
Custom-Sized Caches in Application-Specific
Memory Hierarchies

Felix Winterstein∗, Kermin Fleming†, Hsin-Jung Yang‡, John Wickerson∗, George Constantinides∗
∗Department of Electrical and Electronic Engineering, Imperial College London

†SSG, Intel Corporation
‡CSAIL, Massachusetts Institute of Technology

Email: ∗{f.winterstein12, j.wickerson, g.constantinides}@imperial.ac.uk, †kermin.fleming@intel.com, ‡hjyang@csail.mit.edu

Abstract—Developing FPGA implementations with an input
specification in a high-level programming language such as C/C++
or OpenCL allows for a substantially shortened design cycle
compared to a design entry at register transfer level. This work
targets high-level synthesis (HLS) implementations that process
large amounts of data and therefore require access to an off-chip
memory. We leverage the customizability of the FPGA on-chip
memory to automatically construct a multi-cache architecture
in order to enhance the performance of the interface between
parallel functional units of the HLS core and an external memory.
Our focus is on automatic cache sizing. Firstly, our technique
determines and uses up unused left-over block RAM resources
for the construction of on-chip caches. Secondly, we devise a
high-level cache performance estimation based on the memory
access trace of the program. We use this memory trace to find
a heterogeneous configuration of cache sizes, tailored to the
application’s memory access characteristic, that maximizes the
performance of the multi-cache system subject to an on-chip
memory resource constraint. We evaluate our technique with
three benchmark implementations on an FPGA board and obtain
a reduction in execution latency of up to 2× (1.5× on average)
when compared to a one-size-fits-all cache sizing. We also quantify
the impact of our automatically generated cache system on the
overall energy consumption of the implementation.

I. INTRODUCTION

Recent efforts on high-level synthesis (HLS) flows greatly
alleviate the difficulty of designing an FPGA implementation
at register transfer level (RTL). Generating RTL designs from
programs written in high-level languages such as C/C++ or
OpenCL can substantially reduce the design time of FPGA
implementations. HLS users are provided with a rich set of
directives which guide the RTL generation and trigger various
compiler optimizations, which allow them to make use of the
customizability of FPGA designs. Modern HLS compilers can
deliver a quality of results, in terms of resource usage and
execution speed of the synthesized circuits, that is becoming
acceptable for more and more users.

This paper focuses on the integration of HLS kernels
into an FPGA platform. In particular, we focus on data- and
communication-intensive HLS designs that require access to
an off-chip memory system because the application data do
not fit into the limited on-chip storage. In this case, access
to board- or host-level memory with substantially lower
bandwidth can easily become the performance bottleneck. A
common solution to this problem is to insert on-chip caches

or specialized buffers into the interface to an off-chip memory
hierarchy to enhance performance. The customizability of the
on-chip memory, a key benefit of FPGAs, gives enormous
freedom to a compiler to construct a tailor-made cache
architecture underneath a uniform interface layer provided
to the user core. Yet, the design space is large and finding
optimal choices for the memory hierarchy parameters is
time-consuming and requires significant domain expertise on
the part of the programmer. Recent efforts aim to automate
the optimization of the memory hierarchy [1]–[6]. A common
approach is to compile multiple parallel on-chip caches in
order to leverage the memory-level parallelism of FPGAs.
Much of the related work focuses on the parallelism of such
a multi-cache architecture [1]–[3], but the problem of optimal
sizing of these caches is unaddressed. In this work, we focus
on optimizing the capacity of the caches produced by these
automated flows.

In applications with large memory footprints, the bulk
of the data necessarily resides off-chip. In these cases, the
HLS core often keeps only small data structures on-chip.
Consequently, the amount of on-chip block random access
memory (RAM) used by the core is often smaller than the
amount of the block RAM available. We implement a cache
compilation flow that automatically uses up the left-over
block RAM and enlarges the on-chip caches. Secondly, the
size of each cache is set individually in order to obtain a
size distribution across the parallel caches that is optimal
for the memory access pattern of a particular application.
For example, the accesses to some data structures of an
application have good locality and increasing the cache size
improves performance. On the other hand, some memory
access traces have very little locality or access small data
structures, and scaling up the cache beyond a certain size is
of no use. In such a case, an application-specific cache sizing
will very likely have superior performance compared to a
one-size-fits-all solution.

It is important to note that our technique does not rely
on successive synthesis and place-and-route cycles, but
instead estimates the cache performance for different sizes
with a pre-RTL, dynamic program analysis of the input code
to an HLS tool. Our approach relies on a prediction of the
performance of each cache from the applications reference
stream, and finds a size configuration that maximizes the
aggregate performance subject to a resource constraint.
Although determining statically the cache size requirements

978-1-4673-9091-0/15/$31.00 c© 2015 IEEE

and hence the size of the data structures is possible in some
corner cases, we adopt here a run-time profiling approach for
capturing the memory reference trace in order to ensure wide
applicability. Especially in heap-manipulating programs, the
absolute data structure size is often unknown at compile time.
Our dynamic analysis can handle this type of program at the
expense of relying on a representative input data set provided
by the user. In summary, our contributions are:

• We implement an automated size scaling of private,
direct-mapped on-chip caches with a fixed line width
that uses spare block RAM resources (Section III-A).

• We develop a cache hit rate estimator based on the
memory reference trace of the program under test. The
original code is instrumented with profiling instruc-
tions for gathering the memory reference trace. The
code instrumentation is made in the LLVM interme-
diate representation of the program, which allows us
to support HLS flows based on LLVM. We use Vivado
HLS as an exemplary tool in this paper (Section III-B).

