
Ribbon proofs and dynamically scoped quantifiers

John Wickerson

Technische Universität Berlin, Germany

1 Introduction

A graphical proof system, called ribbon proofs, for the propositional fragment of the
logic of bunched implications was introduced by Bean [1]. Recently, Wickerson et al.
upgraded ribbon proofs to a program logic by adding support for commands and exis-
tential quantifiers [10]. An existential quantifier is handled in a ribbon proof by drawing
an ‘existential box’, labelled with the name of the variable being quantified, around a
portion of the diagram. In their formalisation of ribbon proofs, Wickerson et al. assume
that existential boxes are rectangular and well-nested. In practice, however, these boxes
often partially overlap, or form more curious polygons than rectangles. Wickerson et
al. mitigate this discrepancy between theory and practice by pointing out that overlap-
ping polygons can be transformed into nested rectangles. Nevertheless, it is somewhat
dissatisfying not to have a semantics for ribbon proofs directly.

This paper describes a direct semantics for ribbon proofs whose existential boxes
may be non-rectangular and may overlap. In doing so, we hope to provide a deeper
understanding of this ‘intriguing proof structure’ [10].

Outline Section 2 explains the problem with the current semantics for ribbon proofs.
Section 3 explains the new semantics, which involves dynamically-scoped quantifiers.
Section 4 debates the importance of this new semantics, and the need for existential
boxes at all. Section 5 describes the idea of dynamically-scoped quantifiers in the more
general setting of first-order logic. Section 6 proposes a semantics for dynamically-
scoped quantifiers. Section 7 contains pointers to related work.

2 Starting point

Figure 1 shows a little ribbon proof.
The proof depicts a pattern that commonly arises when verifying a while-loop. Prior

to the loop, we establish the loop invariant ∃α.∃β. I . Upon entering the loop body, we
assume the test condition b. We then bring b into the scope of the α and β quantifiers;
this operation is sensible since b (which is part of the program text) cannot mention
the logical variables α or β (which exist only in the proof). We perform the loop body
command C1, which, in this case, produces three postconditions, p1 and p2 and p3. We
commute the scopes of the logical variables, to bring α inside the scope of β, and then
pick a new witness for α. The ‘Pick new α’ step consumes α’s existential box, and
produces a new one below. We then commute the logical variable scopes again, to bring
α back outside the scope of β, and pick a new witness for β. In doing so, we reestablish
the loop invariant. After the loop, we assume the negation of the test condition, ¬b.



2 John Wickerson

I

b

p1 p2 p3

p4 p5

I

¬b

p6

∃α∃β

∃α

∃β

loop {

}

assume b

C1

Pick new α

Pick new β

assume ¬b

C2

Fig. 1: A ribbon proof



Ribbon proofs and dynamically scoped quantifiers 3

Let us now examine the semantics of such a picture. The formal language of ribbon
proofs given in previous work [10] does not permit existential boxes to assume the
exotic shapes seen in Fig. 1. The ‘scope extension’ steps and the ‘commuting’ steps are
not allowed. They must be ‘desugared’ according to the following transformations:

p q∃x
def
=

p q

Extend x’s scope
p q∃x

∃x if x is
not free
in p

p∃y∃x
def
=

p

Swap x and y
p∃x∃y

∃y∃x

We thus obtain the picture shown in Fig. 2a.
It is a shame that the picture has become significantly more complex, and that the

interesting structure of overlapping quantifiers can no longer be easily seen.
Figure 3 depicts how Fig. 2a is then analysed as a graph. The graph has a hierarchi-

cal structure, in that loops and existential boxes are nodes that contain within them a
complete graph. Besides this nesting hierarchy, we have a dag structure formed by the
⇒-arrows. These arrows link commands to their pre- and postconditions.



