
Partial and total correctness
as greatest and least fixed points

John Wickerson

Imperial College London

Abstract. This paper studies Hoare triples in the context of any programming
language specified by a small-step, possibly non-deterministic, operational se-
mantics. We explain how the partial correctness interpretation of the triple can
be characterised as the greatest fixed point of a function, and how the total cor-
rectness interpretation can be seen as the least fixed point of that very same func-
tion. In the latter case, we provide a necessary and sufficient condition for the
characterisation to be accurate: that the programming language admits no infinite
branching.

1 Introduction

In the context of Hoare Logic [4], a (possibly non-deterministic, and possibly non-
terminating) program satisfies a total correctness specification when each of its traces
from a state that satisfies the given precondition reaches a terminal state satisfying the
given postcondition within a finite number of execution steps. That program satisfies a
partial correctness specification when each of its traces either meets the requirement
above or is infinite.

Meanwhile, in the context of order theory, an object is in the least fixed point of a
continuous function if (roughly speaking) it can be shown meet some condition within
a finite number of iterations. That object is in the greatest fixed point if it is in the least
fixed point or is, in some sense, infinite.

The descriptions above have been deliberately crafted to emphasise a connection
between total/partial correctness and least/greatest fixed points. This paper seeks to
state that connection precisely, and investigate conditions under which it holds.

Section 3 provides characterisations of partial and total correctness, that differ only
in that the former takes a function’s greatest fixed point where the latter takes its least.
Section 4 describes a condition that is necessary for the fixed point characterisation of
total correctness to be accurate; namely, that there is no infinite branching. Section 5
discusses related work, mainly focussing on how our result extends a similar observa-
tion made by Edmund Clarke in 1979. We begin, in Section 2, by establishing some
preliminary definitions.

2 Preliminaries

We assume a small-step transition relation between configurationsC = 〈c, σ〉, which
comprise a command c ∈ Cmd and a state σ ∈ State. We impose no constraints on the

1

forms taken by commands and states. Let Config = Cmd × State be the set of all
configurations. We use the abbreviation next(C)

def
= {C ′. C C ′} for the set of

configurations immediately reachable from C, and we write stuck(C) if C admits no
further transitions. The functions fst and snd serve to project the components of a pair.

Modal-µ calculus We employ the following constructions from the modal-µ calcu-
lus [6] to describe properties of our transition relation. In the following, we suppose
that p ∈ P(Config) and that ϕ : P(Config)→ P(Config) is a monotone function.

� p = {C.∀C ′ ∈ next(C). C ′ ∈ p}
♦ p = {C.∃C ′ ∈ next(C). C ′ ∈ p}

µX.ϕ(X) =
⋂
{S. ϕ(S) ⊆ S}

νX.ϕ(X) =
⋃
{S. S ⊆ ϕ(S)}

Possibly-infinite sequences Given a set X , a possibly-infinite sequence is a partial
function π : N→ X ∪ {⊥} whose domain of definition is either the entirety of N or an
initial subset thereof. In the latter case, we define len(π) = j +1 when j is the greatest
natural in π’s domain. We shall sometimes refer to an element of a sequence by writing
πi instead of π(i).

Traces A trace is a possibly-infinite sequence of configurations, successively related
by . The set of traces beginning from a configurationC, written traces(C), comprises
those sequences π for which π0 = C and for all i:

πi = ⊥
πi+1 = ⊥

stuck(πi)

πi+1 = ⊥
¬stuck(πi)

πi+1 ∈ next(C)

Termination A configuration C always terminates if every trace from C reaches a
terminal configuration.

C ∈ always-terminates
def
= ∀π ∈ traces(C).∃j > 0. len(π) = j

Safe configurations If Q ∈ P(State) is a postcondition, we say that a configuration
C is safe for Q, written C ∈ safeQ, if whenever a trace starting from that configuration
reaches a terminal configuration, the state is in Q.