• We generate individual sizing information for the
multi-cache system. We cast the cache size assign-
ment into a Multiple-Choice Knapsack Problem in
order to find the best distribution for a user-provided
memory access pattern of a particular application
(Section III-C).

• We build physical implementations of the HLS cores
and the memory hierarchy on a Xilinx VC707 FPGA
board to perform end-to-end evaluations (Section IV).

• We demonstrate our technique using three benchmarks
running on the FPGA board. We evaluate the accuracy
of the hit rate estimation by comparison with measured
hit rates. We show up to 2× improvements on the
overall execution time compared to a one-size-fits-
all cache sizing. We also characterize the impact of
our cache insertion in terms of power and energy
consumption (Section V).

II. MOTIVATING EXAMPLE

Although our technique can be applied to arbitrary
programs, we primarily target programs that involve pointer
chasing because of their sensitivity to the memory access
latency and because their irregular access pattern results in
long response times of an external synchronous dynamic RAM
(SDRAM). Listing 1 shows an excerpt of a heap-manipulating
program. The function reflectTree traverses a pointer-
linked tree data structure (nodes of type treeNode).
The depth-first traversal is managed with a second data
structure implemented as a linked list. The nodes of the list
(type forestNode) contain a pointer to a sub-tree and a
pointer to the next node in the list. The head of the list is
manipulated by the auxiliary functions push and pop. The
tree has been built up by another function of the same program.

Our static program analysis in [3] can determine that
the tree and the linked list each can be split into sub-partitions
which reside in disjoint address spaces in the heap memory.
Furthermore, the source code is transformed such that 1)
the modified code passes through a standard HLS tool

1 //main traversal function
2 void reflectTree(treeNode *root) {
3 forestNode *s = push(root, NULL);
4 while (s != NULL) {
5 treeNode *u;
6 s = pop(&u, s);
7 treeNode *left = u->left;
8 treeNode *right = u->right;
9 u->left = right;

10 u->right = left;
11 if (u->left!=NULL && u->right!=NULL) {
12 s = push(u->left, s);
13 s = push(u->right, s);
14 }
15 }
16 }
17 //auxiliary function push (add new list head)
18 forestNode* push(treeNode *u, forestNode *s){
19 forestNode *t = new forestNode;
20 t->u = u; t->n = s;
21 return t;
22 }
23 //auxiliary function pop (delete list head)
24 forestNode* pop(treeNode **u, forestNode *s){
25 *u = s->u;
26 forestNode *t = s->n;
27 delete s; return t;
28 }

Listing 1: C-like pseudo code for a tree reflection.

(substituting heap accesses with array accesses), and 2) the
while-loop in line 4 is split into parallel sub-loops that
process their own, private heap partition independently to
parallelize the application. Finally, since the heap resides in
a large off-chip memory by default, the notion of disjoint,
non-overlapping address regions allows the tool to instantiate
parallel private on-chip caches for each sub-partition (of each
data structure type). All caches have a fixed size of 32 KB.

Assuming we have only run the transformation of pointer
references and cache insertion without asking for additional
parallelization, the hardware implementation has a private
cache for forestNode and treeNode. The RTL design
for the modified source code is generated with an HLS
tool, for example Xilinx Vivado HLS, which also provides
information of the block RAM resources consumed by the
HLS core itself. In this case, the core uses 112 36kbits RAM
blocks which leaves 918 left-over blocks in a Virtex 7 device
(xc7vx485tffg1761-2) to be used by the platform surrounding
the HLS core. With a conservative 40%-margin, 550 RAM
blocks (2200 KB1) can be repurposed as cache memories.

Our technique then estimates the performance of the
caches from the memory reference trace, which is obtained
from running the HLS input program with a representative
input data set provided by the user. The reference stream,
together with the knowledge of the cache type (direct-
mapped, set-associative, fully-associative) allows us to model
the aggregate hit rate of the multi-cache system. For K = 2
private caches as in this example, there is no interaction
between the caches and the aggregate hit rate is given by:

η =

∑K−1
i=0 hi(Bi)∑K−1

i=0 ti
, (1)

132 kbits in a Xilinx 36K-RAM block can be used to store user data

8
16

32
64

128
256

512
1024

2048
4096

8
16

32
64

128
256

512
1024

2048
4096
0.75

0.8

0.85

0.9

0.95

1

Cache size 0 [KB]Cache size 1 [KB]

A
g
g
re

g
a
te

 h
it
 r

a
te

Fig. 1: Aggregate hit rate estimate.

where hi is the number of hits in cache i of size Bi, ti is
the total number of accesses to cache i. Fig. 1 shows the
aggregate hit rate for the two direct-mapped caches over
different size configurations. The design space spans hit rates
from 79% to 97%. The hit rate of cache 0 (for data of type
forestNode) reaches its maximum at a size of 32 KB and
then plateaus. The reason for the steep improvement with low
sizes and early saturation is the high locality of the memory
accesses made to the stack-like linked list and the fact that
just 32 KB of cache memory is sufficient to keep the entire
data structure on-chip. For tree nodes (cache 1), a 2 MB
cache is needed to fit all tree data. Clearly, spending the same
amount of memory resources on both caches is sub-optimal.

The advantage of our technique over a one-size-fits-all
cache scaling becomes obvious when we take the memory
resource constraint of 2200 KB into account. With a fixed size
for all caches, on this grid, we could implement caches with a
maximal capacity of 1024 KB each, which corresponds to the
point marked with the solid-line blue circle in Fig. 1. A cache
sizing tailored to the access pattern of the application allows
us to decide that a size of 32 KB for cache 0 and 2048 KB
for cache 1 maximizes the hit rate while still satisfying the
resource constraint. This design point is marked with the
dashed green circle in Fig. 1. In general, programs will use
more than two parallel caches, and the disparity between
fixed-size and application specific cache sizing will be larger.