4 John Wickerson

I

I

I

b

b

b

p1

p1

p2

p2

p3

p3

p4

p4

p5

p5

I

I

I

¬b

¬b

¬b

p6

∃α∃β

∃α ∃β

∃β

∃α
∃β

∃β
∃α

∃α

∃β

∃α ∃β

∃β

loop {

}

assume b

Extend scope of α

Extend scope of β

C1

Commute α and β

Pick new α

Commute β and α

Pick new β

assume ¬b

Extend scope of α

Extend scope of β

C2

(a) A ribbon proof, with scope-extending and scope-
commuting shown as explicit proof steps

I

I

I

I

b

b

b

p1

p1

p2

p2

p3

p3

p4

p4

p5

p5

I

I

I

I

¬b

¬b

¬b

p6

∃α ∃β

∃α ∃β

∃α

∃β

∃β

∃α

∃β

∃β

∃α

∃α

∃β

∃α ∃β

∃α

∃β

∃β

loop {

}

assume b

Extend scope of α

Extend scope of β

C1

Commute α and β

Pick new α

Commute β and α

Pick new β

assume ¬b

Extend scope of α

Extend scope of β

C2

(b) The corresponding graph

Fig. 2



Ribbon proofs and dynamically scoped quantifiers 5

3 Main ideas

In this section, we shall describe how to obtain a graphical semantics for pictures such
as Fig. 1, that results in much more concise graphs than that shown in Fig. 2b.

We shall proceed by a process of iterative refinement. Our first step is to flatten the
existential boxes.

3.1 Flattening existential boxes

Figure 3 is obtained from Fig. 2b by replacing the existential boxes with single nodes,
each of which is linked to the contents of the corresponding box by dotted arrows. We
can think of this process as ‘unpacking’ or ‘flattening’ the existential boxes. Where
previously the contents of each existential box was a completely separate graph, we
now have nodes inside and outside the box co-existing in the same graph. (For now, we
shall leave the loop-block as a special node that contains a complete graph.)

Note that the dotted arrows form a tree structure; that is, no node is a direct de-
scendent of more than one existential quantifier. Previously, this ‘tree’ property was
enforced by the fact that existential boxes must be well-nested.

We have only linked each existential node to the assertion nodes in its scope, not
the command nodes. This is our first Main Idea.

Main Idea 1. It is not necessary for command nodes to be located within the
scope of existential quantifiers.

To clarify: observe that at the bottom of Fig. 2b, C2 and p6 are both visually inside
β’s existential box. It is important that p6 is within β’s scope, in case p6 mentions β.
But C2, being a piece of program text, cannot mention logical variables, because these
appear only in the proof. Therefore, at the bottom of Fig. 3, we do not have a dotted
arrow from ∃β to C2, but we do have one from ∃β to p6.



6 John Wickerson

I

I

I

I

b

b

b

p1

p1

p2

p2

p3

p3

p4

p4

p5

p5

I

I

I

I

¬b

¬b

¬b

p6

∃α ∃β

∃α ∃β

∃α

∃β

∃β

∃α

∃β

∃β

∃α

∃α

∃β

∃α ∃β

∃α

∃β

∃β

loop {

}

assume b

Extend scope of α

Extend scope of β

C1

Commute α and β

Pick new α

Commute β and α

Pick new β

assume ¬b

Extend scope of α

Extend scope of β

C2

Fig. 3: First refinement: flattening existential boxes



Ribbon proofs and dynamically scoped quantifiers 7

3.2 Relaxing the tree property

In Fig. 3, the dotted arrows form a tree structure: each assertion node and each existen-
tial node is the target of at most one dotted arrow, and these arrows do not form cycles.
Let us relax this constraint, and instead arrange that each assertion node receives an
arrow directly from those quantifiers that bind its variables. As such, an assertion node
may have more than one ‘parent’ in this dotted-arrow hierarchy. For instance, Fig. 3
begins with

∃α ∃β I

while Fig. 4, which is obtained from Fig. 3 by relaxing the tree constraint, begins with

∃α

∃β
I

Observe that we have removed the ordering between ∃α and ∃β: they now both link to
I , but not to each other. We have thus obtained a representation that is agnostic about the
order of quantifiers. As such, the two ‘Commute...’ steps in Fig. 3 are no longer needed
in Fig. 4. The ‘Extend scope...’ steps from Fig. 3 also become redundant, because we
no longer have the concept of a variable scoping over a formula: instead the quantifiers
link directly to those parts of the formula where the variable is used. In essence, we
have moved from ‘statically-scoped quantifiers’ to ‘dynamically-scoped quantifiers’.

Main Idea 2. Dynamically-scoped quantifiers, where each variable is linked
directly to its binder, are more appropriate than statically-scoped quantifiers
here.

