-INTRA-GROUP-RACE)

∀ i ∈ G . (κ(i), basic stmt, p)→g(i) κ
′(i) ¬kernel race(κ′)

(κ, (basic stmt, p) : ss)→k (κ′, ss)
(K-BASIC)

(a) Rules for basic statements

∃ i ∈ G . (κ(i),barrier, p)→g(i) error

(κ, (barrier, p) : ss)→k error
(K-DIVERGENCE)

∀ i ∈ G . (κ(i),barrier, p)→g(i) κ
′(i)

(κ, (barrier, p) : ss)→k (κ′, ss)
(K-SYNC)

(b) Rules for barriers

(κ, (S1;S2, p) : ss)→k (κ, (S1, p) : (S2, p) : ss)
(K-SEQ)

fresh v ∈ V
(κ, (local x S, p) : ss)→k (κ, (S[x 7→ v], p) : ss)

(K-VAR)

fresh v ∈ V
(κ, (if e S1 else S2, p) : ss)→k (κ, (v := e, p) : (S1, p ∧ v) : (S2, p ∧ ¬v) : ss)

(K-IF)

fresh v ∈ V
(κ, (while e S, p) : ss)→k (κ, (while e belim(S, v), p ∧ ¬v) : ss) (K-OPEN)

∃ i ∈ G, j ∈ Ti . (p ∧ e)κ(i)(j) fresh u, v ∈ V
(κ, (while e S, p) : ss)→k (κ, (u := e, p) : (celim(S, v), p ∧ u ∧ ¬v) : (while e S, p) : ss)

(K-ITER)

∀ i ∈ G, j ∈ Ti . ¬(p ∧ e)κ(i)(j)

(κ, (while e S, p) : ss)→k (κ, ss)
(K-DONE)

fresh u, v ∈ V S = Body(f)[Param(f) 7→ u]

(κ, (call f(e), p) : ss)→k (κ, (u := e; relim(S, v), p ∧ ¬v) : ss) (K-CALL)

(c) Rules for statements

Fig. 6. Rules for lock-step execution of statements by kernels

where fst(X) = {x | (x, y) ∈ X}. Rule K-INTER-GROUP-RACE states that if collective
execution of a predicated basic statement by all groups leads to a state κ′ in which
kernel race(κ′) holds, then the error state is reached. Rule K-INTRA-GROUP-RACE de-
tects intra-group races by lifting the application of rule G-RACE to the kernel level.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

The Design and Implementation of a Verification Technique for GPU Kernels 0:17

Collective execution of a predicated basic statement is achieved by having every
group execute the statement; the order in which they do so is irrelevant (K-BASIC).
The rule requires that the collective execution was free from inter-group data races
(via the ¬kernel race(κ′) condition) and intra-group data races (via the condition that
each group state in κ transitions to a non-error group state in κ′).

Rule K-DIVERGENCE lifts application of rule G-DIVERGENCE to the kernel level,
i.e., the kernel transitions to the error state if barrier divergence is detected in one
of the groups. Collective execution of a barrier statement in the absence of barrier
divergence is achieved via rule K-SYNC where each group transitions to a new group
state either by rule G-SYNC or rule G-NO-OP. Observe that the read and write sets of
groups are not cleared, since barriers are used solely for intra-group synchronization
and do not achieve inter-group synchronization.

The remaining rules of Figure 6 describe predicated execution of compound state-
ments. Rule K-SEQ is straightforward. Rule K-VAR creates storage for a new local
variable x by allocating a fresh location v in V and substituting all occurrences of x
in S by v; we use S[x 7→ v] to denote this substitution. Rule K-IF decomposes a condi-
tional statement into a sequence of predicated statements: the guard of the conditional
is evaluated into a new location v; the then branch S1, is executed by all threads in all
groups under predicate p ∧ v (where p is the predicate already in place on entry to
the conditional), and the else branch S2, is executed by all threads in all groups under
predicate p ∧ ¬v.

Rules K-OPEN, K-ITER and K-DONE together model predicated execution of a while
loop. In what follows, we say that a break or continue statement is top-level in a loop
if the statement appears in the loop body but is not nested inside any further loops.

Rule K-OPEN converts a while loop into a while loop by creating fresh storage to
model break statements. A fresh location v is selected; v records whether a thread has
executed a break statement associated with the while loop. Like all local storage, v
initially has the value false (see Remark 3.1): no thread has executed break on loop
entry. The function belim is applied to the loop body. This function takes a statement S
and a location v and replaces each top-level break statement inside S by the statement
v := true. The predicate for the execution of the while loop becomes p ∧ ¬v to model
that the statements in the loop have no effect after the execution of a break statement.
A similar technique to model break statements is used by Habermaier and Knapp
[2012].

The K-ITER rule models execution of loop iterations, and handles continue state-
ments. The rule fires each time a loop iteration is executed. For a given loop iteration,
two fresh local storage locations u and v are selected and (as per Remark 3.1) both
are initialized to false.5 Location u is used to store the valuation of the loop guard.
Location v is used to record whether a thread has executed a top-level continue state-
ment during the current loop iteration. The value of v is initially false, since no thread
has executed a continue statement at the beginning of an iteration. The statement
u := e (executed under the enclosing predicate p) evaluates the loop guard into u. The
function celim is applied to the loop body; this function takes a statement S and a
location v and replaces each top-level continue statement inside S by the statement
v := true. The loop body, after elimination of continue statements, is executed under
the predicate p ∧ u ∧ ¬v: a thread is enabled during the current iteration if the in-
coming predicate holds (p), the loop guard evaluates to true at the start of the iteration
(u) and the thread has not executed a continue statement (¬v). Note that, due to rule
K-OPEN, the incoming predicate p includes a conjunct recording whether the thread

5Note that u and v are not re-used between loop iterations: a fresh u and v are selected at the start of each
loop iteration. Hence, there is no need to reset u and v at the end of a loop iteration.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

0:18 Adam Betts et al.

has executed a break statement. After the loop body, the while construct is considered
again.

Thus, all threads continuously execute the loop body using K-ITER until, for every
thread in every group, (a) the enclosing predicate p becomes false, either because this
predicate was false on loop entry or because the thread has executed break, or (b) the
loop condition no longer holds for the thread.6 When (a) or (b) holds for all threads,
loop exit is handled by rule K-DONE.

The rule K-CALL models the execution of a call to a procedure f . This involves exe-
cuting the statement corresponding to the body of the called procedure (Body(f)) after
replacing all occurrences of its formal parameter (Param(f)) with a location storing the
evaluation result of the actual parameter expression. All threads execute the entire
body of a procedure in lock-step. A fresh storage location v is used to record whether a
thread has executed a return statement. Initially this location is set to false, and the
function relim replaces each return statement in Body(f) with the statement v := true.
The procedure body is executed under the predicate p ∧ ¬v (where p is the existing
predicate of execution at the point of the call) so that execution of a return statement
by a thread is simulated by the thread becoming disabled for the remainder of the
procedure body.

3.3. Formalization in Isabelle
The definitions in this section have been formalized in the Isabelle proof assistant [Nip-
kow et al. 2002], and are available from the Archive of Formal Proofs [Wickerson 2014].
For the most part, the Isabelle definitions closely resemble those presented above,
but there are three notable differences. First, we do not model the abuse of notation
whereby γ(j) abbreviates γts(j), since the use of such type coercions was found to ne-
cessitate many additional type annotations. Second, we extend kernel states with a
third component, to record all the variables that have been used. This is necessary
for calculating the fresh variables required by several of the rules in Figure 6, but is
left implicit, in accordance with common practice, in the previous subsections. Third,
because Isabelle does not allow dependent types, we cannot define functions between
arbitrary sets (at least, not without extensive use of typedefs, which can complicate
proofs) such as γts : Ti → ThreadStates. In such situations, we instead declare γts as a
partial function from local ids to ThreadStates, and make dom(γts) = Ti available as an
assumption when proving theorems.

In Section 4.2 we discuss our experience using these formalized definitions to par-
tially mechanize a proof of soundness for the two-thread reduction; this reduction is
our next main contribution.

4. THE TWO-THREAD REDUCTION
The SDV operational semantics of Section 3 has all threads execute in lock-step. As
such, our massively-parallel N -threaded kernel can be encoded as a single sequen-
tial program, where each instruction is replicated N times, and where assertions are
inserted to check for data races and barrier divergence. In principle, existing tech-
niques for sequential program verification can be applied directly to this program and,
as discussed in detail in Section 5, we have investigated the use of the Boogie ver-
ification system [Barnett et al. 2005] for this purpose. We have found that directly
encoding massively-parallel kernels as sequential programs leads to infeasibly large

6Execution of continue does not directly contribute to the conditions under which threads exit a loop. This
is because on executing a continue statement a thread becomes disabled for the remainder of the current
loop iteration, but the thread is re-enabled at the start of the next iteration, provided the loop guard still
holds for the thread.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

The Design and Implementation of a Verification Technique for GPU Kernels 0:19

verification conditions if an explicit representation of threads is used: in Section 6.4 we
illustrate this blow-up in verification condition size, and the corresponding effect this
has on verification performance, using a simple example. The explicit representation
can be replaced with quantification over all threads, but we have found this to lead to
verification conditions that cannot be automatically handled by Z3, a state-of-the-art
theorem prover [de Moura and Bjørner 2008] which Boogie uses by default.7

To overcome these practical limitations and achieve scalable reasoning, we describe
an alternative encoding that involves reducing the number of threads under consider-
ation from N to just two.

Observe that the properties of data race- and barrier divergence-freedom are pair-
wise properties: a race occurs when accesses by two threads conflict, and barrier di-
vergence occurs when a barrier is executed in a state where one thread is enabled and
another thread in the same group is disabled. We can therefore consider an operational
semantics where the predicated execution of only two threads is modeled. If we can use
such a semantics to prove a kernel data race- and barrier divergence-free for a pair of
distinct but otherwise arbitrary threads, we can conclude correctness of the kernel.
This is because the verification process considers all possible execution traces so that,
because the two threads under consideration are arbitrary, interactions between all
possible pairs of threads are implicitly considered.

Formally, if the original execution involves all of the threads in tids(G, T) (see Sec-
tion 3.2.1), then we need to check data race- and barrier divergence-freedom for all
restrictions of (G, T) to a pair of threads, i.e., for restrictions to (G′, T ′) such that

— G′ ⊆ G and T ′i ⊆ Ti for all i ∈ G′, and
— tids(G′, T ′) consists of exactly two elements.

It is important to clarify that in practice we do not enumerating all possible two-
thread reductions. Rather, as discussed in Section 5 when we discuss the implementa-
tion of GPUVerify, we use symbolic constants to model the identifiers of two arbitrary
threads during analysis.

We now present the reduction to a pair of threads formally and prove that it is sound.
Our GPUVerify verification technique and tool, described in Section 5, depend upon
this reduction. The design of the PUG verifier for CUDA kernels by Li and Gopalakr-
ishnan [2010] also hinges on a reduction to a pair of threads. However, this is the first
formal presentation and proof of soundness for the reduction method.

Observe that the definitions of (valid) group and kernel states carry over to the sets
G′ and T ′i as defined above and that the same holds for the kernel level execution rules
from Figure 6. However, for the above approach to be sound, we must approximate
shared state handling, abstracting the values written to the shared state by threads
that are not modeled. This can be achieved in multiple ways. We consider the following
strategies:

Equality abstraction: Threads manipulate a shadow copy of the shared state. At a bar-
rier, the shadow copies are set to be arbitrary, but equal. Thus on leaving the barrier,
the threads have a consistent view of shared memory.

Adversarial abstraction: The shared state is made irrelevant; reads from the shared
state into local variables are replaced with non-deterministic assignments to local
variables.

We have found several example kernels where race-freedom hinges on threads agree-
ing on the values read from certain shared locations. In these cases, the adversarial

7The difficulty of reasoning about quantifiers is, of course, not specific to Z3, but a general obstacle faced by
any automated theorem prover.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

0:20 Adam Betts et al.

∀ j ∈ T ′
i . p

γ(j) ∃sh ′ . ∀ j ∈ T ′
i . γ

′(j) = γ(j)[sh 7→ sh ′, R 7→ ∅,W 7→ ∅]
(γ,barrier, p)→g(i) γ

′ (G-SYNC-EQ)

(a) Updated rule for the equality abstraction

pτ ∃ v′ . l′ = τ.l[v 7→ v′] R′ = τ.R ∪ {eτ}
(τ, v := sh[e], p)→t τ [l 7→ l′, R 7→ R′]

(T-READ-ADV)

pτ W ′ = τ.W ∪ {eτ1}
(τ, sh[e1] := e2, p)→t τ [sh 7→ sh ′,W 7→W ′]

(T-WRITE-ADV)

∀ j ∈ T ′
i . p

γ(j) ∀ j ∈ T ′
i . ∃ sh ′ . γ′(j) = γ(j)[sh 7→ sh ′, R 7→ ∅,W 7→ ∅]
(γ,barrier, p)→g(i) γ

′ (G-SYNC-ADV)

(b) Updated rules for the adversarial abstraction

Fig. 7. Rules for the adversarial and equality abstractions

abstraction is too coarse for successful verification. However, in many cases, it does
not matter what specific value is stored in shared memory, only that all threads see
the same value. The equality abstraction suffices for such cases. Our use of equality
abstraction allows us to improve upon the precision of the work of Li and Gopalakrish-
nan [2010] which is limited to the adversarial abstraction.