Replacing a fixed-size scaling with a specific size distribution
relies on the ability to 1) predict the performance of each
cache from the application’s reference stream, and 2) to
find a cache size configuration that maximizes the aggregate
performance subject to a memory resource constraint. The
next section describes how both problems are addressed.

III. CACHE SIZING

Our cache sizing flow has three components: 1) It first
determines unused block RAM resources, which requires an
estimation of the memory resources used by the HLS core
itself. 2) We predict the hit/miss counts of each cache for
different sizes. 3) The amount of spare block RAM and the
cache performance estimates are combined into an optimiza-
tion problem which finds a variable size configuration in the
multi-cache system that maximizes the aggregate hit rate.

A. On-chip Memory Utilization Estimation

We obtain high level estimates of the block RAM con-
sumption from the HLS tool to determine the left-over RAM
resources. Here, we use Vivado HLS, which provides estimates
of the number of LUTs, flip-flops, DSP slices and RAM
blocks consumed by the HLS core. Compared to LUTs, flip-
flops and DSP slices, the predicted amount of memory is
relatively accurate. The only cases where the high-level pre-
diction deviates from the implementation post placement and
routing were observed when the down-stream RTL synthesis
tool performed bit truncations that affected operands stored
in memory. However, in these cases, the high-level estimate
is always higher than the actual usage, which results in a
slightly over-conservative but safe estimate. A potential clock
rate degradation due to large on-chip RAMs is alleviated with
memory banking in combination with pipeline buffers [7].

B. Cache Performance Estimation

We build our sizing technique on top of the multi-cache
generator in [3], which primarily targets heap-manipulating
programs. For each heap partition and heap-allocated data type,
this method instantiates a bus interface in the HLS input code.
All buses are later routed through an arbiter to an external
memory as we describe in Section IV. We instrument the
transformed program with profiling instructions that fill trace
buffers, which maintain the memory reference trace for each
bus interface. We expect the user to provide a representative
input data set for the profiling run. Hence, we may miss
corner cases with this dynamic program analysis. However,
since cache size is only a performance-related parameter, the
functional correctness of the optimization is not compromised.
The trace buffers are empty at program start-up. On each
access to external memory in the program, the instrumentation
code adds the memory address. In this way, we build up
reference streams of length Mi:

{ a0,i, ..., aMi−1,i }, (2)

where i is the index of the memory interface. The memory is
divided up into blocks, some of which will have copies in the
cache. The block width L is equal to the cache line size. For
a data width smaller than L the block reference streams

{ ba0,i

L c, ..., b
aMi−1,i

L c } (3)

give us the dynamic trace of memory accesses at the
granularity of the cache line size. The cache line size is a
fixed parameter in our analysis. If the user data width is
larger, a cache access is split into multiple sequential chunks
in our implementation. We model this by expanding the block
reference stream (3) accordingly in a post-processing step.

The cache size remains the only variable parameter in
the hit rate estimation. Other parameters such as associativity
and support for disjoint/shared memory accesses are fixed
but must be taken into account. We focus on private caches,
where no interaction between caches occurs. The hit rate of
fully-associative caches can be precisely determined using
the stack distance metric [8]–[11], which counts the number
of unique references ‘between’ accesses to the same address.
A cache with B lines then filters out references with stack
distance larger than B. The stack distance distribution of

Algorithm 1 Hit rate of a private, direct-mapped cache.
1: Input:
2: Block reference stream S
3: Number of cache lines B
4: Output:
5: Miss count nmiss

6: Hit count nhit

7: function ESTIMATE(S)
8: Su ← unique(S) . keep unique block references
9: nmiss, nhit ← 0

10: for all r ∈ Su do
11: I ← findAll(S = r) . get indices of entries equal to r
12: c← r mod B . cache line accessed by r
13: nmiss ← nmiss + 1 . first access is always a cold miss
14: for j = 1 . . . length(I)− 1 do . loop over remaining

accesses
15: R′ ← S(I(j − 1) + 1 : I(j)− 1) . intervening refs
16: C′ ←R′ mod B . intervening cache line refs
17: if find(C′ = c) = ∅ then
18: nhit ← nhit + 1 . hit
19: else
20: nmiss ← nmiss + 1 . conflict miss
21: end if
22: end for
23: end for
24: return nmiss, nhit

25: end function

a reference stream allows us to count cold misses (cache
misses due to empty cache at program start-up) and capacity
misses (misses due to line eviction because the cache
is full) in fully-associative caches. In lower-associativity
caches, additional conflict misses occur (eviction due to
intervening references although the cache is not full) which
the stack distance approach can only approximate [10], [11].
The prediction accuracy worsens with decreasing associativity.

Because we target direct-mapped caches and because
our goal is an accurate prediction, we devise a precise hit rate
determination for direct-mapped caches. For each reference
r and the previous reference r′ to the same block address,
we examine the intervening references made between r′

and r. A conflict miss occurs if at least one intervening
reference accesses the same cache line, which is determined
with a modulo operation using the cache size B as divisor.
Algorithm 1 shows Matlab-like pseudo code of the hit rate
estimator for direct-mapped caches of size B. It predicts
the the number of hits (nhit) and misses (nmiss) of the
cache dependent on its size, which allows us to compare the
performance of cached memory interfaces with different block
reference streams) relative to the other caches and select a
configuration of cache sizes that maximizes the aggregate hit
rate.