Figure 4 captures the intention of the picture in Fig. 1 quite well. However, there remains
a little too much repetition. This repetition appears at the boundaries of the loop block,
so we shall turn our attention to loops now.



8 John Wickerson

I

I

b

p1 p2 p3

p4 p5

I

I

¬b

p6

∃α

∃β

∃α

∃β

∃α

∃β

∃α
∃β

loop {

}

assume b

C1

Pick new α

Pick new β

assume ¬b

C2

Fig. 4: Second refinement: relaxing the ‘tree’ property on dotted arrows



Ribbon proofs and dynamically scoped quantifiers 9

3.3 Flattening loop nodes

The loop invariant

∃α

∃β
I

appears in four places in Fig. 4: above the loop, at the top of the loop body, at the bottom
of the loop body, and below the loop. In Fig. 1, this loop invariant appears only twice:
once above the loop, and once at the bottom of the loop body; the other positions can
be inferred. This repetition in Fig. 4 results from the requirement that each loop block
contains a complete, separate graph.

We have previously ‘flattened’ existential boxes; let us now perform this same trick
on loop blocks. Figure 5b is the same as Fig. 4, but the loop block has been replaced by
a single node labelled ‘loop {...}’ that is linked to each command in the loop body
by a solid grey arrow.

Note that it is not necessary to link the ‘loop {...}’ node to the assertions that
appear inside the loop body, only the commands. (This is something of a reversal of
Main Idea 1.) This means that we no longer need one copy of the loop invariant just
before the loop and one at the top of the loop body – the same nodes can now be reused
in both cases.

Main Idea 3. It is not necessary for assertion nodes to be located within the
scope of loops.

Note also that the loop node does not have pre- or postconditions. That is, no⇒-arrows
enter or leave it. In fact, the only arrows that are permitted to connect to loop nodes
are the solid grey ones. The loop invariant can still be deduced by inspecting the graph,
however.



10 John Wickerson

I

b

p1 p2 p3

p4 p5

I

¬b

p6

∃α∃β

∃α

∃β

loop {

}

assume b

C1

Pick new α

Pick new β

assume ¬b

C2

(a) A ribbon proof (repeated from Fig. 1)

I

b

p1 p2 p3

p4 p5

I

¬b

p6

∃α

∃β

∃α

∃β

loop {...}

assume b

C1

Pick new α

Pick new β

assume ¬b

C2

(b) Final refinement: flattening loop nodes

Fig. 5



Ribbon proofs and dynamically scoped quantifiers 11

4 Discussion

The refined graphs presented in the previous section seem to shed light on the ‘dynamic
scoping of existential boxes’ seen in ribbon proofs [10], and as such, the primary ob-
jective of this paper has been achieved. We must question, however, the practical utility
of the observations reported in this paper.

First, the refined graphs are much harder to formalise, and hence to prove sound.
What makes graphs such as the one in Fig. 2b easier to work with is the fact that each
loop node and each existential box contains a complete graph that is isolated from the
rest of the diagram. In contrast, our refined graphs assemble all the nodes together as
siblings, and allow arrows to pass between them quite freely, subject to some fairly sub-
tle semantic constraints. This difficulty is surpassable, but initial investigations, using
the Isabelle proof assistant, suggest that a considerable effort is required.

Second, we must ask whether our refined graphs are needed at all, when there exists
an alternative semantics for ribbon proofs that does not involve graphs at all. Wickerson
et al. [10] describe two formalisations of ribbon proofs: a ‘stratified’ version, which is
sensitive to the particular layout of proof steps, and a ‘graphical’ version, that consid-
ers only the connectivity between the proof steps, ignoring their layout. The stratified
semantics is the simpler of the two, does not require graphs, and does not require the
‘variables-as-resource’ scheme. The advantage of the graphical semantics is that proofs
can be identified up to graph isomorphism, and this can be helpful when, for instance,
analysing dependencies within the proof. If ribbon proofs prove helpful in this arena,
then the observations reported here should be quite helpful.