The execution relation for equality abstraction, written →k,E(G′,T ′), is obtained by
replacing rule G-SYNC in Figure 5 with rule G-SYNC-EQ from Figure 7(a), and replac-
ing all references to G and T in all other semantic rules in Figures 5 and 6 with G′
and T ′, respectively. In rule G-SYNC-EQ, instead of merging the shared states of the
threads in group i, an arbitrary value is chosen for the shared state and the shadow
copy of each thread in the group is assigned this value. Clearing of read and write sets
and checking for barrier divergence is left unchanged.

The execution relation for adversarial abstraction, written→k,A(G′,T ′), is obtained by
replacing rules T-READ and T-WRITE in Figure 4, and G-SYNC in Figure 5, with the
rules T-READ-ADV, T-WRITE-ADV and G-SYNC-ADV from Figure 7(b), respectively,
as well as replacing all references to G and T in all other semantic rules in Figures 5
and 6 with G′ and T ′, respectively. Rule T-READ-ADV makes the shared state irrele-
vant by updating the local store with an arbitrary value v′ rather than one obtained
from the shared state, although it still logs the read in the read set of the thread. Rule
T-WRITE-ADV sets the shared state to an arbitrary value sh ′, but still logs the write in
the write set of the thread.8 Similar to G-SYNC-EQ, rule G-SYNC-ADV does away with
merging the shared states of the threads in a group i; the rule sets the shared state of
each thread to an arbitrary value, clears the read and write sets and checks for barrier
divergence.

Comparing rules G-SYNC-EQ and G-SYNC-ADV, the premises are almost identical.
The key difference is that in rule G-SYNC-EQ a single value is selected for the shared
state, common to all threads, while in rule G-SYNC-ADV a value for the shared state

8Technically, this rule does not need to change the shared state at all, since the shared state is ignored by
the T-READ-ADV. However, the rule in its current form is better able to simulate the concrete T-WRITE rule
in the upcoming soundness proof.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

The Design and Implementation of a Verification Technique for GPU Kernels 0:21

is selected separately for each thread. Thus with the adversarial abstraction, threads
do not see a unified view of shared memory after a barrier synchronization.

4.1. Soundness of the Two-Thread Reduction
We shall first prove the soundness of the two-thread reduction when using the equality
abstraction.

Throughout, let a concrete execution be a non-empty sequence of kernel states

〈(κ0, ss0), . . . , (κn−1, ssn−1)〉
where (κ0, ss0) is a valid initial kernel state and where each successive pair is related
by the→k relation of Figure 6. An execution under the equality abstraction with respect
to (G′, T ′) is defined similarly, except that it uses the →k,E(G′,T ′) relation instead. Re-
calling that G = {0, 1, . . . , gs − 1}, and that Ti = {0, 1, . . . , ts − 1} for each i ∈ G, we now
have the following:

THEOREM 4.1 (SOUNDNESS: EQUALITY ABSTRACTION). Let P be a KPL kernel
executed by gs groups and ts threads per group. If no execution of P under the equality
abstraction with respect to any (G′, T ′) (representing a pair of threads) leads to error ,
then no concrete execution of P leads to error .

PROOF. We prove the contrapositive. Thus, let us assume that P has a concrete
execution leading to error . We will show that there also exists an execution for P under
the equality abstraction that leads to error .

Let the concrete execution of P that leads to error be:

ρ , 〈(κ0, ss0), . . . , (κn−1, ssn−1)〉 .
We now construct an execution of P under the equality abstraction with respect to
some (G′, T ′) (representing a pair of threads) that also leads to error .

Observe that in the final state (κn−1, ssn−1), either rule K-INTER-GROUP-RACE,
K-INTRA-GROUP-RACE or K-DIVERGENCE applies, because only these rules can lead
to error . In each case, exactly two threads are responsible for the rule being applicable.
Assume that these threads are s = (i1, j1) and t = (i2, j2), with the first component of
each pair being the group id of the thread and the second component being the local
id. Define G′ and T ′ as follows:

— if i1 = i2 then G′ = {i1} and Ti1 = {j1, j2}, and
— if i1 6= i2 then G′ = {i1, i2}, Ti1 = {j1} and Ti2 = {j2}.

We now define a function proj s,t that takes a kernel state and filters out all compo-
nents not pertaining to s and t:

proj s,t(κ, ss) , (κ′, ss)

where dom(κ′) = G′ and κ′(i) = proj s,ti (κ(i)) for all i ∈ G′. For group states, we define:

proj s,ti (γts , R,W) , (γts�T ′
i
, R ∩ (N× T ′i),W ∩ (N× T ′i))

where f�A denotes the restriction of the domain of f to A. The intersection with N×T ′i
restricts the read and write sets of the group to only those accesses by the thread(s)
in T ′i .

We next define a mapping E which, given a concrete execution ρ, will yield an ex-
ecution E(ρ) under the equality abstraction. For the most part, it simply maps each
successive kernel state (κi, ssi) to the state proj s,t(κi, ssi). Complexity arises when we
reach a state that satisfies the following condition:

Rule K-ITER applies, but the predicate p ∧ e holds for neither s nor t. (*)

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

0:22 Adam Betts et al.

The above situation occurs when, during the execution of a loop in a concrete execu-
tion, the guard no longer holds for threads s and t, but does hold for at least one other
thread. The appropriate rule in the concrete execution is K-ITER, but in the abstracted
execution, we must invoke the K-DONE rule instead to exit the loop. Accordingly, when
E reaches a state (κi, ssi) where the condition (*) holds, it discards all of the following
states up to and including the first state (κj , ssj) where K-DONE applies and ssj = ssi.
Here, the condition ssj = ssi ensures that this is the end of the current loop, not the
end of a loop nested in the current one.

The definition of E is as follows:

E(〈〉) , 〈〉

E((κ, ss) : ρ) ,
{
proj s,t(κ, ss) : E(dropUntil(loopEndκ,ss , ρ)) if (κ, ss) satisfies (*)
proj s,t(κ, ss) : E(ρ) otherwise

where

dropUntil(p, 〈〉) , 〈〉

dropUntil(p, x : xs) ,

{
xs if p(x) holds
dropUntil(p, xs) otherwise

and where the predicate loopEndκ,ss(κ
′, ss ′) holds if and only if ss = ss ′ and K-DONE

applies in state (κ′, ss ′).
We prove that E(ρ) is an execution under the equality abstraction that leads to error ,

proceeding by induction on the length of ρ. Thus, suppose that ρ = (κ, ss) : ρ′. In the
case where ρ′ is empty—the base case—we obtain 〈proj s,t(κ, ss)〉, which is clearly an
execution of P under the equality abstraction. Moreover, since we have that (κ, ss)
leads to error , it follows by our choice of s and t that so does 〈proj s,t(κ, ss)〉.

For the induction step, let us first assume that the condition (*) does not apply to
(κ, ss). We must now show that proj s,t(κ, ss) : E(ρ′) is an execution of P under the
equality abstraction. Hence, assume that ρ′ = (κ′, ss ′) : ρ′′. The induction hypothesis
guarantees that E((κ′, ss ′) : ρ′′) is an execution under the equality abstraction lead-
ing to error . It remains to demonstrate that proj s,t(κ, ss) can take an abstract step to
proj s,t(κ′, ss ′). Since we know that (κ, ss) takes a concrete step to (κ′, ss ′), we can com-
plete this part of the proof by a case distinction on the rules from Figure 6, i.e., the
abstract step simply invokes the equality-abstracted version of the rule invoked by the
concrete step, where in the case of a barrier, the arbitrary shared state sh ′ in the rule
G-SYNC-EQ is chosen to simulate the concrete kernel state.

If the condition (*) does apply to (κ, ss), then we must show that

E(dropUntil(loopEndκ,ss , ρ′))

is an execution of P under the equality abstraction. In order to apply the induction
hypothesis, we must know that the sequence dropUntil(loopEndκ,ss , ρ

′) is non-empty.
Thus, suppose for the moment that the sequence is empty. The condition (*) now im-
plies that (κ, ss) is a state at the head of a loop, and that threads s and t are disabled
throughout the remainder of the loop execution. The sequence being empty means that
the concrete execution reaches error before exiting the loop. Yet, since the transition
to error is brought about by threads s and t, at least one must be enabled: contra-
diction. Hence, dropUntil(loopEndκ,ss , ρ

′) is indeed non-empty and it must therefore
have a first state (κ′′, ss ′′). We can now apply the induction hypothesis, to obtain that
E(dropUntil(loopEndκ,ss , ρ′)) is an execution of P under the equality abstraction and
leads to error . It remains to show that we can take an abstract step from proj s,t(κ, ss)

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

The Design and Implementation of a Verification Technique for GPU Kernels 0:23

to proj s,t(κ′′, ss ′′): this is justified by a single invocation of the K-DONE rule. The in-
vocation is possible, as the shadow copies of the global memory as owned by threads
s and t did not change between (κ, ss) and (κ′′, ss ′′). If the shadow copies did change,
either the condition (*) did not hold in (κ, ss), or rule G-SYNC was applied to a group
in G′ somewhere between (κ, ss) and (κ′′, ss ′′); both of these contradict the assumption
that the condition (*) holds. In particular, the rule G-SYNC can only apply if all threads
in the group are enabled, which is not the case according to condition (*).

Finally, we note that since (κ0, ss0) is a valid initial kernel state, so is proj s,t(κ0, ss0)
(the first state of E(ρ)). Hence, E(ρ) is an execution of P under the equality abstraction
leading to error and the result now follows.

We shall now prove the soundness of the two-thread reduction when using the ad-
versarial abstraction. Here, execution under the adversarial abstraction with respect to
(G′, T ′) is defined to be a non-empty sequence of kernel states where each successive
pair is related by the→k,A(G′,T ′) relation.

THEOREM 4.2 (SOUNDNESS: ADVERSARIAL ABSTRACTION). Let P be a KPL ker-
nel executed by gs groups and ts threads per group. If no execution of P under the ad-
versarial abstraction with respect to any (G′, T ′) (representing a pair of threads) leads
to error , then no concrete execution of P leads to error .

PROOF. By replaying the proof of Theorem 4.1, with G-SYNC-EQ replaced by
G-SYNC-ADV and where in the case of K-BASIC we observe that the arbitrary val-
ues chosen by rules T-READ-ADV and T-WRITE-ADV can be chosen in accordance with
the shared state and evaluation of local expressions, respectively.

Remark 4.3. Observe that as the contents of the shared state is not actually used by
the adversarial abstraction, we can completely omit the shared state from the seman-
tics. Our verification method presented in the next section exploits this observation.

Incompleteness of the Two-Thread Reduction. No completeness results correspond-
ing to the above two soundness results hold, as the arbitrary choices employed in the
abstractions allow for strictly more behavior. Moreover, as already observed by Haber-
maier and Knapp [2012], the abstractions allow for possible detection of races and
barrier divergence in code not reachable during real kernel executions due to an infi-
nite loop preceding the offending code. For instance, the following KPL fragment does
not have a race on the shared location 42 because the failure of thread 0 to exit the loop
prevents any other thread from writing to the location, but when only two arbitrary
threads are considered, we cannot deduce that the loop does not terminate.

while (lid = 0) continue;
sh[42] := lid

4.2. Use of the Isabelle Proof Assistant
As explained in Section 3.3, we used the Isabelle proof assistant [Nipkow et al. 2002] to
formalize all the definitions presented in Section 3; we have also formalized the further
definitions of this section using Isabelle. Even without conducting any proofs, the strict
typing discipline imposed by Isabelle allowed us to find and fix several ambiguities in
the original definitions.

We had intended to formalize the soundness results in Theorems 4.1 and 4.2, but
found the task to be more challenging than anticipated, mainly due to the complexity
of the KernelStates type and the sheer number of execution rules. The requirement
for ‘fresh’ variables in several of the execution rules proved particularly challenging;
indeed, “if one wants to formalize such proofs in a theorem prover, then dealing with

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

0:24 Adam Betts et al.

binders, renaming of bound variables, capture-avoiding substitution, etc., is very often
a major problem” [Urban and Narboux 2009].

Nonetheless, the use of Isabelle in a ‘top-down’ manner, to explore the high-level
structure of the proof rather than to prove each statement from first principles, was
very helpful. We were able to significantly improve the quality of an earlier hand proof
of Theorem 4.1, and gain increased confidence in its correctness. For instance, to make
the abstract semantics successfully simulate the concrete semantics, the R and W
components of each group state must tag each accessed location with the local id of the
accessing thread, so that those locations not accessed by thread s or t can be identified
and removed. This observation was made as a direct result of our failure to prove a
lemma in Isabelle.

Our Isabelle proof script, which comprises the definitions presented in Sections 3
and 4, plus an outline proof of Theorem 4.1, is available online.9

5. THE DESIGN AND IMPLEMENTATION OF GPUVERIFY
Armed with the SDV semantics and abstractions of Section 3, we now consider the
problem of verifying that GPU kernels are data race- and barrier divergence-free. For
this purpose, we have designed a tool, GPUVerify, built on top of the Boogie verifica-
tion system [Barnett et al. 2005]. Boogie takes a program annotated with loop invari-
ants and procedure contracts, and decomposes verification into a set of formulas to
be checked automatically by the Z3 theorem prover [de Moura and Bjørner 2008]. We
describe the challenges associated with automatically translating OpenCL and CUDA
kernels into a Boogie intermediate representation (Section 5.1), a technique for trans-
forming this Boogie representation of the kernel into a standard sequential Boogie
program whose correctness implies data race- and barrier divergence-freedom of the
original kernel (Section 5.2), and a method for automatically inferring invariants and
procedure contracts to enable automatic verification (Section 5.3).