C. Optimization Strategy

Our compiler generates K caches as described above. With
Algorithm 1, we can estimate the performance of each inde-
pendent cache hi(B), i = 0 . . .K − 1 once we have obtained
the corresponding reference streams. We assign different sizes
to the caches in such a way that the aggregate hit rate is
maximized. To this end, we assign to each cache a set of N
cache sizes Bi = {B0, B1, . . . , BN−1} and compute the hit
rate relative to the total number of accesses for each size. We
cast the search for the best size assignment for each cache into

an optimization problem and define the following variables:

pij = hi(Bj) the profit (hit rate of cache i)

wij = brami(Bj) the cost (block RAM consumption

of cache i)

C the global constraint on the available

block RAM resources

xij ∈ {0, 1} a binary variable,

where i = 0 . . .K−1 iterates over caches and j = 0 . . . N−1
iterates of cache sizes. We phrase the maximization problem as
a Multiple-Choice Knapsack Problem (MCKP) [12] as follows:

maximize
∑K−1

i=0

∑N−1
j=0 pijxij

subject to
∑K−1

i=0

∑N−1
j=0 wijxij ≤ C

and
∑N−1

j=0 xij = 1, i = 0 . . .K − 1

(4)

The objective in (4) maximizes the aggregate hit rate of K
caches. The first constraint enforces memory resource limits
and the second constraint ensures that, for each cache, exactly
one size from the set Bi is selected by the algorithm. We
solve the Knapsack problem with an algorithm by Pisinger
et al. [12] based on dynamic programming. The next section
describes the code generation and transformations before and
after cache sizing.

IV. CODE GENERATION

Most state-of-the-art HLS tools, such as Vivado HLS,
LegUp [13] and ROCCC [14], compile the input code into
the LLVM intermediate representation (IR) prior to RTL
generation and perform code analysis and transformations at
IR-level. Our code instrumentations and the profiling run are
performed at IR-level. The instrumentation code is stripped
out before the source code is passed to the RTL generation.

We primarily target heap-manipulating programs. After
heap partitioning by the up-stream static program analysis
[3], the HLS core has a bus interface for each partition and
heap-allocated data structure type because the heap resides in
off-chip memory by default. Dereferencing of heap-directed
pointers is substituted using an auxiliary static pointer variable
(_aux35) as shown in Listings 2 and 3 for the instruction
t->u = u. All heap-directed pointers in the original code
are turned into integer variables (i32), which ensures
synthesizability by standard HLS tools and easy address
trace profiling. Additional instrumentation code is added
after the memory access in line 7 of Listing 3 to record a
write access to the base address at %tmp3 plus the field offset.

The HLS core is embedded in the LEAP platform [15].
LEAP provides an abstraction layer which provides unified
interfaces to the user application. Underneath this layer, LEAP
implements drivers and communicates with the FPGA-specific
components and I/O systems. In particular, LEAP Scratchpads
[16], [17], LEAP’s memory service, build a memory hierarchy
underneath a simple request/response protocol to which the
memory bus interfaces of our HLS core connect. LEAP

RTL synthesis /

place & route
HLS tool

Input

program
Static

program

analysis

LEAP

environment

Parallelization /

memory space

partitioning

Substitution of dynamic mem.

allocation / pointer references

Code

instrumentation

and profiling

Cache sizing

Input

data

Verilog

code

BVI

Modified

program

code

Sizing information

Reference

stream

Loop kernel 0

forest_node

HLS core (after partitioning and parallelization)

Scratchpad 0

Scratchpad

controller

Platform

connector

LEAP environment

request ring

response ring

Memory interfaces (partition 0):

on-chip

Host system

memory

Board-level

DDR3 memory

off-chip

on-chip

Scratchpad 1 Scratchpad 3Scratchpad 2

tree_node

Loop kernel 1

forest_node

Memory interfaces (partition 1):

tree_node

Fig. 2: Synthesis flow (left) and the synthesized architecture for the parallelized Reflect tree example in Section II (right).

1 / / t−>u = u ; O r i g i n a l LLVM code
2 %tmp2 = l o a d %s t r u c t . t r e e n o d e t ∗∗ %u
3 %tmp3 = l o a d %s t r u c t . f o r e s t N o d e ∗∗ %t
4 %tmp4 = g e t e l e m e n t p t r i n b o u n d s %s t r u c t . f o r e s t N o d e ∗

%tmp3 , i 3 2 0 , i 3 2 0
5 s t o r e %s t r u c t . t r e e N o d e ∗ %tmp2 , %s t r u c t . t r e e N o d e ∗∗

%tmp4

Listing 2: Original LLVM IR of the statement t->u = u.

1 / / t−>u = u ; Trans fo rmed LLVM code
2 %tmp2 = l o a d %s t r u c t . t r e e n o d e t ∗∗ %u
3 %tmp3 = l o a d i 3 2 ∗ %t
4 % aux35 = c a l l %s t r u c t . f o r e s t N o d e ∗

@auxMakePointer 0(% s t r u c t . f o r e s t N o d e ∗
g e t e l e m e n t p t r i n b o u n d s ([4294967296 x %s t r u c t .
f o r e s t N o d e]∗ @ h e a p p a r t i t i o n 0 , i 3 2 0 , i 3 2 0) ,
i 3 2 %tmp3)

5 %tmp4 = g e t e l e m e n t p t r i n b o u n d s %s t r u c t . f o r e s t N o d e ∗
% aux35 , i 3 2 0 , i 3 2 0

6 s t o r e i 3 2 %tmp2 , i 3 2 ∗ %tmp4
7 / / a d d i t i o n a l i n s t r u m e n t a t i o n code t o r e c o r d a

w r i t e a c c e s s t o a d d r e s s %tmp3 + f i e l d o f f s e t

Listing 3: Transformed LLVM IR.