Third, we question the utility of existential boxes in ribbon proofs in general. It
is fairly clear that the ribbons themselves provide a useful intuition about the flow of
resources through a proof. But it is not clear that the shapes of the existential boxes
are so instructive. The existential boxes in the ribbon proofs shown in this paper are
highly localised; that is, the rounded rectangles depict exactly those ribbons in which
the existential binds. Perhaps this is giving too much information, and cluttering our
diagrams. Figure 6 shows an alternative to Fig. 1, where each quantifier’s horizontal
extent is not shown, only its vertical extent. Although this diagram is simpler, it is less
clear how to parse such a diagram as a graph.



12 John Wickerson

I

b

p1 p2 p3

p4 p5

I

¬b

p6

∃α ∃β

∃α ∃β

∃α

∃β

∃α ∃β

loop {

}

assume b

C1

Pick new α

Pick new β

assume ¬b

C2

Fig. 6: A ribbon proof



Ribbon proofs and dynamically scoped quantifiers 13

5 Dynamically-scoped quantifiers

This section introduces the idea of dynamically-scoped quantifiers.
Consider the following logical formula:

(∃x. ∃y. 0 < x ∧ x < y ∧ y < z) ∧ z < 4. (1)

Suppose we are interested in normalising such formulas. We could do so by pulling the
quantifiers as far ‘outside’ as possible. In our example, this would involve extending the
scopes of x and y to encompass the ‘z < 4’ conjunct, like so:

∃x. ∃y. 0 < x ∧ x < y ∧ y < z ∧ z < 4. (2)

Alternatively, we might prefer to normalise by pushing the quantifiers as far ‘inside’ as
possible, such that the scope of each quantified variable includes only those conjuncts
which mention that variable. In general, this is not possible. In our example, we should
like x to scope over 0 < x ∧ x < y, and y to scope over x < y ∧ y < z. Since
these fragments of the formula overlap, we cannot attain this with ‘statically-scoped’
quantifiers.

Formulae (1) and (2) can be represented by the following syntax trees.

∧

∃x

∃y

∧

∧

0 < x x < y

y < z

z < 4

∃x

∃y

∧

∧

∧

0 < x x < y

y < z

z < 4

In this paper, we expand our attention from syntax trees to syntax graphs. We can
hence represent a version of this formula whose quantifiers are pushed ‘inside’ as far as
possible.

∧

∧

∧

0 < x x < y

y < z

z < 4

∃x ∃y (3)

We have decorated the syntax tree with extra ‘dotted’ edges that connect each variable-
binder with just those leaves which refer to that variable.



14 John Wickerson

5.1 Dynamically-scoped quantifiers and first-order logic

We describe in this section how dynamically-scoped quantifiers may form a useful com-
ponent of a graphical proof system for first-order logic.

Consider the following trivial example. Suppose we are given, for all x, y and z,

P (x) =⇒ ∃w.R(w, x) (4)
Q(x) =⇒ ∃w.R(x,w) (5)

R(x, y) ∧R(y, z) =⇒ S(x, z) (6)

and we are to prove:

∃y. P (y) ∧Q(y) =⇒ ∃x. ∃z. S(x, z)

The proof can be written out ‘line by line’, like so:

∃y. P (y) ∧Q(y)

=⇒ by (4)

∃y. (∃x.R(x, y)) ∧Q(y)

=⇒ by (5)

∃y. (∃x.R(x, y)) ∧ (∃z.R(y, z))
=⇒ extend quantifier scopes

∃y.∃x.∃z.R(x, y) ∧R(y, z)
=⇒ by (6)

∃y.∃x.∃z. S(x, z)
=⇒ remove unused quantifier

∃x. ∃z. S(x, z)

The proof can alternatively be depicted as a graph whose edges correspond to implica-
tions. In the picture shown in Fig. 7a, nodes side-by-side are to be read as conjoined,
and the scope of ∃-quantifiers is depicted using a nesting hierarchy.

Note that those steps that manipulate quantifiers cause much repetition and addi-
tional complexity. If we move to using dynamically-scoped quantifiers, we can repre-
sent this proof much more concisely, as shown in Fig. 7b.

Rather than dotted arrows, it may be preferable to continue using boxes to de-
limit the scope of existential quantifiers. Of course, these boxes must now overlap. See
Fig. 7c.