5.1. Translating OpenCL and CUDA into Boogie
To allow GPUVerify to be applied directly to source code we have implemented a
compiler that translates GPU kernels into an intermediate Boogie form. Our com-
piler is built on top of the Clang/LLVM infrastructure, which supports both OpenCL
and CUDA. We target CUDA 5.0 [Nvidia 2012a], and versions of OpenCL up to
1.2 [Khronos OpenCL Working Group 2012].

There were effectively three challenges with respect to compilation. First, many in-
dustrial applications utilize features of OpenCL and CUDA not present in vanilla C,
such as declaring variables as vector or image types, or calling intrinsic functions;
we therefore invested significant engineering effort into designing equivalent Boogie
types and functions. Second, the Boogie language does not support floating point val-
ues directly, thus we modeled them abstractly via uninterpreted functions. This sound
over-approximation can in principle lead to false positives, but we have not found this
to be a problem in practice since floating point operators are not used to compute array
indexing expressions or to determine synchronization-related control flow. The third is-
sue, namely handling of pointers, is technically more interesting and is now discussed
in depth.

Modeling Pointers. Boogie is a deliberately simple intermediate language, and does
not support pointer data types natively. We have devised an encoding of pointers in
Boogie which we explain using an example. For readability we use C-like syntax rather
than the Boogie input language.

9http://multicore.doc.ic.ac.uk/tools/GPUVerify/IsabelleFormalisation/

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

The Design and Implementation of a Verification Technique for GPU Kernels 0:25

Table V. Translating pointer usage into Boogie

Source Generated Boogie
p = A; p = int_ptr(A_base, 0);
q = p; q = p;
foo(p); foo(p);
p = q + 1; p = int_ptr(q.base, q.offset + 1);

x = p[e];

if (p.base == A_base)
x = A[p.offset + e];

else if (p.base == B_base)
x = B[p.offset + e];

else
assert(false);

p[e] = d;

if (p.base == A_base)
A[p.offset + e] = d;

else if (p.base == B_base)
B[p.offset + e] = d;

else
assert(false);

Suppose a kernel declares exactly two character arrays (in any memory space) and
two character pointers:

char A[1024], B[1024];
char *p, *q;

In this case GPUVerify generates the following types:

enum int_ptr_base = { A_base, B_base, null };

struct int_ptr {
int_ptr_base base;
int offset;

};

Thus an integer pointer is modeled as a pair consisting of a base array, or the spe-
cial value null if the pointer is null, and an integer offset from this base. To cater for
arbitrary type-casting, the offset is in terms of bytes rather than array elements. GPU-
Verify incorporates an optimization to transform offsets to work at the level of array
elements when it can be deduced using a simple type-based analysis that an array is
always accessed at element-level granularity.

Pointers p and q can be assigned offsets from A or B, can be assigned null, or can
be left uninitialized. An uninitialized pointer has an arbitrary value in the generated
Boogie code. Table V shows how uses of p and q are translated into Boogie.

Statement p = q + 1 demonstrates that pointer arithmetic is straightforward to
model using this encoding. Pointer read and writes are modeled by a case split on
all the possible bases for the pointer being dereferenced. If no base matches then the
pointer is either uninitialized or null. These illegal dereferences are captured by an
assertion failure. This encoding exploits the fact that in GPU kernels there are a finite,
and usually small, number of explicitly declared pointer targets.

We deal with stack-allocated local variables whose addresses are taken by rewriting
these variables as arrays of length one, and transforming the corresponding accesses
to such variables appropriately. This suffices by the fact that GPU kernel languages
do not permit recursion.

Points-to Analysis. The case-split associated with pointer dereferences can hamper
verification of kernels with pointer-manipulating loops, requiring loop invariants that
narrow down the permissible arrays to which pointers can refer. To avoid this in many

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

0:26 Adam Betts et al.

void barrier();

shared bool gr[SZ][SZ];

void kernel() {
int k = 0;
while (k < SZ) {
if (!gr[lidY][lidX]) {
if (gr[lidY][k] && gr[k][lidX]) {
gr[lidY][lidX] = true;

}
}
barrier();
k++;

}
}

(a) Example kernel

void barrier();
void LOG RD gr(int y, int x);
void LOG WR gr(int y, int x);

shared bool gr[SZ][SZ];

void kernel() {
int k = 0;
while (k < SZ) {
LOG RD gr(lidY, lidX);
if (!gr[lidY][lidX]) {
LOG RD gr(lidY, k);
LOG RD gr(k, lidX);
if(gr[lidY][k] && gr[k][lidX]) {
LOG WR gr(lidY, lidX);
gr[lidY][lidX] = true;

}
}
barrier();
k++;

}
}

(b) Kernel after race instrumentation

Fig. 8. Example illustrating how GPUVerify instruments a kernel to detect races

cases, we have implemented the flow- and context-insensitive pointer analysis algo-
rithm of Steensgaard [1996]. Although this over-approximates the points-to sets, our
experience with GPU kernels is that aliasing is scarce and therefore precision is high.
Returning to the above example, suppose the points-to analysis determines that p
may only refer to array A (or be null or uninitialized). In this case, the assignment
p[e] = d is translated to:

if (p.base == A_base)
A[p.offset + e] = d;

else
assert(false);

As well as checking for dereferences of null or uninitialized pointers, the
assert(false) ensures that potential bugs in our implementation of the points-to
analysis do not lead to unsound verification.

5.2. Reducing Data Race- and Barrier Divergence-Checking to Sequential Program
Verification

Having compiled an OpenCL or CUDA kernel into corresponding Boogie form, GPU-
Verify attempts to verify the kernel. We describe the verification strategy employed by
GPUVerify using a worked example.

Consider the kernel of Figure 8(a), adapted from part of a C++ AMP application that
computes the transitive closure of a graph using Warshall’s algorithm, and simplified
for ease of presentation. The kernel is written for a single, 2-dimensional group of
SZ×SZ threads. The local id of a thread is 2D, with x and y components lidX and lidY,
respectively. The kernel declares a 2D shared array of Booleans, gr, representing the
adjacency matrix of a graph.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

The Design and Implementation of a Verification Technique for GPU Kernels 0:27

Access Logging Instrumentation. A kernel is first instrumented with calls to proce-
dures that will log accesses to shared arrays. Figure 8(b) shows the example kernel
of Figure 8(a) after access logging instrumentation. Observe for example that the con-
dition gr[lidY][k] && gr[k][lidX] involves two read accesses to gr, and is thus
preceded by two calls to LOG_RD_gr.10

Reduction to a Pair of Threads. After access logging, the kernel must be translated
into a form that models the predicated execution of multiple threads. Initially, we at-
tempted to encode the SDV semantics of Section 3 directly, modeling lock-step execu-
tion of all threads. Unfortunately, modeling in this way required heavy use of quanti-
fiers, especially for implementing the G-SYNC rule of Figure 5 and associated mergei
function. This led to Boogie programs outside the decidable theory supported by the
Z3 theorem prover. As a result, verification of small (micro-sized) kernels took in the
order of minutes, while verification attempts for large kernels quickly exhausted mem-
ory limits.

To achieve better scalability, we instead use the two-thread reduction of Section 4 to
transform a kernel into a form where the predicated execution of only two threads is
modeled. The local and group identities of the two threads are represented by symbolic
constants, constrained such that the threads are either in different groups, or in the
same group but with different local ids.

Because a two-threaded predicated program with lock-step execution is essentially a
sequential program consisting of parallel assignments to pairs of variables, reasoning
about GPU kernels at this level completely avoids the problem of exploring interleav-
ings of concurrent threads, and allows us to leverage existing techniques for reasoning
about sequential programs. Furthermore, because the ids of the threads under consid-
eration are symbolic, the sequential program can only be proven correct if correctness
holds for all thread id combinations. In practice this is achieved by generating verifi-
cation conditions that are discharged to an SMT solver.

GPUVerify supports both the adversarial and equality abstractions studied in Sec-
tion 4. The equality abstraction is essential in verification of some kernels (including
the kernel of Figure 8(a)) whose race-freedom hinges on threads agreeing on the values
read from certain shared locations. We show in Section 6.2.3 that using the adversarial
abstraction, when it suffices, typically proves to be more efficient than employing the
equality abstraction. GPUVerify chooses the abstraction on array-by-array basis. We
have implemented an inter-procedural taint analysis to over-approximate those shared
arrays whose values may influence control flow. Arrays that may influence control flow
are handled using the equality abstraction and all others using the adversarial ab-
straction. We study the precision of this heuristic experimentally in Section 6.2.3.

While the equality or adversarial abstractions suffice for verification of the vast ma-
jority of kernels we have studied, the equality abstraction is not sufficient when cor-
rectness depends upon richer properties of the shared state. For instance, suppose a
kernel declares shared arrays A and B, and includes a statement:
A[B[lid]] = ...

Write-write race freedom of A requires that B[i] != B[j] for all distinct i and j.
In practice, we have found that this prohibits verification of a number of kernels that
perform a prefix sum operation into an array B, and then use B to index into an array
A as shown above. A richer shared state abstraction is investigated by Chong et al.
[2013].

10For ease of presentation we ignore here the fact that, due to short-circuit evaluation, the read from
gr[k][lidX] will not be issued if the value read from gr[lidY][k] is false. Our implementation does
handle short-circuit evaluation correctly.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

0:28 Adam Betts et al.

void barrier(bool en1, bool en2);
void LOG RD gr(bool en1, int y1, int x1, bool en2, int y2, int x2);
void LOG WR gr(bool en1, int y1, int x1, bool en2, int y2, int x2);
bool gr1[SZ][SZ], gr2[SZ][SZ];

void kernel() {
int k1, k2;
bool LC1, LC2, P1, P2, Q1, Q2; // Predicates
// Assume the two group ids lie in appropriate range;
// trivial in this example as there is only one group:
assume(0 <= gid1 && gid1 < 1 && 0 <= gid2 && gid2 < 1);
// Assume the thread ids lie in appropriate range:
assume(0 <= lidX1 && lidX1 < SZ && 0 <= lidX2 && lidX2 < SZ);
// Assume that if the two threads are in the same group (which, in this
// single−group example, they must be) their local ids are distinct:
assume((gid1 == gid2) ==> (lidX1 != lidX2 || lidY1 != lidY2));
k1, k2 = 0, 0;
LC1, LC2 = k1 < SZ, k2 < SZ;
while (LC1 || LC2) {
LOG RD gr(LC1, lidY1, lidX1, LC2, lidY2, lidX2);
P1, P2 = LC1 && !gr1[lidY1][lidX1],

LC2 && !gr2[lidY2][lidX2];
LOG RD gr(P1, lidY1, k1, P2, lidY2, k2);
LOG RD gr(P1, k1, lidX1, P2, k2, lidX2);
Q1, Q2 = P1 && gr1[lidY1][k1] && gr1[k1][lidX1],

P2 && gr2[lidY2][k2] && gr2[k2][lidX2];
LOG WR gr(Q1, lidY1, lidX1, Q2, lidY2, lidX2);
gr1[lidY1][lidX1], gr2[lidY2][lidX2] =

Q1 ? true : gr1[lidY1][lidX1],
Q2 ? true : gr2[lidY2][lidX2];

barrier(LC1, LC2);
k1, k2 = LC1 ? k1 + 1 : k1, LC2 ? k2 + 1 : k2;
LC1, LC2 = LC1 && k1 < SZ, LC2 && k2 < SZ;

}
}

Fig. 9. The kernel of Figure 8(a) after transformation to two-thread predicated form

Figure 9 shows the result of transforming the access-instrumented version of the
kernel (Figure 8(b)) into a form where the predicated execution of a pair of arbitrary,
distinct threads is modeled, using the equality abstraction. The transformation us-
ing the adversarial abstraction is identical, except that the arrays gr1 and gr2 are
eliminated, and reads from these arrays are made non-deterministic.

The two-dimensional local id of the first thread is represented by lidX1, lidY1,
and similarly for the second thread. The one-dimensional group id for the first thread
is represented by gid1, and similarly for the second thread.

The first assume statement constrains the group ids to lie within an appropriate
range. As our worked example contains only a single group, the assume constrains
each of gid1 and gid2 to be equal to zero.

The second assume statement constrains the local id components to lie within appro-
priate ranges. The two-dimensional group of threads in our example has dimensions
SZ×SZ, thus each local id component must lie in the range [0 ..SZ− 1].

The final assume statement forces the group and thread ids to be chosen such that if
the threads are in the same group they cannot have identical local ids. The left-hand-
side of the implication holds in our example because, with only a single group, gid1
and gid2 must be equal; thus the assume statement forces a difference in at least one
of the pairs lidX1, lidX2 or lidY1, lidY2.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

The Design and Implementation of a Verification Technique for GPU Kernels 0:29

Local variable k is duplicated, and the assignment k = 0 is replaced with a parallel
assignment, setting k1 and k2 to zero. The kernel declares fresh Boolean variables LC,
P and Q (duplicated for each thread). These are used to model predicated execution of
the while loop (LC) and the outer and inner conditionals (P and Q respectively). In the
examples of Section 2, and in the operational semantics of Section 3, we specified that
under predicated execution, a while loop should continue to execute while there exists
a thread for which the condition holds. In the presence of just two threads, existential
quantification turns into disjunction, hence the loop condition LC1 || LC2.