Scratchpads provide easy access to the board-level SDRAM
and host-level main memory if the memory accesses made by
the FPGA application go beyond the capacity of board-level
RAM. Optionally, each scratchpad can contain an on-chip,
direct-mapped L1 cache, which is implemented with block
RAM resources. LEAP provides private scratchpads [16]
which access private, disjoint address spaces. In the case of
overlapping, i.e. shared memory regions, scratchpads with
coherent caches [17] can be instantiated, which are connected
through an on-chip coherency network. The generated RTL
code of the HLS core connects to the Bluespec-based LEAP
framework through a thin Verilog/Bluespec wrapper. The latter
uses Bluespec’s import BVI functionality. Fig. 2 shows
the complete synthesis flow and the synthesized architecture
for the parallelized version of the Reflect tree example from
Section II (two parallel loop kernels 0 and 1).

V. EVALUATION

We evaluate our technique using three HLS
implementations with irregular memory access patterns.
Although our cache sizing can be applied to any program
requiring access to off-chip memory, we focus on heap-
manipulating programs that involve pointer chasing.
Merger: The application builds up four linked lists in parallel
by performing a sorted insertion of the input values. After the
build phase, the heads of the lists are repeatedly compared.
The head with the smallest key is deleted and its data
entry appears at the output of the core, resulting in a sorted
sequence of all input values. The program traverses the lists
for each insertion and is therefore very sensitive to memory

TABLE I: High-level block RAM estimation accuracy (results
in 36K-RAM blocks).

Design component Estimate Post-PAR

Merger (8 scratchpads)

HLS core 512 512

Interface wrapper 12 12

Scratchpad internal FIFOs 12 12

LEAP platform (without scratchpads, fixed) 50.5 50.5

Total consumption without caches 586.5 586.5

Unused left-over blocks 340.5 340.5

Reflect tree (4 scratchpads)

HLS core 208 158

Interface wrapper 21 21

Scratchpad internal FIFOs 19 19

LEAP platform (without scratchpads, fixed) 50.5 50.5

Total consumption without caches 298.5 248.5

Unused left-over blocks 628.5 678.5

Filter (6 scratchpads)

HLS core 275 241

Interface wrapper 32 32

Scratchpad internal FIFOs 24 24

LEAP platform (without scratchpads, fixed) 50.5 50.5

Total consumption without caches 381.5 347.5

Unused left-over blocks 545.5 579.5

access time. The implementation uses eight parallel caches.
Reflect tree: This is a more complex version of the motivating
example in Section II. The application traverses a binary tree
and recursively swaps the left and right child pointer of some
nodes to produce a partially mirrored tree. It additionally
performs some computation at each node and updates the data
fields of the tree nodes. The implementation consists of a tree
building and a tree traversal phase. The HLS core consists of
two parallel units and uses two caches for tree nodes and two
caches for the linked lists (forest).
Filter: This is an efficient k-means clustering algorithm,
which partitions a 3D-data set into k clusters. The application
first builds a kd-tree by recursively sub-dividing the data set.
In a second step, the tree is traversed in post-order fashion
to store the sum of sub-tree data in each node. The actual
clustering step repeatedly traverses the tree and iteratively
improves the cluster assignment until it converges to a locally
optimal solution. The HLS core consists of two parallel units
and uses six caches, two for tree nodes, two for forest nodes,
and two for intermediate cluster centers.

We use Vivado HLS 2014.1 for high-level synthesis of
our benchmarks. The LEAP framework around the HLS
core is built with the Bluespec 2014-07-A compiler. We
implement the FPGA designs in a hybrid flow using
Synopsys Synplify Premier 2014.03.1 for RTL synthesis and

TABLE II: Cache hit/miss count estimation for Reflect tree.

Cache size hmeas hest error hSD
est errorSD

Cache 0
1024 86.46% 86.46% 0.00% 84.71% −2.06%
8192 87.44% 87.44% 0.00% 87.12% −0.36%

32768 87.49% 87.49% 0.00% 87.42% −0.08%
65536 87.50% 87.50% 0.00% 87.87% 0.42%

262144 95.83% 95.83% 0.00% 91.43% −4.82%

Cache 1
1024 86.35% 86.35% 0.00% 84.44% −2.26%
8192 87.03% 87.03% 0.00% 87.12% 0.11%

32768 95.68% 95.68% 0.00% 91.04% −5.09%
65536 95.68% 95.68% 0.00% 92.94% −2.94%

262144 95.68% 95.68% 0.00% 94.90% −0.82%

Vivado 2014.4 for placement and routing. All implementations
run on a Xilinx VC707 board containing a Virtex 7 FPGA
(xc7vx485tffg1761-2) with 1030 36K-RAM blocks.
A. Left-Over Block RAM Estimation

Our automatic cache scaling relies on the ability to estimate
the amount of block RAM used by the HLS implementation
for core-internal storage. Once the tool decided which variables
in the code go into block RAM, a conservative estimate can
be easily made. Vivado HLS, for example, provides such an
estimate after RTL generation. Table I compares the high-
level block RAM estimation of 36K-RAM blocks with post
placement-and-routing (PAR) results (18K-blocks count as 0.5
36K-blocks). Additional block RAM is used in FIFOs of the
wrappers connecting HLS bus interfaces to LEAP scratchpad
ports. Similarly, our scratchpad interfaces (scratchpads without
caches) contain some FIFOs as well. The RAM usage of
these FIFOs can be precisely determined from the Verilog/BSV
code. The LEAP-based framework uses a fixed amount of
RAM. The only uncertainty are the estimates made by the HLS
tool, but these are always higher than the post-PAR consump-
tion. because of bit truncations made by the RTL synthesis
tool. We also include a 10% security margin in the left-over
portion that will be used for the cache implementations.