Ribbon proofs and dynamically scoped quantifiers 15

∃x ∃z

∃x
∃z

∃y

∃x
∃z

P (y) Q(y)

by (4) by (5)

R(x, y) R(y, z)

extend quantifier scopes

R(x, y) R(y, z)

by (6)

S(x, z)

remove unused quantifier

S(x, z)

(a) Statically-scoped quantifiers

P (y) Q(y)

by (4) by (5)

R(x, y) R(y, z)

by (6)

S(x, z)

∃y

∃x ∃z

(b) Dynamically-scoped
quantifiers, with scoping via
dotted arrows

∃x ∃z

∃y
P (y) Q(y)

by (4) by (5)

R(x, y) R(y, z)

by (6)

S(x, z)

(c) Dynamically-scoped quantifiers, with
scoping via (overlapping) boxes

Fig. 7: A simple proof in first-order logic



16 John Wickerson

6 Semantics of dynamically-scoped quantifiers

In our formalisation, we shall avoid giving names to existentially-quantified variables.
This is sensible because the main purpose of names for variables is to link variables to
the relevant quantifier, but we now have dotted arrows to do this. The removal of names
reduces the complexity of the formalisation.

Let Var be an infinite set of variable names, and A be a set of assertions that may
mention variables in Var. The set Val contains the values that these variables range over.
Let N be a set of assertion-nodes.

6.1 Dynamic formulas

Definition 1 (Syntax of dynamic formulas). A dynamic formula is a tuple (A, V, Λ)
where

– A is a finite set of assertion-nodes, drawn from N ;
– V is a finite set of variables, drawn from Var; and
– Λ : V → A labels each assertion-node with an assertion.

We write DF for the set of dynamic formulas. The components of a dynamic formula P
can be projected like so:

P = (AP , VP , ΛP )

Definition 2 (Scope of a bound variable). For each dynamic formula P , the scopeP
function assigns to each variable in VP the set of assertion-nodes in AP that are in its
scope:

scopeP (v) = {a ∈ AP | v ∈ fv(ΛP (a))}.

Example 1 (A dynamic formula). Suppose a1, a2, a3 and a4 are distinct elements of
N , and x1, x2, x3 and x4 are distinct elements of Var. The dynamic formula

P = (A, V, Λ),

where

A = {a1, a2, a3, a4}
V = {x1, x2, x3}
Λ = {a1 7→ “0 < x1”, a2 7→ “x1 < x2”,

a3 7→ “x2 < x3”, a4 7→ “x3 < x4”}

can be visualised like so.

0 <

∃

<

∃

<

∃

< x4



Ribbon proofs and dynamically scoped quantifiers 17

The particular choice of nodes is inconsequential; all that matters is the shape of the
graph. Accordingly, we quotient the set DF of dynamic formulas by the following equiv-
alence.

Definition 3 (Support equivalence). Let us say that dynamic formulas P and Q are
support equivalent if there exists a pair (πass, πvar) of bijections πass : AP → AQ and
πvar : VP → VQ such that the following diagram commutes.

VP VQ

A A

πass

ΛP ΛQπvar

Here we tacitly lift πvar to act on assertions, where it substitutes free variables in the
usual way.

6.2 Meaning of dynamic formulas: by translation

One way to assign meaning to a dynamic formula is to translate it into a static formula.

Definition 4 (Translating dynamic formulas to static formulas). It is straightfor-
ward to translate a dynamic formula to a static one, using the following Tr function:

Tr(A, {x1, . . . , xn}, Λ)
def
= ∃x1. · · · ∃xn. (∗a∈A(Λa)).

Example 2. The application of the Tr function to the dynamic formula P introduced
in Example 1 yields the following static formula:

Tr(P ) = ∃x1, x2, x3. (0 < x1) ∗ (x1 < x2) ∗ (x2 < x3) ∗ (x3 < x4).

6.3 Meaning of dynamic formulas: direct semantics

Another way to assign meanings to dynamic formulas is to adapt the Tarksi-style se-
mantics of ordinary first-order logic. We define

J(A, V, Λ)Kρ =
⋃
ρ′:V→Val J∗a∈A(Λa)Kρ′′

where

ρ′′ = λx.

{
ρ′ x if x ∈ V
ρx otherwise.

Let us clarify the definition above with an example.