In Figure 9, parameters to the LOG_RD_gr and LOG_WR_gr procedures are dupli-
cated, with a parameter being passed for each thread. In addition, a predicate param-
eter, en, is passed for each thread, recording whether the thread is enabled during the
call (cf. the incoming predicate p in rule K-CALL of Figure 6). If LOG_RD_gr is called
with false as its en1 parameter, this indicates that the first thread is not enabled, and
thus a read should not be logged for this thread. Similarly, barrier is equipped with
a pair of predicate parameters, en1 and en2.

Handling Multiple Procedures. During the transformation to two-threaded form, the
parameter list of each user-defined procedure is duplicated, and (as with the LOG
and barrier procedures) enabled predicates are added for each thread. The proce-
dure body is then translated to two-threaded, predicated form, with every statement
guarded by the enabled predicate parameters. Correspondingly, actual parameters are
duplicated at call sites, and the current predicates of the execution passed as enabled
parameters.

Checking for Barrier Divergence. Under the two-thread encoding, inserting a check
for barrier divergence is trivial: the barrier procedure merely asserts that its argu-
ments en1 and en2 are equal if the group ids of the two threads correspond. This
two-threaded version of rules G-DIVERGENCE (Figure 5) and K-DIVERGENCE (Fig-
ure 6) precisely matches the notion of barrier divergence presented formally in Sec-
tion 3. We may wish to only check barrier divergence-freedom for a kernel, if verifying
race-freedom proves too difficult. This is sound under adversarial abstraction, where
every read from the shared state returns an arbitrary value. A kernel that can be
shown to be barrier divergence-free under this most general assumption is guaran-
teed to be barrier divergence-free under any schedule of shared state modifications. If
we prove barrier divergence-freedom for a kernel under the equality abstraction, we
can conclude a weaker property than barrier divergence-freedom: that barrier diver-
gence cannot occur unless a data race has occurred. Note that our barrier divergence
checking is stricter than that attempted by the PUG verifier of Li and Gopalakrish-
nan [2010], which merely requires threads which follow different conditional paths
through a kernel to pass the same number of barriers.11 While PUG reports micro-
kernels exhibiting the barrier divergence bugs discussed in Section 2 as successfully
verified, such kernels are rejected by GPUVerify.

Checking for Races. The LOG_RD and LOG_WR procedures are responsible for manip-
ulating a read and write set for each thread, and for each of the shared arrays of the
kernel. According to the semantics of Section 3 (rules G-RACE and K-RACE of Figure 5
and 6, respectively), race checking involves asserting for each array A that the read
and write sets for A do not conflict between threads.

We encode read and write sets efficiently by exploiting non-determinism, similar to
a method used in prior work by Donaldson et al. [2010; 2011]. For each shared array A

11In a subsequent paper on dynamic symbolic execution of CUDA kernels Li et al. [2012b] improve this
check to restrict to textually aligned barriers.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

0:30 Adam Betts et al.

with index type T we introduce the following instrumentation variables for each thread
i under consideration (where i ∈ {1, 2}):
WR_exists_Ai : bool
WR_elem_Ai : T
RD_exists_Ai : bool
RD_elem_Ai : T

The Boolean WR_exists_Ai is set to true only if the write set of thread i for A is non-
empty. In this case, WR_elem_Ai represents one element of this write set: an index into
A. The corresponding RD variables for read sets are similar.

Initially WR_exists_Ai and RD_exists_Ai are false for each thread because the
read/write sets are empty. The LOG_WR_A procedure then works as follows: for each
thread i, if i is enabled on entry to the procedure (predicate parameter eni is true), then
the thread non-deterministically chooses to do nothing, or to set WR_exists_Ai to true
and WR_elem_Ai to the index being logged. Procedure LOG_RD_A operates similarly.
This strategy ensures that if WR_exists_Ai holds, then WR_elem_Ai is the index of an
arbitrary write to A performed by thread i. Checking absence of write-write races can
then be achieved by placing the following assertion in the LOG_WR_A procedure:
assert(!(WR_exists_A1 && WR_exists_A2 && WR_elem_A1 == WR_elem_A2))

A similar assertion is used to check read-write races; the procedure LOG_RD_A works
analogously.

Because this encoding tracks an arbitrary element of each read and write set, if the
sets can have a common, conflicting element this will be tracked by both threads along
some execution trace, and the generated assertion will fail along this trace. If we can
prove for every array that the associated assertions can never fail, we can conclude
that the kernel is race-free.

Inter- vs. Intra-Group Race Checking. A novel contribution of this paper over prior
work is a treatment of both intra- and inter-group races; prior work focused only on
the intra-group case. We briefly recall how these kinds of races are handled by our
semantics (Section 3.2). Intra-group data races are detected by rule G-RACE (Figure 5)
which compares the read and write sets of individual threads; an intra-group race
detected by G-RACE is detected at the kernel level by rule K-INTRA-GROUP-RACE
(Figure 6). The role of barrier operations in avoiding races within a work group is
captured at the group level by rule G-SYNC (Figure 5): this rule accumulates the read
and write sets of individual threads to form group-wide read and write sets, and then
clears the individual thread read and write sets to reflect the fact that synchronization
has taken place. The group-level read and write sets capture the fact that data races
between threads in distinct groups cannot be avoided using barriers; rule K-INTER-
GROUP-RACE of Figure 6 detects inter-group races by comparing these sets.

We capture the intent of these semantic rules in our implementation by distinguish-
ing between the cases where the two threads under consideration are in the same
or different groups. If the threads are in the same group then the instrumentation
variables (WR/RD_exists, WR/RD_elem, across all arrays) play the role of thread-level
read/write sets for checking intra-group data races. These sets must be cleared at bar-
riers, and there is no need to record additional group-level read/write sets (because
no further threads are directly considered). If the threads are in different groups then
the instrumentation variables play the role of group-level read/write sets for checking
inter-group data races. These sets must not be cleared at barriers, and there is no need
to record additional thread-level read/write sets.

Thus, at a barrier, the instrumentation variables are unaffected if the threads under
consideration are in different groups. If the threads are in the same group, read and

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

The Design and Implementation of a Verification Technique for GPU Kernels 0:31

write sets are cleared by assuming (using Boogie-level assume statements) that ev-
ery WR_exists and RD_exists is false, i.e., by terminating all execution paths along
which read or written elements were logged. This matches the thread-level read and
write set handling of rule G-SYNC (Figure 5) and K-SYNC (Figure 6).

Tolerating Benign Write-Write Races. In practice it is quite common for threads to
participate in benign write-write races, where identical values are written to a com-
mon location without synchronization. When equality abstraction is used, GPUVerify
tolerates this kind of race by adding a conjunct to the above assertion to check that the
values written are not equal.

5.3. Invariant Inference
GPUVerify produces a Boogie program akin to the transformed kernel of Figure 9,
together with implementations of the barrier and all LOG_RD/WR procedures. This
program must be verified in order to prove race- and barrier divergence-freedom of
the original kernel. Verification hinges on finding inductive invariants for loops and
contracts for procedures.

We have found that invariant generation using abstract interpretation over stan-
dard domains (such as intervals or polyhedra) is not effective in verifying GPU kernels.
This is partly due to the data access patterns exhibited by GPU kernels, discussed in
detail below, where threads do not tend to read or write from contiguous regions of
memory, and also due to the predicated form of the programs produced by our verifica-
tion method.

Instead, we use the Houdini algorithm of Flanagan and Leino [2001] as the basis
for inferring invariants and contracts. Houdini is a method to find the largest set of
inductive invariants from among a user-supplied pool of candidate invariants. Hou-
dini works as a fixpoint procedure; starting with the entire set of invariants, it tries to
prove that the current candidate set is inductive. The invariants that cannot be proved
are dropped from the candidate set and the procedure is repeated until a fixpoint is
reached. We briefly discuss the relationship between Houdini and other invariant gen-
eration techniques in Section 7.

By manually deducing invariants for a set of kernels (the training set described
in our experimental evaluation, Section 6) we have devised a number of candidate
generation rules which we outline below. We emphasize that the candidate invariants
generated by GPUVerify are just that: candidates. The tool is free to speculatively
generate candidates that later turn out to be incorrect: these are simply discarded by
Houdini. A consequence is that incorrect or unintended candidates generated due to
bugs in GPUVerify cannot compromise the soundness of verification.

Our candidate generation rules are purely heuristic. The only fair way to evaluate
these carefully crafted heuristics is to evaluate GPUVerify with respect to a large set
of unknown benchmarks. We presented such an evaluation in [Betts et al. 2012], and
we summarize the findings of this evaluation in Section 6.1.

Candidate Invariant Generation Rules. The following rules (except for the final
“variable is zero or a power of two” rule) relate to the manner in which a thread ac-
cesses shared data using its thread id. In each case, the rule can be applied where
thread id denotes the local id of a thread within its group, or the global id of the thread
across the kernel. We use id to generically describe both cases, and use SZ to denote
the size of a thread group in the case that id refers to local id, and the total number of
threads in the case that id refers to global id.

For clarity, we present the essence of each rule; the GPUVerify implementation is
more flexible (e.g., being insensitive to the order of operands of commutative opera-
tions, and detecting when the id of a thread has been copied into another local vari-

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

0:32 Adam Betts et al.

able). For each of the rules associated with shared memory writes, there is an analo-
gous rule for reads. We use ==> to denote implication.

Rule: access thread id plus offset. It is common for a thread to write to an array
using its thread id, plus a constant offset (which is often zero) as index; this access
pattern is illustrated by the following diagram:

C id + C

A
SZ

Observed pattern:
— A[id + C] = ... occurs in a loop

Generated candidate:
— WR_exists_A ==> WR_elem_A - C == id

Rule: access thread id plus strided offset. When processing an array on a GPU,
it is typically efficient for threads in a group to access data in a coalesced manner as
in:

for (i = 0; i < 256; i++)
A[i*SZ + id + C] = ...;

This access pattern is illustrated by the following diagram:

C id + C

A

SZ

id + SZ + C id + 2*SZ + C

...

Observed pattern:
— A[id + i*SZ + C] = ... occurs in a loop
— i is live at the loop head

Generated candidate:
— WR_exists_A ==> ((WR_elem_A - C) % SZ) == id

Rule: access at thread id plus strided offset, with strength reduction. This is
similar to the previous rule. However, GPU programmers commonly apply the strength
reduction operation manually, rewriting the above code snippet as follows:

for (i = id; i < 256*SZ; i += SZ)
A[i + C] = ...;

In this case, the write set candidate invariant will not be inductive in isolation: the
invariant (i % SZ) == id is required in addition.

Observed pattern:
— i = id appears before a loop
— A[i+C] = ... occurs in the loop
— i = i + SZ appears in the loop
— i is live at the loop head

Generated candidates:
— (i % SZ) == id
— WR_exists_A ==> ((WR_elem_A - C) % SZ) == id

Rule: access contiguous range. It is common for threads to each be assigned a
fixed-size chunk of an array to process. This access pattern is illustrated by the follow-
ing diagram:

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

The Design and Implementation of a Verification Technique for GPU Kernels 0:33

id*C

A
C

...

(id + 1)*C

Observed pattern:
— A[id*C + i] = ... occurs in a loop
— i is live at the loop head

Generated candidates:
— WR_exists_A ==> id*C <= WR_elem_A
— WR_exists_A ==> WR_elem_A < (id + 1)*C

Rule: variable is zero or a power of two. GPU kernels frequently perform tree
reduction operations on shared memory, as in the code snippet below. Race-freedom
is ensured through the use of a barrier, together with a guard ensuring that threads
which have dropped out of the reduction computation do not write to shared memory.
Verifying race-freedom requires an invariant stating that the loop counter is a power
of two, possibly allowing for the value to be zero. The access pattern for such a tree
reduction with respect to a group of 8 threads (SZ == 8) is illustrated below. A gray
square containing a thread id indicates a memory access by the associated thread;
dark gray indicates both a read and a write, while light gray indicates a read only.

for (i = 1; i < SZ; i *= 2) {
if ((id % (2*i)) == 0) {
A[id] += A[id + i];

}
barrier();

}

0 2 4 60 2 4 6

0 40 4

0 0

i = 1

i = 2

i = 4

barrier

barrier

A

A

A

Observed pattern:
— i = i*2 or i = i/2 occurs in a loop
— i is live at the loop head

Generated candidates:
— i&(i-1)==0
— i!=0

The first candidate caters for the case where i is either a power of two or zero; here,
& denotes the bitwise-and operator. The second candidate encompasses the stronger
condition where i is not zero.

GPUVerify includes a number of additional candidate generation rules that are inti-
mately related to the details of our transformation of a kernel to a predicated sequen-
tial program. We omit details of these rules as they are very specific and less intuitive.

We have also designed rules to generate candidate pre- and post-conditions for pro-
cedures. We do not discuss these rules: although they allow us to perform modular
verification of some GPU kernels, we find that for our current benchmarks (which are
representative of the sizes of today’s GPU kernels), full procedure inlining yields supe-
rior performance to modular analysis.