C ∈ safeQ
def
= ∀c′, σ′. ((C ∗ 〈c′, σ′〉) ∧ stuck〈c′, σ′〉)⇒ σ′ ∈ Q

Partial and total correctness Suppose P,Q ∈ P(State) and c ∈ Cmd. We write
{P} c {Q} to mean that whenever c is executed from a state in P , then whenever it
reaches a terminal configuration, the state is in Q. We write [P] c [Q] to mean that
whenever c is executed from a state in P , then it reaches a terminal configuration, and
whenever it reaches a terminal configuration, the state is in Q.

{P} c {Q} def
= ∀σ ∈ P. 〈c, σ〉 ∈ safeQ

[P] c [Q]
def
= ∀σ ∈ P. 〈c, σ〉 ∈ always-terminates ∩ safeQ

2

3 Main result

Definition 1. We characterise partial/total correctness (with respect to postcondition
Q) as the greatest/least fixed point of the function ϕQ, defined as follows:

ϕQ(X)
def
= {〈c, σ〉. stuck〈c, σ〉 ⇒ σ ∈ Q} ∩�X.

We now establish a few properties of ϕQ. The first enables the use of the greatest post-
fixed point and the least pre-fixed point of ϕQ as proxies, respectively, for its greatest
and least fixed points.

Lemma 1 (Monotonicity). ϕQ is monotone; i.e., X ⊆ X ′ implies ϕQ(X) ⊆ ϕQ(X
′).

The next lemmas allow ϕQ’s fixed points to be constructed via series of approximants.

Lemma 2 (GLB-preservation). ϕQ preserves greatest lower bounds. That is, for any
ascending chain x0 ⊆ x1 ⊆ . . . , we have ϕQ(

⋂
k xk) =

⋂
k ϕQ(xk).

Lemma 3 (LUB-preservation). If our transition system has finite branching, then ϕQ

preserves least upper bounds. That is, if finite(next(C)) holds for all C, then for any
ascending chain x0 ⊆ x1 ⊆ . . . , we have ϕQ(

⋂
k xk) =

⋂
k ϕQ(xk).

The following lemma states that in the absence of infinite branching, every always-
terminating command has a longest trace.

Lemma 4 (Longest trace). If next(C) is finite for allC, andC0 ∈ always-terminates ,
then there exists an upper bound M for which ∀π ∈ traces(C0).∃j ≤M. len(π) = j.

Proof. We first recall Kőnig’s infinity lemma as it applies to trees – that every tree with
infinitely-many vertices, each having finitely-many successor vertices, has at least one
infinite trace [3]:

¬finite{C ′. C0
∗ C ′} ⇒ (∀C.finite(next(C)))⇒ ∃π ∈ traces(C0).dom(π) = N.

(1)
Now, if C0 ∈ always-terminates , then it has no infinite traces, and hence, by the
contrapositive of (1), the number of configurations reachable from C0 is finite. This
number provides a suitable upper bound M on the length of traces from C0.

Theorem 1. Partial and total correctness can be characterised as greatest/least
fixed points. Note that the third implication below relies on our transition system
having the property of finite branching.

{P} c {Q} = ({c} × P) ⊆ νX.ϕQ(X) (2)
[P] c [Q] ⇐ ({c} × P) ⊆ µX.ϕQ(X) (3)
[P] c [Q] ⇒ ({c} × P) ⊆ µX.ϕQ(X) if finite(next(C)) for all C. (4)

3

Proof. We begin with the fixed point characterisation of partial correctness. To prove
(2), it suffices to prove that safeQ coincides with ϕQ’s greatest post-fixed point.

safeQ = νX.ϕQ(X). (5)

For the (⊆) direction of (5), it is straightforward to show, by expanding definitions and
invoking standard lemmas about reflexive transitive closures, that safeQ is a post-fixed
point (that is, safeQ ⊆ ϕQ(safeQ)), and hence that it is below the greatest post-fixed
point. To show the (⊇) direction, we first observe that we can invoke Lemma 2 to con-
struct ϕQ’s greatest post-fixed point as the intersection of a sequence of approximants:

νX.ϕQ(X) =
⋂

k

(
ϕk
Q(Config)

)
.