18 John Wickerson

Example 3. Consider the dynamic formula introduced in Example 1, interpreted as
a formula of first-order logic, and let Val be the natural numbers. To see that this
formula is satisfiable, choose an interpretation ρ such that ρ x4 = 12. Then define

ρ′ = {x1 7→ 3, x2 7→ 6, x3 7→ 9}.

Consequently,

ρ′′ ⊇ {x1 7→ 3, x2 7→ 6, x3 7→ 9, x4 7→ 12}.

It is then easy to see that J0 < x1Kρ′′ and Jx1 < x2Kρ′′ and Jx2 < x3Kρ′′ and
Jx3 < x4Kρ′′ all hold.

6.4 Dynamic contexts
We shall find ourselves wanting to compose dynamic formulas into contexts. For in-
stance, we would like to say that if P =⇒ Q is a valid entailment, then so is C[P ] =⇒
C[Q], for any context C. What then, is a context?

Definition 5 (Dynamic context). A dynamic context is simply a dynamic formula that
is quotiented by the a stronger version of support equivalence that allows renaming of
assertion-nodes but not variables.

Let us say that dynamic contexts P and Q are strongly support equivalent if

– VP = VQ and
– there exists a bijection πass : AP → AQ such that ΛQ ◦ πass = ΛP .

Example 4 (A dynamic context). Suppose a5 ∈ N and x4 ∈ Var. The dynamic
context

C = ({a5}, {x4}, {a5 7→ “x4 < 15”})

can be visualised like so.

< 15x4

∃x4

Essentially, dynamic contexts are the same as dynamic formulas, but the variable
names are made explicit. (As such, the dotted arrows become technically redundant.)

Let us now turn to the matter of inserting a dynamic formula into a dynamic context.

Definition 6 (Inserting a dynamic formula into a dynamic context). Given a dy-
namic context C = (AC , VC , ΛC) and a dynamic formula P = (AP , VP , ΛP ), where
AC ∩AP = ∅ and VC ∩ VP = ∅, then

C[P ] = (AC ∪AP , VC ∪ VP , ΛC ] ΛP )



Ribbon proofs and dynamically scoped quantifiers 19

Let us clarify the definition above with an example.

Example 5 (Inserting a dynamic formula into a dynamic context). The insertion of
the dynamic formula P (from Example 1) into the dynamic context C (from Exam-
ple 4),

C[P ] = (A, V, Λ),

where

A = {a1, a2, a3, a4, a5}
V = {x1, x2, x3, x4}
Λ = {a1 7→ “0 < x1”, a2 7→ “x1 < x2”, a3 7→ “x2 < x3”,

a4 7→ “x3 < x4”, a5 7→ “x4 < 15”},

can be visualised like so.

0 <

∃

<

∃

<

∃

< < 15

∃

Note that the x4 variable has become bound, and hence no longer appears in the
diagram.



20 John Wickerson

7 Related Work

The idea of ‘dynamically-scoped quantifiers’ has appeared in various guises in various
fields of study.

7.1 Peirce’s existential graphs

Peirce’s system of existential graphs [3, 8] involves dynamic scoping of existential
quantifiers. In his system, formulas are written on a two-dimensional page, juxtapo-
sition corresponds to conjunction, and drawing a ring around a fragment of the page
negates the formulas therein. For instance, the formula

¬a ∧ ¬(b ∧ c)

is depicted as the existential graph

a b c

Existential quantifiers are depicted as heavy lines that link occurrences of the same
variable. The variables do not have names. For instance, if P andR are unary predicates
and Q is a binary predicate, then the formula

∃x.¬P x ∧ ¬(∃y.Qx y ∧Ry)

is depicted as

P Q R

Note that the heavy line for the y-quantifier lies entirely within the right-hand ring. If
the line is pulled outside of that ring, like so

P Q R

then we are several ways to parse the existential graph, all equivalent:

∃x.¬P x ∧ (∃y.¬(Qxy ∧Ry))
∃x.∃y.¬P x ∧ ¬(Qxy ∧Ry)
∃y.∃x.¬P x ∧ ¬(Qxy ∧Ry).

Peirce’s existential graphs do not have a notion of free variables; all variables are bound.