6. EXPERIMENTAL EVALUATION
We have gathered a set of 162 kernels which have been used to drive the development
of GPUVerify and to evaluate the capabilities of the tool in practice. The benchmarks
come from four suites:

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

0:34 Adam Betts et al.

— AMD SDK12: AMD Accelerated Parallel Processing SDK v2.6 consisting of 71 pub-
licly available OpenCL kernels.

— CUDA SDK13: Nvidia GPU Computing SDK v2.0 consisting of 20 publicly available
CUDA kernels.

— C++ AMP14: Microsoft C++ AMP Sample Projects consisting of 20 publicly available
kernels, translated to CUDA.

— Basemark CL15: Rightware Basemark CL v1.1 consisting of 51 commercial OpenCL
kernels,16 provided to us under an academic license.

We consider the somewhat out-of-date version 2.0 of the Nvidia SDK to facilitate a
direct comparison of GPUVerify with the PUG tool by Li and Gopalakrishnan [2010],
the only existing publicly available verifier for CUDA kernels, since PUG is not com-
patible with more recent versions of the CUDA SDK (the CUDA verification tool de-
scribed by Leung et al. [2012] is not publicly available). We also restrict our attention
to the benchmarks from this SDK which were used to evaluate PUG. Because GPUVer-
ify cannot directly analyze C++ AMP code, we retrieved the set of C++ AMP samples
available online on 3 February 2012,14 and manually extracted and translated the
GPU kernel functions into corresponding CUDA kernels. This manual extraction and
translation was straightforward.

We scanned each benchmark suite and removed kernels which are immediately be-
yond the scope of GPUVerify, either because they use atomic operations (7 kernels) or
because they involve writes to the shared state using double-indirection as discussed
in Section 5.2 (12 kernels). In recent work we have considered prototype support for
atomic operations in GPUVerify [Bardsley and Donaldson 2014]. A richer shared state
abstraction to handle double-indirection is proposed by Chong et al. [2013], but re-
quires significant manual effort to apply in practice. The number of kernels quoted
above for each benchmark suite correspond to the sizes of these suites after removal of
these kernels.

In Section 6.1 we summarize the results of an experiment using this benchmark set
for a comparison of our initial implementation of GPUVerify with PUG, and to evaluate
the invariant inference capabilities of the initial implementation.

We then evaluate a more recent version of GPUVerify, equipped with new function-
ality for inter-group race checking (Section 6.2), assessing the performance of the tool
across our benchmark set, the overhead associated with performing inter-group race
checks, and the relative benefits in terms of precision and performance of the adver-
sarial and equality abstractions.

Section 6.3 discusses a bug that we detected in an old CUDA SDK benchmark using
GPUVerify. Section 6.4 demonstrates the effectiveness of the two-thread reduction.

6.1. Summary of Previous Evaluation
In [Betts et al. 2012] we presented a head-to-head comparison of the original GPU-
Verify implementation with the PUG tool of Li and Gopalakrishnan [2010], and eval-
uated the automatic invariant inference capabilities of GPUVerify. This evaluation
focused on proving intra-group, but not inter-group, race-freedom, as well as barrier
divergence-freedom. Instead of replicating this detailed evaluation here we provide a

12http://developer.amd.com/tools/heterogeneous-computing/amd-accelerated-parallel-processing-app-sdk/
13https://developer.nvidia.com/cuda-toolkit-archive
14http://blogs.msdn.com/b/nativeconcurrency/archive/2012/01/30/c-amp-sample-projects-for-download.aspx
15http://www.rightware.com/benchmarking-software/product-catalog/
16In [Betts et al. 2012] we reported results for 52 Rightware kernels, but we subsequently discarded one
kernel from our benchmark set due to an issue which we have reported to Rightware.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

The Design and Implementation of a Verification Technique for GPU Kernels 0:35

brief summary of findings, preferring to focus on evaluating a more recent version of
GPUVerify in Section 6.2.

The experimental evaluation we summarize here was performed on a PC with a
3.4GHz Intel Core i7-2600 CPU, 8GB RAM running Windows 7 (64-bit), with Z3 v3.3.
All times reported are averages over 3 runs, using a 5 minute timeout per benchmark.

Comparing GPUVerify with PUG. We compared PUG and GPUVerify using the
CUDA subset of our benchmarks: the CUDA SDK and C++ AMP suites (40 kernels),
configuring PUG to use a 32-bit representation for integers, which is prescribed by the
CUDA programming guide [Nvidia 2012a]. We used a synthetic bug injection proce-
dure to randomly mutate each benchmark with an intra-group data race or barrier
divergence bug to yield both correct and buggy versions of each benchmark.

Running the tools on correct kernels we found that PUG reported a false positive
in three cases, where correctness depended upon threads agreeing on the contents of
the shared state. GPUVerify is able to reason about these kernels using the equality
abstraction (Section 4). The shared state abstraction of PUG is equivalent to our ad-
versarial abstraction, which is not sufficient for these kernels. Note that GPUVerify
decides automatically which shared state abstraction to use; we evaluate the heuris-
tics GPUVerify uses to make this decision in Section 6.2.3. We found that PUG was
on average faster than GPUVerify, and in six cases an order of magnitude faster. How-
ever, worst-case performance of PUG was significantly worse than that of GPUVerify:
our timeout of 5 minutes was reached by PUG for six kernels.

Applying the tools to buggy versions of benchmarks we found that the proof attempts
by GPUVerify generally failed within around 5 seconds, whereas the proof attempts
by PUG usually failed within half a second: an order of magnitude faster. However,
for seven buggy kernels we found that PUG reported false negatives: wrongly report-
ing correctness of the kernel. Of these false negatives, one mutation was an injected
barrier divergence while the remaining six were intra-group data races. GPUVerify
reported no false negatives.

Evaluating Automatic Invariant Inference. We used the following methodology to
design and evaluate our invariant inference technique. We divided our benchmarks
into two similarly-sized sets: a training set and an evaluation set, such that details of
the evaluation set were unknown to all members of our team. We chose the CUDA
SDK, C++ AMP and Basemark CL benchmarks as the training set (92 kernels), and
the AMD SDK benchmarks as the evaluation set (70 kernels): members of our team
had looked previously at the CUDA SDK and C++ AMP benchmarks, but not at the
AMD SDK and Basemark CL benchmarks; however, we wanted to make the evaluation
set publicly available, ruling out Basemark CL.

We manually analyzed all benchmarks in the training set, determining invariants
sufficient for proving intra-group race- and barrier divergence-freedom. We then dis-
tinguished between ‘bespoke’ invariants: complex, kernel-specific invariants required
by individual benchmarks; and ‘general’ invariants, conforming to an identifiable pat-
tern that cropped up across multiple benchmarks. The general invariants led us to de-
vise the invariant inference heuristics described in Section 5.3. We implemented these
heuristics in GPUVerify and tuned GPUVerify to maximize performance on the train-
ing set. We then applied GPUVerify blindly to the evaluation set to assess the extent
to which our inference technique enabled fully automatic analysis of the AMD SDK
kernels. We believe that this approach of applying GPUVerify unassisted to a large,
unknown set of benchmarks provides a fair evaluation of the automatic capabilities of
the tool.

Using the inference techniques devised with respect to the training set (cf. Sec-
tion 5.3), GPUVerify was able to verify 49 out of the 70 kernels from the evaluation

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

0:36 Adam Betts et al.

set (69%) fully automatically. Of these kernels, 48 were verified in 10 seconds or fewer,
and the longest verification time was 17 seconds. With race checking disabled, GPU-
Verify was able to prove barrier divergence-freedom fully automatically for all evalu-
ation benchmarks, in under 10 seconds per kernel. In [Betts et al. 2012] we present
a detailed discussion of the reasons why verification failed for 22 of the evaluation
kernels.

Many modern static analysis tools achieve low false alarm rates via a careful mix-
ture of deliberately introduced unsoundness in the analysis and ad hoc warning sup-
pression [Bessey et al. 2010]. GPUVerify does not follow this approach: the tool at-
tempts to be a ‘real’ verifier, and thus will report verification failure for a kernel unless
it was possible to construct a proof of correctness in a sound manner under bit-level
accuracy. With this in mind, we believe that being able to verify 49 out of 70 evaluation
kernels is a good result.

6.2. Evaluation of GPUVerify
Building on the evaluation presented in [Betts et al. 2012], we manually investigated
each benchmark for which intra-group race-freedom could not be automatically veri-
fied. In each case, we either provided necessary invariants manually, to allow the ker-
nel to verify, or improved the invariant inference capabilities of GPUVerify by adding
additional candidate generation rules or generalizing existing rules. These additional
and changed candidates all intimately relate to the details of our transformation from
a kernel to a predicated sequential program, and details are omitted for that reason.
We then turned on the inter-group race checking capabilities of GPUVerify that are
novel in this work (see Section 5.2), and again manually supplied invariants and im-
proved invariant inference capabilities until inter-group race-freedom could also be
verified across the set of benchmarks.

In three cases, we had to make minor simplifications to allow correct kernels to be
verified within our framework. In two binary search kernels from the AMD SDK we
had to insert assume statements to encode the precondition that the input array is
strictly sorted. Another AMD SDK kernel which computes a quasi random sequence
exhibited an intricate, intentional benign read-write race which is beyond the scope
of the benign tolerance mechanism mentioned in Section 5.2; we inserted barriers to
eliminate this race.

We also had to modify a number of examples to remove data races. In a histogram
example from the AMD SDK we found an arguably benign data race where threads
non-atomically increment the same bucket of a histogram without synchronization.
Such races can lead to increments to a bucket being lost non-deterministically, but
in many uses of histograms this does not matter. For purposes of analysis we simpli-
fied this example so that threads write to disjoint locations; this changes the meaning
of the kernel, but retains the features of the kernel that determine whether it is a
challenging candidate for proving race-freedom. An AMD SDK kernel implementing
a pass of the Floyd-Warshall algorithm adds together input values, which can cause
an overflow-induced data race for extremely large inputs. Contacts at AMD regarded
this data race report as a false alarm which we suppressed through the use of an
addition operator that assumes non-overflowing behavior. Using GPUVerify we found
a non-benign data race bug in one AMD SDK benchmark, DwtHaar1D, arising from
an erroneous array indexing expression, which has since been independently fixed by
AMD in a more recent version of the SDK.

With respect to this refined benchmark set and tool chain, we now report on:

— The raw performance of GPUVerify across our benchmarks (Section 6.2.1)

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

The Design and Implementation of a Verification Technique for GPU Kernels 0:37

1 10 100 1000 TO
Time (seconds)

0

20

40

60

80

100

120

140

162

N
um

be
r o

f k
er

ne
ls

 v
er

ifi
ed

Fig. 10. Cumulative histogram showing the time taken to verify data race- and barrier divergence-freedom
using GPUVerify across our benchmark set.

— The overhead associated with performing inter-group race checking in addition to
intra-group race checking (Section 6.2.2)

— The performance and precision differences associated with using the equality vs. ad-
versarial shared state abstractions (Section 6.2.3)

Experiments were performed on a PC with a 1.15GHz AMD Phenom CPU, 5.8GB
RAM running Ubuntu (64-bit), using the nightly build of GPUVerify from 8 August
2013, and Z3 v4.3.1. All times reported are averages over 10 runs, and a timeout of
1800 seconds (30 minutes) was used in all experiments.

6.2.1. Performance of GPUVerify. Figure 10 is a cumulative histogram showing the per-
formance of GPUVerify with respect to the benchmark set. The x-axis plots the time
(in seconds, on a log scale), and the y-axis plots the number of kernels. A point at
position (x, y) indicates that for y of the kernels, verification took x seconds or fewer.
The results show that GPUVerify is capable of rapidly analyzing the vast majority of
benchmark kernels: in 132 out of 162 cases, verification took less than 10 seconds. The
longest verification time was 1643 seconds, for analysis of an FFT kernel in the AMD
SDK. Interestingly, the FFT kernel is loop-free, thus the high verification time stems
solely from the cost of data race checking, and not from the inference of loop invariants.

6.2.2. Overhead of Inter-Group Race Checking. A new addition to GPUVerify over [Betts
et al. 2012] is the ability to perform inter-group race checking in addition to checking
for races between groups. Inter-group race checks are represented by additional as-
sertions in the Boogie program generated by GPUVerify, which in turn lead to larger
verification conditions. Our hypothesis was that enabling inter-group race checking
would uniformly lead to a drop in the performance of GPUVerify.

Figure 11 compares the performance of GPUVerify with and without inter-group
race checking enabled, across our benchmark set. Each point represents a benchmark.
The x-axis plots the time in seconds taken to verify full (i.e., inter- and intra-group)
race freedom; the y-axis the time in seconds taken to verify only intra-group race-
freedom. Both axes are plotted using log scales. Thus a point with coordinates (x, y)
corresponds to a kernel for which verification of full race-freedom took x seconds and
verification of only intra-group race-freedom took y seconds. Points lying below/above

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

0:38 Adam Betts et al.