B. Validating the Cache Performance Estimation

We validate or cache model with measurements of the
actual hit/miss rates. LEAP Scratchpads collect the number
of hits and misses for each cache during execution of the
application. Table II compares the measured individual hit
rate hmeas for different cache sizes with the estimated values
hest from Algorithm 1. The hit rates are calculated with
h = nhit/(nhit +nmiss) and the cache sizes are given in terms
of 64bit lines. We also include the relative error. Additionally,
we compare the stack distance-based approximation in [10]
(hSDest , errorSD) with our estimator. Due to space limitations,
we show results only for two caches of the Reflect tree
benchmark. Our estimation matches exactly the measured
hit/miss counts, i.e. Algorithm 1 models our direct-mapped
caches perfectly. The approximation by Brehob and Enbody
[10] tends to underestimate the hit rate of direct-mapped
caches, an observation also made in [10].

C. Latency and Resource Utilization

Our technique improves the aggregate hit rate of the multi-
cache architecture. The following results show the impact of

TABLE III: Latency and resource utilization.

Case LUTs FFs DSPs BRAMs Hit rate Lat. /ms S

Merger (8 scratchpads, 200000 random input values)

1 67072 66502 19 586.5 0 7.64 1

2 90840 88200 38 634.5 0.05 7.91 0.97

3 92735 88550 38 858.5 0.79 3.20 2.39

4 91945 88377 39 874.5 0.99 1.54 4.95

Reflect tree (4 scratchpads, 36863 tree nodes)

1 73915 76594 57 248.5 0 345.6 1

2 84298 82700 72 278.5 0.91 145.5 2.38

3 84824 82828 71 862.5 0.95 123.3 2.80

4 84860 82826 70 944.5 0.99 100.3 3.44

Filter (6 scratchpads, 24575 kd-tree nodes, k = 128 clusters)

1 90570 91272 97 347.5 0 598.7 1

2 106765 102856 116 383.5 0.93 231.9 2.58

3 110363 110030 116 971.5 0.97 235.5 2.54

4 106850 102965 112 829.5 0.99 221.8 2.70

the cache scaling on the overall execution latency and on the
FPGA resource usage. All results are obtained from a physical
implementation on the VC707 board. We compare four cases:

1) An implementation without any caches,
2) An implementation with a small fixed cache size of

1024 lines,
3) An implementation with a fixed size for all caches

but scaled up to the maximally possible size,
4) A variably-sized multi-cache system as delivered by

our technique in Section III.

The clock frequency target is set to 100 MHz in all cases and
all designs meet this clock constraint. All caches have a line
width of 64 bits. Table III shows the timing as well as resource
utilization. It shows the utilization of look-up tables (LUTs),
flip-flops (FFs), DSP slices (DSPs) and 36K-RAM blocks
(BRAMs). We also show the aggregate hit rate (measured) and
the execution latency. The latency is normalized depending
on the application: the latency per input value for Merger,
the overall latency of a completed tree traversal for Reflect
tree, and the latency per clustering iteration for Filter. We
compare the speed-up S with respect to the base case (case 1).

In addition to more BRAM, we observe a sudden increase
in LUT, FF and DSP utilization once caches are included
in the scratchpads. LUTs and FFs increase only marginally
when scaling the caches up, leaving the BRAM usage as the
limiting factor. The hit rate and latency improvements for
Merger are substantial and grow steadily with larger cache
sizes. There is a significant asymmetry between the linked
lists in the application and the large improvement of the
variable sizing over a fixed sizing (cases 3 and 4) is due to
the fact that larger caches support longer lists.

For the tree-based benchmarks, we see a different characteristic
of the latency improvement. Even small caches lift the
aggregate hit rate above 90%. This reflects the behavior in
Fig. 1: the forestNode data structures, with a stack-like
access pattern, are very small (but heavily accessed) in the
average case and a small cache is sufficient to keep all
data on-chip. Consequently, the optimization algorithm in
Section III-C opts to use more memory resources for the large
tree structure. For Reflect tree, this improves the aggregate

TABLE IV: Power and energy measurements.

Case PFPGA /W PSDRAM /W EFPGA /mJ ESDRAM /mJ Etotal /mJ R

Merger (8 scratchpads, 200000 random input values)

1 1.8 1.1 13.6 8.4 22.0 1

2 2.1 1.1 16.9 8.5 25.4 0.87

3 2.6 1.0 8.2 3.3 11.5 1.92

4 2.6 1.0 4.1 1.6 5.6 3.93

Reflect tree (4 scratchpads, 36863 tree nodes)

1 1.9 1.2 655.2 401.9 1060.5 1

2 2.0 1.2 289.5 179.2 471.1 2.3

3 3.4 1.2 420.3 144.1 564.4 1.88

4 3.8 1.0 376.5 101.1 477.6 2.22

Filter (6 scratchpads, 24575 kd-tree nodes, k = 128 clusters)

1 2.0 1.3 1208.2 768.7 1976.9 1

2 2.1 1.0 494.5 234.4 728.8 2.71

3 3.6 1.0 855.4 242.9 1098.2 1.80

4 3.4 1.0 745.7 227.8 973.5 2.03

hit rate by 5% compared to a homogeneous maximum sizing.
Although the hit rates for Filter and Reflect tree are similar,
the latency improvement from cache scaling for Filter is
small. This is mainly due to high core-internal computation
between memory accesses, which makes the effect of a
shorter access time to the tree data less significant.