Ribbon proofs and dynamically scoped quantifiers 21

7.2 Branching quantifiers

Henkin’s branching quantifiers [5] can be used to express certain statements that cannot
be expressed within first-order logic. For instance, Hintikka [6] proposes the sentence
“some relative of each villager and some relative of each townsman hate each other” as
one that cannot be adequately captured using first-order logic, and proposes instead to
write (

∀x1 ∃y1
∀x2 ∃y2

)
((V x1 ∧ T x2)⇒ (Rx1 y1 ∧Rx2 y2 ∧H y1 y2))

The matrix of quantifiers at the beginning of this formula indicates that the witness for
y1 depends on x1 but not on x2, and that the witness for y2 depends on x2 but not on x1.
Such complex dependencies are inexpressible using the statically-scoped quantifiers of
first-order logic.

It may be possible to express Hintikka’s sentence using dynamically-scoped quan-
tifiers, as suggested by the following picture.

∀x1
∃y1

∀x2
∃y2

((V x1 ∧ T x2)⇒ (Rx1 y1 ∧Rx2 y2 ∧H y1 y2))

7.3 Dynamic logic

Groenendijk and Stokhof [2] describe an extension of dynamic logic [4], called dy-
namic predicate logic, in which quantifiers are thought of as state-modifiers. Their idea
has been applied to natural language processing, to provide a compositional parsing
of multi-sentence phrases. Formulas no longer denote predicates on variable interpre-
tations, but are now relations between variable interpretations. In other words, each
formula is a program that modifies the variable interpretation as it is ‘executed’ from
left to right. For instance, ‘∃x’ is an action that havocs the value of x.

Vermeulen [9] proposes an extension of dynamic predicate logic in which each
variable denotes a stack of values. The action ∃x does not simply overwrite x with
an arbitrary value, but rather pushes an arbitrary value onto x’s stack. The new action
x ∃pops from x’s stack. Writing ‘φ0 ; φ1’ to denote relational composition, his system
can express our formula (1) in a form in which the quantifiers are pushed ‘inside’ in a
normalised way, like so:

∃x ; (0 < x) ; ∃y ; (x < y) ; x ∃; (y < z) ; y ∃; (z < 4)

Vermeulen’s system is able to express formulas using fewer variable names. It is very
different from our proposed system, which does not involve a dynamic semantics.



22 John Wickerson

7.4 Milner’s bigraphs

Our dynamically-scoped quantifiers are somewhat reminiscent of Milner’s bigraphs [7].
Here is formula (3) again, drawn this time as a bigraph.

0 < x x < y
∧

y < z

∧
z < 4

∧

x y
z

Note that each atomic control has one port per free variable. The link corresponding
to the z variable is an outer name, so that it can later be bound when this bigraph is
substituted into a broader context.

Acknowledgements The author thanks Thomas Göthel for many helpful suggestions
and stimulating discussions, and acknowledges the support of a postdoctoral scholar-
ship from the German Academic Exchange Service (DAAD).

References

1. J. Bean. Ribbon Proofs - A Proof System for the Logic of Bunched Implications. PhD thesis,
Queen Mary University of London, 2006.

2. J. Groenendijk and M. Stokhof. Dynamic predicate logic. Linguistics and Philosophy, 1990.
3. E. M. Hammer. Semantics for existential graphs. Journal of Philosophical Logic, 27(5):489–

503, 1998.
4. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
5. L. Henkin. Some remarks on infinitely long formulas. In Infinitistic Methods: Proceedings of

the Symposium on Foundations of Mathematics, pages 167–183. Państwowe Wydawnictwo
Naukowe and Pergamon Press, Warsaw, 1961.

6. J. Hintikka. Quantifiers vs. quantification theory. Linguistic Inquiry, 5(2):153–177, 1974.
7. R. Milner. The Space and Motion of Communicating Agents. Cambridge University Press,

2009.
8. C. S. Peirce. Existential graphs. In A Syllabus of Certain Topics of Logic, pages 15–23.

Alfred Mudge & Son, 1903.
9. C. F. M. Vermeulen. Variables as stacks: A case study in dynamic model theory. Journal of

Logic, Language and Information, 9:143–167, 2000.
10. J. Wickerson, M. Dodds, and M. J. Parkinson. Ribbon proofs for separation logic. In

M. Felleisen and P. Gardner, editors, Proceedings of the 22nd European Symposium on Pro-
gramming (ESOP ’13), 2013.