1 10 100 1000 TO
Time (seconds) to verify full race-freedom

1

10

100

1000

TO

Ti
m

e
(s

ec
on

ds
) t

o
ve

rif
y

on
ly

 in
tra

-g
ro

up
 ra

ce
-f

re
ed

om

Fig. 11. Scatter plot comparing time taken to verify full race-freedom vs. only intra-group race-freedom
across our benchmark set.

the diagonal support/rebut our hypothesis that there is computational overhead asso-
ciated with adding inter-group race checks.

The data in Figure 11 strongly supports our hypothesis: in all but two cases, verifi-
cation time either differs negligibly, or slows down when inter-group race checking is
enabled.

There are two outliers which do not follow this trend: verification of a histogram
kernel from the CUDA SDK takes 3.4× longer when only intra-group races are ana-
lyzed than when full race checking is performed; similarly a bitonic sort kernel from
the AMD SDK takes 1.5× longer. We attribute these outliers to quirks in the imple-
mentation of the Z3 theorem prover: we tried the same experiment using a different
theorem prover, CVC4 [Barrett et al. 2011], finding that the histogram kernel is not
an outlier when CVC4 is used, leaving the bitonic sort kernel as the only outlier, with
a slightly reduced slow-down of 1.3×.

6.2.3. Adversarial vs. Equality Abstraction. In Section 4 we discussed two shared state
abstractions: the very coarse adversarial abstraction, and the slightly more refined
equality abstraction. Treating an array using the adversarial abstraction has the po-
tential advantage that the array can be completely removed from the Boogie program
generated by GPUVerify. This reduces the extent to which the theorem prover must
reason about arrays, which can be computationally expensive. Having observed this
advantage working in practice for specific examples, we implemented the taint anal-

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

The Design and Implementation of a Verification Technique for GPU Kernels 0:39

1 10 100 1000 TO
Time (seconds) for verification using adversarial abstraction

1

10

100

1000

TO

Ti
m

e
(s

ec
on

ds
) f

or
 v

er
ifi

ca
tio

n
us

in
g

eq
ua

lit
y

ab
st

ra
ct

io
n

Fig. 12. Scatter plot comparing verification times using the adversarial and equality abstractions. Bench-
marks for which verification using the adversarial abstraction fails (7 cases) are not included in the compar-
ison.

ysis mentioned in Section 5.2 which GPUVerify employs to avoid use of the equality
abstraction when it does not appear necessary.

We now evaluate both the effectiveness of GPUVerify in automatically deciding when
the equality abstraction is necessary, and our hypothesis that it is desirable to avoid
using the equality abstraction where possible.

To this end, we ran GPUVerify across the benchmark set in two modes, one where
the adversarial abstraction is always used for every array, the other where the equality
abstraction is always used for every array, adding to the data gathered in Section 6.2.1
where GPUVerify used its default heuristic to choose which abstraction to employ on
an array-by-array basis.

Precision of Taint Analysis for Abstraction Choice. We found that for 155 out of 162
kernels, verification of full data race- and barrier divergence-freedom succeeded even
when the adversarial abstraction was universally forced. In 130 of these cases, our
taint analysis also led to the adversarial abstraction being used for all arrays, but in
25 cases GPUVerify decided, unnecessarily, that at least one array should be modeled
using the equality abstraction. This is due to the conservative nature of our taint anal-
ysis which is neither flow- nor path-sensitive; a more precise taint analysis could allow
more aggressive application of the adversarial abstraction.

Among the 7 kernels that required equality abstraction to be used for at least one
array, our taint analysis succeeded in 3 cases to apply the equality abstraction suffi-
ciently. In 4 cases, however, our taint analysis failed to choose the equality abstraction

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

0:40 Adam Betts et al.

for certain arrays, leading to false positive data race reports. These kernels were: the
two binary search kernels discussed in Section 6.2, which depend on properties of the
input array that the adversarial abstraction loses; the kernel implementing a pass
of the Floyd-Warshall algorithm (discussed in relation to overflow in Section 6.2), for
which race-freedom hinges on threads agreeing on the contents of a shared array; a
parallel scan kernel exhibiting a benign data race which GPUVerify is only able to tol-
erate with the knowledge that a shared location is regarded as equal between threads.
(In these cases, we used an option to override the taint analysis, using the equality
abstraction for all arrays, when gathering data for the results in Section 6.2.1.)

Our evaluation shows that for our benchmark set, GPUVerify applies the equality
abstraction relatively judiciously, capturing some but not all of the cases where it is
useful.

Performance Comparison Between Adversarial and Equality Abstractions. For the
155 kernels for which adversarial abstraction suffices for verification, we investigated
our hypothesis that using the equality abstraction would lead to slower verification.
We did this by comparing verification times for the extreme cases where either the
adversarial abstraction is forced for every array, or the equality abstraction is forced
for every array. (By default, GPUVerify chooses which of these abstractions to apply
on an array-by-array basis.) Note that the equality abstraction is strictly finer than
the adversarial abstraction, so that if a kernel can be verified using the adversarial
abstraction for all arrays, it must also be possible to verify the kernel (given sufficient
resources) using the equality abstraction for all arrays.

The scatter plot of Figure 12 uses log scales to plot the time in seconds taken for ver-
ification using the adversarial abstraction (x-axis) and equality abstraction (y-axis).
Each point is a benchmark, thus a point at coordinates (x, y) indicates that verifica-
tion took x seconds using the adversarial abstraction and y seconds using the equality
abstraction. Points with y coordinates at the top of the graph indicate that the timeout
of 30 minutes was reached when using the equality abstraction. Points lying above the
diagonal support our hypothesis that using the equality abstraction incurs a perfor-
mance penalty in terms of verification time.

Our hypothesis is mainly supported: ignoring the conglomeration of benchmarks
clustered at the bottom left of Figure 12 that verify quickly with either abstraction,
most benchmarks verify more efficiently when the adversarial abstraction is used.
There are four cases where applying the equality abstraction leads to our timeout
of 30 minutes being reached.

There are, however, a number of cases where we found verification to be faster when
the equality abstraction is used. There are five outliers in Figure 12 for which verifi-
cation was at least two times faster using the equality abstraction than with adver-
sarial abstraction; in the worst case verification is 5.3× slower. As in our discussion
of outliers when comparing full vs. only intra-group race checking in Section 6.2.2,
we attribute this to quirks of Z3. Again, we tried the same experiment using CVC4,
obtaining a rather different set of outliers which, although larger, included just two
of the five outliers observed with respect to Z3. With sufficient processing power we
could guard against abstraction and solver quirks through portfolio solving, running
multiple verification instances with different solvers in parallel.

6.3. Detection of a Bug in a Previous CUDA SDK Example
Using GPUVerify we discovered a write-write data race in the N -body example that
shipped with version 2.3 of the CUDA SDK. This example uses multiple CUDA kernels
to numerically approximate a system of N interacting bodies [Nyland et al. 2007]. This
is an ideal problem for parallelization since interactions between each pair of bodies

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

The Design and Implementation of a Verification Technique for GPU Kernels 0:41

shared int A[N];

void kernel() {
for(int d = N/2; d > 0; d = d / 2) {
if(lid < d) {
A[lid] += A[lid + d];

}
barrier();

}
}

Fig. 13. A reduction kernel used to illustrate the effectiveness of the two-thread reduction

can be calculated independently. The CUDA implementation of this example decom-
poses the N2 pair-interactions into smaller k × k tiles, each of which is assigned to a
one-dimensional group of k threads. Within each group, every thread is assigned to
a distinct body (a row of the tile) and sequentially considers the interactions associ-
ated with this body to compute an updated state for the body. The kernel implements
an optimization for small values of N where threads are arranged in two-dimensional
groups, and multiple threads within a group are assigned to the same body. Conse-
quently, the interactions calculated by threads assigned to the same body must be
summed. A barrier ensures that each thread has completed its sub-calculation, and
then a conditional is used to ensure that a single ‘master’ thread performs the sum-
mation. However, a data race could occur because a similar condition was not in place
to ensure that only this master thread would perform a final update to the position
and velocity of the body. As a result, it was possible for the final update by the master
thread, using the full summation, to be overwritten by partial results computed by
other threads.

We reported this data race to Lars Nyland [2012] at Nvidia who confirmed that “It
was a real bug, and it caused real issues in the results. It took significant debugging
time to find the problem.” Nvidia had subsequently fixed this bug in version 3.0 of the
CUDA SDK.

6.4. A Demonstration of the Effectiveness of the Two-Thread Reduction
At the start of Section 4 we remarked that reasoning about GPU kernels using the
SDV semantics of Section 3 directly, without reducing the number of threads that are
modeled, does not scale. To justify this remark we consider the kernel of Figure 13
which computes a reduction over an input array A. The kernel is designed to be exe-
cuted by a single group of N threads, where N is a power of two, with lid denoting the
local id of a thread.

We wrote a Python script that takes as input an integer N and outputs a Boogie
program representing the kernel of Figure 13 modeled using SDV semantics, executed
explicitly by N threads (i.e., without applying the two-thread reduction). For succes-
sively large values of N , we compared the performance of Boogie on these generated
programs vs. the performance of GPUVerify on the original kernel; GPUVerify does ap-
ply the two-thread reduction, and uses Boogie in its back-end. To ensure a fair compar-
ison we disabled invariant inference in GPUVerify and annotated both the generated
Boogie programs and the kernel analyzed by GPUVerify with invariants necessary for
verification. We used a 30 minute timeout for each verification task.

Figure 14(a) compares verification times. The x axis plots the number of threads; the
y axis plots verification time in seconds. Both axes use a log scale. The solid line shows

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

0:42 Adam Betts et al.

Two-thread reduction Explicit thread modeling

2 4 8 16 32 64 128
Thread count

1

10

100

1000
TO

Ti
m

e
(s

ec
on

ds
)

(a) As the thread count increases, verifi-
cation time using GPUVerify (solid line) is
virtually unaffected; this is due to the two-
thread reduction. In contrast, verification
time increases dramatically according to
thread count when threads are explicitly
modeled (dashed line)

2 4 8 16 32 64 128
Thread count

104

3 ¢104

105

5 ¢105

Q
ue

ry
 si

ze
 (b

yt
es

)

(b) The timing results of Figure 14(a) can
be linked to the SMT queries associated
with each verification task; these queries
grow quadratically with thread count when
explicit modeling is used, but remain con-
stant when the two-thread reduction is em-
ployed

Fig. 14. Comparing verification time and SMT query size when Boogie programs associated with the ex-
ample kernel of Figure 13 are analyzed, with and without the two-thread reduction, for increasing thread
counts

that verification with GPUVerify, using the two-thread reduction, remains virtually
constant. On the other hand, the dashed curve shows that verification time grows
rapidly (roughly exponentially) with explicit modeling as the thread count increases,
exceeding our timeout with 128 threads.

This phenomenon is explained by Figure 14(b) in which the x axis again plots the
number of threads and the y axis plots the size in bytes of the SMT query generated
by Boogie for each verification problem. The formulas generated by GPUVerify (rep-
resented by the solid line) have identical size; they differ only in the constant that
records thread count, which is a fixed-size bit-vector. In contrast, the formulas asso-
ciated with explicit modeling (represented by the dashed line) become larger as the
thread count increases. The growth is quadratic: a quadratic number of constraints
are required to ensure that all the threads under consideration have distinct ids. This
growth in formula size places an increasing burden on the SMT solver.

7. RELATED WORK
There are numerous existing dynamic and static techniques for data-race detection in
programs that use lock-based synchronization or fork-join parallelism; a full discussion
of these techniques is beyond the scope of this paper. We note however that this paper
is concerned with proving data race- and barrier divergence-freedom in data-parallel
programs in which the primary challenges—barrier synchronization and disjoint ac-
cess patterns based on clever array indexing—are different from those encountered in
lock-based and fork-join programs. In the rest of this section, we discuss papers that
explicitly handle data-parallel or GPU programs, and the relationship between the
verification method employed by GPUVerify and comparable proof techniques used in

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

The Design and Implementation of a Verification Technique for GPU Kernels 0:43

protocol verification. We conclude the section with a brief discussion of invariant gen-
eration techniques.

Static Verification of GPU Kernels. The closest work to GPUVerify is the PUG an-
alyzer for CUDA kernels by Li and Gopalakrishnan [2010]. Although GPUVerify and
PUG have a similar goal, scalable verification of GPU kernels, the internal architec-
ture of the two systems is very different. GPUVerify first translates a kernel into a
sequential Boogie program that models the lock-step execution of two threads; the cor-
rectness of this program implies data race- and barrier divergence-freedom of the orig-
inal kernel. Next, it infers and uses invariants to prove the correctness of this sequen-
tial program. Therefore, we only need to argue soundness for the translation into a se-
quential program; the soundness of the verification of the sequential program follows
directly from the soundness of contract-based verification. On the other hand, PUG
performs invariant inference while simultaneously translating the GPU kernel into a
logical formula. PUG provides a set of built-in loop summarization rules which replace
loops exhibiting certain shared array access patterns with corresponding invariants.
Unlike GPUVerify, which must prove or discard all invariants that it generates, the
loop invariants inserted by PUG are assumed to be correct. While this approach works
for simple loop patterns, it has difficulty scaling to general nested loops in a sound
way, and this necessitates various restrictions on the input program required by PUG.
In contrast, GPUVerify inherits flexible and sound invariant inference from Houdini,
regardless of the complexity of the control structure of the GPU kernel.