D. Energy Consumption

We quantify the impact of our cache insertion and scaling
on the overall energy consumption. To this end, we measure
the instantaneous power consumption of the FPGA and the
board-level SDRAM while the applications are running. We
collect power figures for three out of the 12 power rails on the
VC707: VCCINTFPGA is the main supply of the FPGA and
VCCBRAM is an additional block RAM supply. We combine
both to obtain the main supply of the FPGA. The third rail
is VCC1V5 is a supply of the SDRAM. All other rails do
not change notably their power levels during execution of
our applications. We integrate power over the three latencies
defined in the previous section: We show the energy per input
value for Merger, the energy per completed tree traversal
for Reflect tree and the energy per clustering iteration for
Filter. Table IV shows the main energy consumption of
the FPGA (EFPGA), the energy attributed to the SDRAM
(ESDRAM) and the total energy for the four cases above. We
also show the energy improvement R compared to the base
case (case 1). The instantaneous power consumption is steady
during the execution, so Table IV also shows the mean power
consumptions PFPGA and PSDRAM.

Including caches always comes along with an increased
power consumption of the FPGA. For large caches, the extra
power consumption is significant (up to 100%). The latency
reduction must be large enough to counter this effect and
improve EFPGA and Etotal. Large caches always improve the
energy consumption with respect to a cacheless memory
interface in our implementations. In all benchmarks, the
application-specific cache sizing outperforms fixed sizing
in terms of energy reduction. Interestingly, small caches
(case 2) in the Reflect tree and Filter benchmark have the
best performance in terms of energy. The trade-offs when
optimizing for energy instead of hit rate are different.

VI. RELATED WORK

Much of the related work on FPGA-targeted caches
has focused on efficient implementations of the cache
micro-architecture in FPGAs [7], [16]–[19]. FCache [18] as
well as an extension of LEAP Scratchpads in [17] target
the micro-architecture of coherency mechanisms for shared
memory systems in FPGAs. In the current work, we use
LEAP Scratchpads as building blocks for constructing the
multi-cache system. As we scale up the caches to large sizes,
the overall clock frequency can eventually be degraded due
to the large monolithic cache memories. We rely on a recent
mitigation of this problem [7] which implements banked
block RAMs for the cache and allows us to maintain the
clock rate.

Recent work has also explored the design space of the
cache micro-architecture [7], [19], [20]. Matthews et al.
[20] explore the efficiency in terms of speed-up versus
area increase of parallel coherent L1 caches with respect
to size, associativity and replacement rule in an FPGA-
based soft multi-core processor. Similarly, Choi et al. [19]
compare different configurations of cache size, line size
and associativity of shared on-chip caches, in addition to
two approaches for increasing the number of access ports
of the shared cache. The goal in this work is different. We
infer cost/performance estimates prior to implementation and
devise an automated cache system construction for a given
application instead of exploring the cache micro-architecture.

There is a substantial body of work on on-chip buffer
generation using the polyhedral model, for example [4]–[6],
for nested loop kernels whose loop indices are bounded by
constants or affine functions of the surrounding loop indices,
and where memory references are affine functions of the
loop indices. For this type of loop kernels, it is possible
to determine statically the memory reference trace which
can provide exact information about the required on-chip
buffer size and pre-fetching volume alongside a precise
determination of the impact of transformations to enhance
locality or parallelism at compile time. Our approach is less
powerful in that we cannot rely on a static analysis. This, in
turn, allows us to handle arbitrary problems with irregular
memory access patterns and control flow. In particular, we
focus on pointer-based programs here, a type of codes which
cannot be analyzed in the polyhedral model.

Automated multi-cache generation from high-level
specifications has been addressed in [1]–[3], [21].
Wingbermuehle et al. [21] implement a method similar
to ours in that left-over memory resources are used to
enhance the memory sub-system of stream-based kernels.
Their work explores more parameters than our current
technique (size, associativity, replacement rule and write
policy), but the search in the parameter space is based on a
simulated annealing-like technique. Another major difference
to our work is that we target HLS applications without any
assumption on the compute paradigm. Cheng et al. [2] target
arbitrary input code and use memory reference profiling to
partition the program’s address space into independent groups.
They assign private on-chip caches for each group, but they
do not implement application-specific cache sizing. Since

the partitioning is based on a dynamic program analysis, a
fall-back mechanism must be included because an incorrect
partitioning can compromise functional correctness. This
work leaves the memory space partitioning to a static analysis
in [3] and use the dynamic analysis only for performance but
not correctness-critical optimizations. CHiMPS’ many-cache
system [1] is notable in that it also constructs parallel caches
based on left-over block RAM, clock rate degradation and
predicted miss rate, although the prediction is not described
in detail in the paper. The key difference of our work is
the non-uniform sizing, which is realized by solving an
optimization problem to find the best assignment of cache
sizes subject to a resource constraint.

VII. CONCLUSION

We implement a technique for optimizing the memory
hierarchy for HLS applications that require access to off-chip
memory. In these applications, the bulk of data usually resides
in an external memory and the amount of on-chip RAM used
by the HLS core is often smaller than the amount of the
block RAM available. Furthermore, we target applications
which require parallel memory ports and whose performance
is enhanced through the insertion of parallel on-chip caches.
We implement a cache compilation flow that automatically
uses up the left-over block RAM to scale up the size of
the on-chip caches. Secondly, the size of each cache is set
individually in order to reach a size distribution across the
parallel caches that maximizes the aggregate hit rate of the
multi-cache architecture. The pre-synthesis cache performance
estimation is based on a high-level cache model and on the
memory reference trace of the application obtained from
automated profiling. We cast the cache size assignment into
a Multiple-Choice Knapsack Problem to find the best size
distribution for a given reference trace.

We evaluate the left-over block RAM and cache hit
rate estimation, and we demonstrate the latency improvements
obtained from our technique using three benchmarks with
irregular memory access patterns running on a VC707 FPGA
board. We observe up to a 5× speed-up compared to a
cacheless memory interface when scaling each on-chip cache
to the same maximal size. Our variably-sized multi-cache
system also delivers up to a 2× latency improvement (1.5× on
average) compared to the one-size-fits-all solution. Although
the insertion of large on-chip caches has a significant impact
on the power consumption of the FPGA, we show that our
variably-sized multi-cache configuration reduces the total
energy by 2.7× (on average) compared to a cacheless memory
interface.