(The intuition is that approximant k + 1 contains configurations for which every stuck
configuration that is reachable in k steps satisfies the postcondition.) After expanding
the definition of safe , it remains to show:

(∀k.C ∈ ϕk
Q(Config))⇒ ∀C ′. ((C ∗ C ′) ∧ stuck(C ′))⇒ snd(C ′) ∈ Q. (6)

After rewriting C ∗ C ′ as ∃n.C n C ′ and then instantiating the k in (6) to n+ 1,
it suffices to show, for all n:

C ∈ ϕn+1
Q (Config)⇒ ∀C ′. ((C n C ′) ∧ stuck(C ′))⇒ snd(C ′) ∈ Q,

which can be dispatched via mathematical induction on n (withC universally quantified
in the induction hypothesis).

We now turn to the fixed point characterisation of total correctness. To prove (3), it
suffices to show that

safeQ ∩ always-terminates ⊇ µX.ϕQ(X),

which follows from safeQ ∩ always-terminates being a pre-fixed point of ϕQ and
hence above its least pre-fixed point. To show (4), we first use Lemma 3 to equate the
least pre-fixed point to the union of a sequence of approximants as follows:

µX.ϕQ(X) =
⋃

k

(
ϕk
Q(∅)

)
.

(The intuition is that approximant k + 1 contains all configurations for which every
trace terminates in no more than k steps and satisfies the postcondition when it does
so.) After expanding the definition of safe , and invoking Lemma 4 to obtain the length
M of C’s longest trace, it remains to show:

(∃M. ∀π ∈ traces(C).∃j ≤M. len(π) = j)⇒
(∀C ′. ((C ∗ C ′) ∧ stuck(C ′))⇒ snd(C ′) ∈ Q)⇒ (∃k.C ∈ ϕk

Q(∅)).
(7)

We choose M as a witness for k in (7). It then suffices to show, for all M :

(∀π ∈ traces(C).∃j ≤M. len(π) = j)⇒
(∀C ′. ((C ∗ C ′) ∧ stuck(C ′))⇒ snd(C ′) ∈ Q)⇒ C ∈ ϕM

Q (∅).

With a little further algebraic manipulation we arrive at:

(∀π ∈ traces(C).∃j ≤M. len(π) = j ∧ snd(πj−1) ∈ Q)⇒ C ∈ ϕM
Q (∅)

which can be dispatched by mathematical induction on M , generalising C as before,
thus completing the proof. ut

4

Proof mechanisation Our main theorem and its accompanying lemmas have been for-
malised and proved in the Isabelle theorem prover [?], with the exception of Lemma 4,
of which we currently only have a hand proof. The proof relies on Kőnig’s infinity
lemma, which we found to be difficult to formalise. The proof is available online.1

4 On infinite branching

If the relation allows infinite branching – that is, if a configuration can have infinitely
many next configurations to choose from – then the least fixed point calculation does not
coincide with total correctness. The technical reason for the failure is that ϕQ no longer
preserves least upper bounds (cf. Lemma 3). Intuitively, the failure can be explained by
the following counterexample.

C0

C1 C2 C3
. . . Ck

...

. . .

k

Recall that approximant k contains configurations whose traces all terminate in fewer
than k steps. No approximant can contain configuration C0, since there is no bound on
the length of its traces. Yet this configuration will be admitted by a total correctness
specification whose postcondition is true , since it is the case that each of its traces
terminates.

Therefore, in the presence of infinite branching, the fixed point characterisation of
total correctness must be weakened to an implication. Preservation of greatest lower
bounds is unaffected by infinite branching, so the characterisation of partial correctness
remains intact.