A recent method for functional verification of GPU kernels by Blom et al. [2014]
uses permissions-based separation logic. Here, a kernel must be annotated (currently
manually) with an assignment of read or write permissions to memory locations on a
per-thread basis. Race-freedom is proven by showing that having permission to write a
location excludes other threads from having permission to read or write that location.
To reason about communication at barriers, a barrier specification is required, to state
how permissions are exchanged between threads at a barrier. The approach of Blom
et al. [2014] does not employ any thread-reduction abstraction; instead, quantifiers
are used to reason about all threads. This method has not yet been automated, so a
systematic comparison with GPUVerify for realistic examples is not yet possible.

In related work we have extended the GPU verification method with barrier invari-
ants [Chong et al. 2013], which go beyond the equality abstraction described in this
work, allowing more sophisticated invariants about the shared state to be established
and used in verification. While the emphasis of this paper is on highly automatic ver-
ification of lightweight correctness properties, the focus of Chong et al. [2013] is on
manual derivation of intricate barrier invariants to establish richer functional proper-
ties which can be used in race analysis of complex data-dependent kernels. We have
also studied the generalization of lock-step execution from structured programs (as
presented here) to unstructured control flow graphs [Collingbourne et al. 2013], and
the current implementation of GPUVerify is based on this extension.

Formal Semantics for GPU Kernels. Habermaier and Knapp [2012] study the re-
lationship between the single instruction multiple thread (SIMT) execution model
of Nvidia GPUs and the standard interleaved semantics of threaded programs, pre-
senting a formal semantics for predicated execution. This semantics shares similar-
ities with the SDV semantics we present in Section 3, but the focus of Habermaier
and Knapp [2012] is not on verification of GPU kernels. Recent work by Kojima and
Igarashi [2013] provides a formulation of Hoare logic geared towards the SIMT model,
in a similar spirit to Habermaier and Knapp [2012].

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

0:44 Adam Betts et al.

Symbolic Execution and Bounded-Depth Verification. The GKLEE tool by Li et al.
[2012b] and KLEE-CL by Collingbourne et al. [2012] perform dynamic symbolic execu-
tion of CUDA and OpenCL kernels, respectively, and are both built on top of the KLEE
symbolic execution engine [Cadar et al. 2008]. A method for bounded verification of
barrier-free GPU kernels via depth-limited unrolling to an SMT formula is discussed
by Tripakis et al. [2010]; lack of support for barriers, present in most non-trivial GPU
kernels, limits the scope of this method. Symbolic execution and bounded unrolling
techniques can be useful for bug-finding—both GKLEE and KLEE-CL have uncovered
data race bugs in real-world examples—and these techniques have the advantage of
generating concrete bug-inducing tests. The major drawback to these methods is that
they cannot verify freedom from defects for non-trivial kernels.

The GKLEE tool specifically targets CUDA kernels, and faithfully models lock-step
execution of sub-groups of threads, or warps as they are referred to in CUDA (see Ta-
ble II). This allows precise checking of CUDA kernels that deliberately exploit the warp
size of an Nvidia GPU to achieve high performance. By default GPUVerify makes no
assumptions about sub-group size, making it useful for checking whether CUDA ker-
nels are portable; GPUVerify includes an option to enable warp-level reasoning [Bard-
sley and Donaldson 2014].

Both GKLEE and KLEE-CL explicitly represent the number of threads executing
a GPU kernel. This allows for precise defect checking, but limits scalability. A recent
extension to GKLEE by Li et al. [2012a] uses the notion of parametric flows to soundly
restrict defect checking to consider only certain pairs of threads. This is similar to
the two-thread abstraction employed by GPUVerify and PUG, and leads to scalability
improvements over standard GKLEE, at the expense of a loss in precision for kernels
that exhibit inter-thread communication (GPUVerify and PUG also suffer from this
loss in precision, as discussed under Incompleteness of the Two-Thread Reduction in
Section 4.1).

The GKLEE tool has also been extended with support for reasoning about atomic
operations [Chiang et al. 2013]. Atomic operations are challenging because they al-
low race-free non-determinism between pairs of barriers, destroying the ability to rea-
son about a single canonical thread schedule, an assumption on which PUG, GPU-
Verify, GKLEE and KLEE-CL all rest. GKLEE supports bounded reasoning about
atomics, geared towards bug-finding, through the use of delay bounding [Emmi et al.
2011]. GPUVerify includes prototype support for reasoning about kernels that manip-
ulate data using atomic operations, through a refinement to the adversarial abstrac-
tion [Bardsley and Donaldson 2014]. Neither GPUVerify nor GKLEE provides the nec-
essary support for sound reasoning about fine-grained concurrency in GPU kernels
which, as demonstrated in recent work, can expose the relaxed memory consistency
models of modern GPU architectures [Alglave et al. 2015].

Dynamic Analysis. Dynamic analysis of CUDA kernels for data race detection has
been proposed by Boyer et al. [2008]. Leung et al. [2012] report on the following tech-
nique that combines dynamic and static data race analysis. They first simulate a
CUDA kernel while dynamically checking for races. If no races are detected, flow anal-
ysis is used to determine whether the control-flow taken during dynamic execution
was dependent on input data; if not, the kernel can be deemed race free, otherwise the
technique is inconclusive. It appears that this approach can handle kernels that are
verifiable using our adversarial abstraction. Kernels which GPUVerify can verify only
with the equality abstraction, due to threads testing input data, are not amenable to
analysis using this technique. As discussed in Section 6, the tool associated with [Le-
ung et al. 2012] is not publicly available, hence we do not present an experimental
comparison between this work and GPUVerify.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

The Design and Implementation of a Verification Technique for GPU Kernels 0:45

A problem associated with static analysis can be the lack of adequate preconditions
for reasoning about the correctness of a procedure. A pragmatic method for overcoming
this problem when analyzing OpenCL kernels with GPUVerify is kernel interception,
where dynamic analysis is used to capture the values of scalar parameters supplied
to a kernel at runtime, as well as the specific configuration of threads and groups
with respect to which the kernel executes [Bardsley et al. 2014b]. This dynamically
collected information provides a very specific precondition under which a kernel can
be analyzed. This has the property of lowering the rate of false positives reported by
GPUVerify, at the expense of making the verification result specific to the particular
runtime configuration that was captured.

Thread Contracts. Karmani et al. [2011] present a practical approach for construct-
ing correct parallel programs, based on thread contracts. A programmer specifies the
coordination and data sharing strategy for their multi-threaded program as a con-
tract. Adequacy of the specification for ensuring race-freedom is then checked stati-
cally, while adherence to the specification by the implementation is ascertained via
testing. Adapted to the setting of barrier synchronization rather than lock-based coor-
dination, this technique might enable analysis of more complex GPU kernels for which
automatic contract inference is infeasible.

Protocol Verification. A reduction to two processes, similar to the two-thread reduc-
tion employed in GPU kernel verification, is at the heart of a method for verifying
cache coherence protocols known as CMP [Chou et al. 2004], which was inspired by
the foundational work of McMillan [1999]. With CMP, verification of a protocol for an
arbitrary number of processes is performed by model checking a system where a small
number of processes are explicitly represented and a highly non-deterministic ‘other’
process over-approximates the possible behaviors of the remaining processes. The un-
constrained nature of the ‘other’ process can lead to spurious counterexamples, which
must be eliminated either by introducing additional explicit processes, or by adding
non-interference lemmas such that the actions of the ‘other’ process more precisely re-
flect the possible actions of processes in the concrete system. The CMP method has
been extended and generalized with message flows and message flow invariants by
Talupur and Tuttle [2008]. This extension aids in the automatic derivation of non-
interference lemmas by capturing large classes of permissible interactions between
processes. Our approach, and that of PUG by Li and Gopalakrishnan [2010], uses the
same high-level proof idea as the CMP method: we consider a small number of threads
(two), and our default adversarial abstraction models the possible actions of all other
threads, analogously to the ‘other’ process. There are, however, many technical dif-
ferences in the manner by which the high-level proof technique is applied in practice.
Principally, we use predicated execution to turn the verification problem into a sequen-
tial program analysis task, completely eliminating the need to reason about concurrent
threads, while the CMP method involves directly checking the parallel composition of
a number of processes using model checking.

Invariant Generation. As described in Section 5.3, we use the Houdini algorithm of
Flanagan and Leino [2001] to generate loop invariants for verification. Houdini was in-
troduced as an annotation assistant for the Java Extended Static Checker [Leino et al.
2000]. Related template-based invariant generation techniques include [Kahsai et al.
2011; Srivastava and Gulwani 2009; Lahiri and Qadeer 2009]. As discussed in the re-
lated work section of Flanagan and Leino [2001], Houdini can be viewed under the
framework of abstract interpretation [Cousot and Cousot 1977] where the abstract do-
main comprises conjunctions of predicates drawn from the set of candidate invariants.
Compared with standard predicate abstraction [Graf and Saı̈di 1997], which consid-

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

0:46 Adam Betts et al.

ers arbitrary Boolean combinations of predicates (and is thus more precise), verifica-
tion using Houdini requires a linear instead of exponential number of theorem prover
calls. In our context, the key advantage of the Houdini approach over traditional ab-
stract interpretation using a fixed abstract domain is flexibility. We can easily extend
GPUVerify with a richer language of predicates by adding further candidate invariant
generation rules; there is no need for careful redesign of an abstract domain.

The main problem with our invariant generation method is that its success is
limited by the scope of our candidate invariant generation rules. Interpolation and
counterexample-guided abstraction refinement can be used incrementally to generate
invariants in response to failed or partial verification attempts [McMillan 2006; Beyer
et al. 2007], while the Daikon technique [Ernst et al. 2007] allows program-specific
invariants to be speculated through dynamic analysis. It may be possible to draw upon
these techniques to improve the invariant inference capabilities of GPUVerify.

8. CONCLUSIONS
We have presented the design and implementation of the GPUVerify method for stati-
cally verifying data race- and barrier divergence-freedom of GPU kernels. The founda-
tions of the method are our novel SDV semantics and the two-thread reduction which
allows scalable verification to be built on the semantic foundations. We have presented
a rigorous soundness proof for the two-thread reduction, partially mechanized using
Isabelle, and have discussed practical issues associated with implementing the GPU-
Verify tool. Our large experimental evaluation demonstrates that GPUVerify is effec-
tive in verifying and falsifying real-world OpenCL and CUDA GPU kernels.

Our current and planned future activities are mainly focused on improving the au-
tomatic invariant inference facilities of GPUVerify to lower the rate of false positives
reported by the tool; we believe this is key for industrial uptake of the method.

ACKNOWLEDGMENTS

Our thanks to Guodong Li and Ganesh Gopalakrishnan for providing us with the latest version of PUG, and
for answering numerous questions about the workings of this tool.

Thanks to Matko Botinčan, Mike Dodds, Hristina Palikareva and the anonymous reviewers of the confer-
ence version of the paper for their insightful feedback on an earlier draft of this work.

We are also grateful to the anonymous TOPLAS reviewers for their useful feedback on the extended
version.

We thank several people working in the GPU industry who provided assistance with this work: Anton
Lokhmotov (ARM) provided us with barrier divergence results for ARM’s Mali architecture; Lee Howes
(AMD) provided such results for AMD’s Tahiti architecture; Teemu Uotila and Teemu Virolainen (Right-
ware) provided access to Basemark CL, and answered various queries about these kernels; Yossi Levanoni
(Microsoft) provided early access to C++ AMP samples.

We are grateful to Peter Collingbourne for leading development of Bugle, an LLVM IR-based front-end
for GPUVerify which replaced the Clang AST-based front-end described in the conference version of this
paper [Betts et al. 2012].

References
Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan, Jeroen Ketema, Daniel Poetzl,

Tyler Sorensen, and John Wickerson. 2015. GPU Concurrency: Weak Behaviours and Programming
Assumptions. In Proceedings of the 20th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS’15). ACM, New York, 577–591.

AMD. 2013. OpenCL Programming Guide, Revision 2.7. (Nov. 2013).
Ethel Bardsley, Adam Betts, Nathan Chong, Peter Collingbourne, Pantazis Deligiannis, Alastair F. Donald-

son, Jeroen Ketema, Daniel Liew, and Shaz Qadeer. 2014a. Engineering a Static Verification Tool for
GPU Kernels. In Proceedings of the 26th International Conference on Computer Aided Verification (CAV
2014) (Lecture Notes in Computer Science), Vol. 8559. Springer, Berlin, 226–242.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

The Design and Implementation of a Verification Technique for GPU Kernels 0:47

Ethel Bardsley and Alastair F. Donaldson. 2014. Warps and Atomics: Beyond Barrier Synchronization in the
Verification of GPU Kernels. In Proceedings of the 6th NASA Formal Methods Symposium (NFM 2014)
(Lecture Notes in Computer Science), Vol. 8430. Springer, Berlin, 230–245.

Ethel Bardsley, Alastair F. Donaldson, and John Wickerson. 2014b. KernelInterceptor: Automating GPU
Kernel Verification by Intercepting Kernels and Their Parameters. In Proceedings of the 2014 Interna-
tional Workshop on OpenCL (IWOCL 2014). ACM, New York, Article 7, 5 pages.

Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino. 2005. Boogie:
A Modular Reusable Verifier for Object-Oriented Programs. In Revised Lectures of the 4th International
Symposium on Formal Methods for Components and Objects (FMCO 2005) (Lecture Notes in Computer
Science), Vol. 4111. Springer, Berlin, 364–387.

Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic, Tim King, An-
drew Reynolds, and Cesare Tinelli. 2011. CVC4. In Proceedings of the 23rd International Conference
in Computer Aided Verification (CAV 2011) (Lecture Notes in Computer Science), Vol. 6806. Springer,
Berlin, 171–177.

Al Bessey, Ken Block, Benjamin Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles-Henri Gros, Asya
Kamsky, Scott McPeak, and Dawson R. Engler. 2010. A Few Billion Lines of Code Later: Using Static
Analysis to Find Bugs in the Real World. Commun. ACM 53, 2 (2010), 66–75.

Adam Betts, Nathan Chong, Alastair F. Donaldson, Shaz Qadeer, and Paul Thomson. 2012. GPUVerify: A
Verifier for GPU Kernels. In Proceedings of the 27th ACM International Conference on Object Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2012). ACM, New York, 113–132.

Dirk Beyer, Thomas A. Henzinger, Rupak Majumdar, and Andrey Rybalchenko. 2007. Path Invariants. In
Proceedings of the 2007 ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI 2007). ACM, New York, 300–309.

Stefan Blom, Marieke Huisman, and Matej Mihelčić. 2014. Specification and Verification of GPGPU Pro-
grams. Science of Computer Programming 95, 3 (2014), 376–388.

Michael Boyer, Kevin Skadron, and Westley Weimer. 2008. Automated Dynamic Analysis of CUDA Pro-
grams. In Proceedings of the 3rd Workshop on Software Tools for MultiCore Systems (STMCS 2008).
Online proceedings, http://people.csail.mit.edu/rabbah/conferences/08/cgo/stmcs/, 6 pages.

Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and Automatic Generation
of High-Coverage Tests for Complex Systems Programs. In Proceedings of the 8th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 2008). USENIX Association, Berkeley, CA,
209–224.

Joshua E. Cates, Aaron E. Lefohn, and Ross T. Whitaker. 2004. GIST: An Interactive, GPU-Based Level Set
Segmentation Tool for 3D Medical Images. Medical Image Analysis 8 (2004), 217–231. Issue 3.

Wei-Fan Chiang, Ganesh Gopalakrishnan, Guodong Li, and Zvonimir Rakamaric. 2013. Formal Analysis
of GPU Programs with Atomics via Conflict-Directed Delay-Bounding. In Proceedings of 5th Interna-
tional NASA Formal Methods Symposium (NFM 2013) (Lecture Notes in Computer Science), Vol. 7871.
Springer, Berlin, 213–228.

Nathan Chong, Alastair F. Donaldson, Paul Kelly, Shaz Qadeer, and Jeroen Ketema. 2013. Barrier Invari-
ants: A Shared State Abstraction for the Analysis of Data-Dependent GPU Kernels. In Proceedings
of the 28th ACM International Conference on Object Oriented Programming, Systems, Languages, and
Applications (OOPSLA 2013). ACM, New York, 605–622.

Nathan Chong, Alastair F. Donaldson, and Jeroen Ketema. 2014. A Sound and Complete Abstraction for
Reasoning About Parallel Prefix Sums. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL 2014). ACM, New York, 397–410.

Ching-Tsun Chou, Phanindra K. Mannava, and Seungjoon Park. 2004. A Simple Method for Parameterized
Verification of Cache Coherence Protocols. In Proceedings of the 5th International Conference on Formal
Methods in Computer-Aided Design (FMCAD 2004) (Lecture Notes in Computer Science), Vol. 3312.
Springer, Berlin, 382–398.

Peter Collingbourne, Cristian Cadar, and Paul H. J. Kelly. 2012. Symbolic Testing of OpenCL Code. In
Revised Selected Papers of the 7th International Haifa Verification Conference (HVC 2011) (Lecture Notes
in Computer Science), Vol. 7261. Springer, Berlin, 203–218.

Peter Collingbourne, Alastair F. Donaldson, Jeroen Ketema, and Shaz Qadeer. 2013. Interleaving and Lock-
Step Semantics for Analysis and Verification of GPU Kernels. In Proceedings of the 22nd European
Symposium on Programming (ESOP 2013) (Lecture Notes in Computer Science), Vol. 7792. Springer,
Berlin, 270–289.

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analy-
sis of Programs by Construction or Approximation of Fixpoints. In Proceedings of the 4th ACM SIGACT-

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

0:48 Adam Betts et al.

SIGPLAN Symposium on Principles of Programming Languages (POPL 1977). ACM, New York, 238–
252.

Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Proceedings of
the 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2008) (Lecture Notes in Computer Science), Vol. 4963. Springer, Berlin, 337–340.

Alastair F. Donaldson. 2014. The GPUVerify Method: a Tutorial Overview. Electronic Communications of
the EASST 70, Article 1 (2014), 16 pages. http://journal.ub.tu-berlin.de/eceasst/article/view/986

Alastair F. Donaldson, Daniel Kroening, and Philipp Rümmer. 2010. Automatic Analysis of Scratch-Pad
Memory Code for Heterogeneous Multicore Processors. In Proceedings of the 16th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2010) (Lecture Notes
in Computer Science), Vol. 6015. Springer, Berlin, 280–295.

Alastair F. Donaldson, Daniel Kroening, and Philipp Rümmer. 2011. Automatic Analysis of DMA Races
Using Model Checking and k-Induction. Formal Methods in System Design 39, 1 (2011), 83–113.

Michael Emmi, Shaz Qadeer, and Zvonimir Rakamaric. 2011. Delay-Bounded Scheduling. In Proceedings of
the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2011).
ACM, New York, 411–422.

Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S. Tschantz,
and Chen Xiao. 2007. The Daikon System for Dynamic Detection of Likely Invariants. Science of Com-
puter Programming 69, 1–3 (2007), 35–45.

Cormac Flanagan and K. Rustan M. Leino. 2001. Houdini, an Annotation Assistant for ESC/Java. In Pro-
ceedings of the International Symposium of Formal Methods Europe (FME 2001) (Lecture Notes in Com-
puter Science), Vol. 2021. Springer, Berlin, 500–517.

Susanne Graf and Hassen Saı̈di. 1997. Construction of Abstract State Graphs with PVS. In Proceedings of
the 9th International Conference on Computer Aided Verification (CAV 1997) (Lecture Notes in Computer
Science), Vol. 1254. Springer, Berlin, 72–83.

Axel Habermaier and Alexander Knapp. 2012. On the Correctness of the SIMT Execution Model of GPUs. In
Proceedings of the 21st European Symposium on Programming (ESOP 2012) (Lecture Notes in Computer
Science), Vol. 7211. Springer, Berlin, 316–335.

Mark J. Harris. 2004. Fast Fluid Dynamics Simulation on the GPU. In GPU Gems. Addison-Wesley, Boston,
MA, Chapter 38, 637–665.

Temesghen Kahsai, Yeting Ge, and Cesare Tinelli. 2011. Instantiation-Based Invariant Discovery. In Pro-
ceedings of 3rd International NASA Formal Methods Symposium (NFM 2011) (Lecture Notes in Com-
puter Science), Vol. 6617. Springer, Berlin, 192–206.

Rajesh K. Karmani, P. Madhusudan, and Brandon M. Moore. 2011. Thread Contracts for Safe Parallelism. In
Proceedings of the 16th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPOPP 2011). ACM, New York, 125–134.

Khronos OpenCL Working Group. 2012. The OpenCL Specification, Version 1.2. (2012). Document revision
19.

Khronos OpenCL Working Group. 2014a. The OpenCL C Specification, Version 2.0. (2014). Document revi-
sion 26.

Khronos OpenCL Working Group. 2014b. The OpenCL Extension Specification, Version 2.0. (2014). Docu-
ment revision 26.

Petr Klus, Simon Lam, Dag Lyberg, Ming Sin Cheung, Graham Pullan, Ian McFarlane, Giles S. H. Yeo, and
Brian Y. H. Lam. 2012. BarraCUDA – A Fast Short Read Sequence Aligner Using Graphics Processing
Units. BMC Research Notes 5, Article 27 (2012), 7 pages.

Kensuke Kojima and Atsushi Igarashi. 2013. A Hoare Logic for SIMT Programs. In Proceeding of the 11th
Asian Symposium on Programming Languages and Systems (APLAS 2013) (Lecture Notes in Computer
Science), Vol. 8301. Springer, Berlin, 58–73.

Shuvendu K. Lahiri and Shaz Qadeer. 2009. Complexity and Algorithms for Monomial and Clausal Predi-
cate Abstraction. In Proceedings of the 22nd International Conference on Automated Deduction (CADE-
22) (Lecture Notes in Computer Science), Vol. 5663. Springer, Berlin, 214–229.

K. Rustan M. Leino, Greg Nelson, and James B. Saxe. 2000. ESC/Java User’s Manual. Technical Report
SRC Technical Note 2000-002. Compaq Systems Research Center.

Alan Leung, Manish Gupta, Yuvraj Agarwal, Rajesh Gupta, Ranjit Jhala, and Sorin Lerner. 2012. Verifying
GPU kernels by test amplification. In Proceedings of the 33rd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI’12). ACM, New York, 383–394.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

The Design and Implementation of a Verification Technique for GPU Kernels 0:49

Guodong Li and Ganesh Gopalakrishnan. 2010. Scalable SMT-Based Verification of GPU Kernel Functions.
In Proceedings of the 18th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering (FSE 2010). ACM, New York, 187–196.

Guodong Li, Peng Li, Geoffrey Sawaya, Ganesh Gopalakrishnan, Indradeep Ghosh, and Sreeranga P. Rajan.
2012b. GKLEE: concolic verification and test generation for GPUs. In Proceedings of the 17th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPOPP 2012). ACM, New
York, 215–224.

Heng Li and Richard Durbin. 2009. Fast and Accurate Short Read Alignment with Burrows-Wheeler Trans-
form. Bioinformatics 25, 14 (2009), 1754–1760.

Peng Li, Guodong Li, and Ganesh Gopalakrishnan. 2012a. Parametric Flows: Automated Behavior Equiv-
alencing for Symbolic Analysis of Races in CUDA Programs. In Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and Analysis (SC 2012). IEEE Computer
Society Press, Los Alamitos, CA, 10 pages.

Anton Lokhmotov. 2011. Mobile and Embedded Computing on Mali GPUs. (2011). 2nd UK GPU Computing
Conference.

Kenneth McMillan. 1999. Verification of Infinite State Systems by Compositional Model Checking. In Pro-
ceedings of the 10th Conference on Correct Hardware Design and Verification Methods (CHARME 1999)
(Lecture Notes in Computer Science), Vol. 1703. Springer, Berlin, 219–234.

Kenneth L. McMillan. 2006. Lazy Abstraction with Interpolants. In Proceedings of the 18th International
Conference on Computer Aided Verification (CAV 2006) (Lecture Notes in Computer Science), Vol. 4144.
Springer, Berlin, 123–136.

Microsoft Corporation. 2012. C++ AMP: Language and Programming Model, Version 1.0. (2012).
Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Isabelle/HOL: A Proof Assistant for Higher-

Order Logic. Lecture Notes in Computer Science, Vol. 2283. Springer, Berlin.
Nvidia. 2012a. CUDA C Programming Guide, Version 5.0. (2012).
Nvidia. 2012b. Parallel Thread Execution ISA, Version 3.1. (2012).
Lars Nyland. 2012. Personal Communication. (April 2012).
Lars Nyland, Mark Harris, and Jan Prins. 2007. Fast N-Body Simulation with CUDA. Addison-Wesley,

Upper Saddle River, NJ, Chapter 31, 677–696.
Renato F. Salas-Moreno, Richard A. Newcombe, Hauke Strasdat, Paul H. J. Kelly, and Andrew J. Davi-

son. 2013. SLAM++: Simultaneous Localisation and Mapping at the Level of Objects. In Proceedings of
the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2013). IEEE Computer
Society Press, Los Alamitos, CA, 1352–1359.

Saurabh Srivastava and Sumit Gulwani. 2009. Program Verification Using Templates over Predicate Ab-
straction. In Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2009). ACM, New York, 223–234.

Bjarne Steensgaard. 1996. Points-to Analysis in Almost Linear Time. In Proceedings of the 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 1996). ACM, New
York, 32–41.

Murali Talupur and Mark R. Tuttle. 2008. Going with the Flow: Parameterized Verification Using Message
Flows. In Proceedings of the 8th International Conference on Formal Methods in Computer-Aided Design
(FMCAD 2008). IEEE Computer Society Press, Los Alamitos, CA, 8 pages.

Stavros Tripakis, Christos Stergiou, and Roberto Lublinerman. 2010. Checking Equivalence of SPMD Pro-
grams Using Non-Interference. In Proceedings of the 2nd USENIX Workshop on Hot Topics in Paral-
lelism (HotPar 2010). Online proceedings, http://static.usenix.org/events/hotpar10/, 5 pages.

Christian Urban and Julien Narboux. 2009. Formal SOS-Proofs for the Lambda-Calculus. Electronic Notes
in Theoretical Computer Science 247 (2009), 139–155.

John Wickerson. 2014. Syntax and Semantics of a GPU kernel Programming Language. Archive of Formal
Proofs (2014). http://afp.sourceforge.net/entries/GPU Kernel PL.shtml

Received ?; revised ?; accepted ?

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: December 2014.