There are two important extensions planned for future
work. The current work targets private, independent caches.
Future work will focus on a model of the coherency protocol
in a cache architecture consisting of coherent caches, which
must take additional invalidation and owner misses due to
interfering accesses by other caches into account. Secondly,
our energy measurements in Table IV suggest that the optimal
cache sizing changes when we optimize for energy instead of
aggregate hit rate. Future work will address the development
of an energy model that can be used to minimize the energy
consumption of our multi-cache system.

REFERENCES

[1] A. Putnam, S. Eggers, D. Bennett, E. Dellinger, J. Mason, H. Styles,
P. Sundararajan, and R. Wittig, “Performance and power of cache-based
reconfigurable computing,” ACM SIGARCH Computer Architecture
News, vol. 37, no. 3, p. 395, Jun. 2009.

[2] S. Cheng, M. Lin, H. J. Liu, S. Scott, and J. Wawrzynek, “Exploiting
Memory-Level Parallelism in Reconfigurable Accelerators,” in Proc. Int.
Symp. on Field-Programmable Custom Computing Machines, 2012, pp.
157–160.

[3] F. Winterstein, K. Fleming, H.-J. Yang, S. Bayliss, and G. Constan-
tinides, “MATCHUP: Memory Abstractions for Heap Manipulating
Programs,” in In Proc. ACM/SIGDA Int. Symp. on Field-Programmable
Gate Arrays, 2015, pp. 136–145.

[4] Q. Liu, G. Constantinides, K. Masselos, and P. Cheung, “Combin-
ing Data Reuse With Data-Level Parallelization for FPGA-Targeted
Hardware Compilation: A Geometric Programming Framework,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 28, no. 3, pp. 305–315, Mar. 2009.

[5] S. Bayliss and G. Constantinides, “Optimizing SDRAM bandwidth for
custom FPGA loop accelerators,” in Proc. Int. Symposium on Field
Programmable Gate Arrays, 2012, pp. 195–204.

[6] L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong, “Polyhedral-based
data reuse optimization for configurable computing,” in Proc. Int. Symp.
on Field Programmable Gate Arrays, 2013, pp. 29–38.

[7] H.-J. Yang, K. Fleming, M. Adler, F. Winterstein, and J. Emer, “Scav-
enger: Automating the construction of application-optimized memory
hierarchies,” in In Proc. Field Programmable Logic and Applications,
2015, pp. 1–8.

[8] E. G. Coffman and P. J. Denning, Operating Systems Theory. Engle-
wood Cliffs: Prentice Hall, 1973.

[9] M. Hill and A. Smith, “Evaluating associativity in cpu caches,” IEEE
Trans. on Computers, vol. 38, no. 12, pp. 1612–1630, Dec 1989.

[10] M. Brehob and R. Enbody, “An analytical model of locality and
caching,” Department of Computer Science, Michigan State University,
Tech. Rep., 1996.

[11] K. Beyls and E. H. DHollander, “Reuse distance as a metric for
cache behavior,” in In Proc. IASTED Conf. on Parallel and Distributed
Computing and Systems, 2001, pp. 617–662.

[12] D. Pisinger, “A minimal algorithm for the 0-1 knapsack problem.”
Operations Research, vol. 45, pp. 758–767, 1994.

[13] “High-Level Synthesis with LegUp.” [Online]. Available:
http://legup.eecg.utoronto.ca/

[14] “ROCCC 2.0 — Jacquard Computing.” [Online]. Available:
http://www.jacquardcomputing.com/roccc/

[15] K. Fleming, H.-J. Yang, M. Adler, and J. Emer, “The LEAP FPGA
Operating System,” in Proc. Int. Symp. on Field Programmable Logic
and Appl., 2014, pp. 1–8.

[16] M. Adler, K. Fleming, A. Parashar, M. Pellauer, and J. Emer, “Leap
Scratchpads: Automatic Memory and Cache Management for Reconfig-
urable Logic,” in Proc. Int. Symp. on Field Programmable Gate Arrays,
2011, pp. 25–28.

[17] H.-J. Yang, K. Fleming, M. Adler, and J. Emer, “LEAP Shared
Memories: Automating the Construction of FPGA Coherent Memories,”
in Int. Symp. on Field-Programmable Custom Computing Machines
(FCCM), May 2014, pp. 117–124.

[18] V. Mirian and P. Chow, “Fcache: A system for cache coherent process-
ing on fpgas,” in Proc. ACM/SIGDA Int. Symp. on Field Programmable
Gate Arrays, 2012, pp. 233–236.

[19] J. Choi, K. Nam, A. Canis, J. Anderson, S. Brown, and T. Czajkowski,
“Impact of Cache Architecture and Interface on Performance and Area
of FPGA-Based Processor/Parallel-Accelerator Systems,” in Int. Symp.
on Field-Programmable Custom Computing Machines, 2012, pp. 17–24.

[20] E. Matthews, N. C. Doyle, and L. Shannon, “Design Space Exploration
of L1 Data Caches for FPGA-Based Multiprocessor Systems,” in Proc.
Int.Symp. on Field-Programmable Gate Arrays, 2015, pp. 156–159.

[21] J. G. Wingbermuehle, R. K. Cytron, and R. D. Chamberlain, “Superop-
timized memory subsystems for streaming applications,” in Proc. Int.
Symp. on Field-Programmable Gate Arrays, 2015, pp. 126–135.