5 Related work

Edmund Clarke [1] was probably the first to study the correspondence between great-
est/least fixed points and partial/total correctness. He remarks, in a 1979 article, that

the fixedpoints of Γ form a complete lattice under the natural partial ordering
on P(State). The top element of this lattice is the weakest precondition for
partial correctness and the bottom element is the weakest precondition for total
correctness. [1, p. 279, footnote]

1 http://www.doc.ic.ac.uk/~jpw48/Partial_Total_Correctness_As_Fixed_
Points.thy

5

We note three ways in which the current work extends on Clarke’s original observation.
First, Clarke works in the setting of a particular programming language that provides
syntax for sequencing, conditionals, assignment, and recursive calls to parameterless
procedures. In this paper, we need not tackle issues of programming language syntax,
since we work at the level of arbitrary transition systems. Second, Clarke’s work applies
only in a deterministic setting: a program has either a single final state, or none at all. We
allow for highly non-deterministic programs, and only restrict to finite non-determinism
in the case of total correctness. Third, Clarke’s work is in the setting of a big-step seman-
tics; that is, the meaning of each programming construct maps an initial state directly to
a final state. We work with a small-step semantics (as described by a transition system),
which means that our approach handles parallel programs without further adaptation.
Big-step semantics is well-known to be unable to handle parallelism, as acknowledged
by Clarke, who remarks that he ‘[is] currently attempting to extend this fixedpoint the-
ory to additional programming features such as parallelism’ [1, p. 292]. The definition
of total correctness in a big-step and deterministic setting is trivial, and hence Clarke’s
Γ functional is straightforward – this perhaps explains why Clarke consigned the obser-
vation we quote above to a mere footnote. Our functional, on the other hand, which we
call ϕ, is fairly subtle: experience shows that even minor modifications of Definition 1
quickly lead to either the least or the greatest fixed point becoming degenerate.

Regarding other influences on this work: the idea of using the least and greatest
fixed point of the same function has been previously exploited by Paulson [7, §3], who
obtains the set of finite lists from a function’s least fixed point, and the set of possibly-
infinite (‘lazy’) lists from its greatest fixed point.

Recent work on various Hoare logics for concurrency provide avenues for further
development of the current work. These logics typically use (mildly disguised) greatest
fixed point calculations to obtain a partial correctness semantics; see, for example, [8,
Definition 3.2] and [2, Definition 25]. If these logics were extended to handle total
correctness, the result presented in this paper could ease the transition.

Another direction for future work is provided by Jacobs and Gries, who have pro-
posed general correctness as a way to unify partial and total correctness [5]. It would
be interesting to investigate whether general correctness can be also characterised as a
fixed point calculation.

—

Acknowledgements This work was supported by EPSRC grant EP/K011499/1. I
would like to thank Edmund Clarke, Alastair Donaldson, Tony Hoare, Peter Lammich,
and Andreas Lochbihler for helpful feedback and discussions.

6

References

1. E. M. Clarke. Program invariants as fixedpoints. Computing, 21:273–294, 1979.
2. T. Dinsdale-Young, L. Birkedal, P. Gardner, M. J. Parkinson, and H. Yang. Views: Compo-

sitional reasoning for concurrent programs. In R. Giacobazzi and R. Cousot, editors, The
40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’13, pages 287–300. ACM, 2013.

3. M. Franchella. On the origins of Dénes Kőnig’s Infinity lemma. Archive for History of Exact
Sciences, 51:3–27, 1997.

4. C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10):576–580, 1969.

5. D. Jacobs and D. Gries. General correctness: A unification of partial and total correctness.
Acta Informatica, 22:67–83, 1985.

6. D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science, 27:333–
354, 1983.

7. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for Higher-Order
Logic. Springer-Verlag, 2002.

8. L. C. Paulson. Mechanizing coinduction and corecursion in higher-order logic. Journal of
Logic and Computation, 7(2):175–204, 1997.

9. V. Vafeiadis. Concurrent separation logic and operational semantics. In J. Ouaknine, editor,
Proceedings of the 27th Annual Conference on the Mathematical Foundations of Program-
ming Semantics (MFPS XXVII), volume 276 of Electronic Notes in Theoretical Computer
Science, pages 335–351. Elsevier, 2011.

7

