
A Case for Work-stealing on FPGAs with OpenCL Atomics

Nadesh Ramanathan
Imperial College London, UK

n.ramanathan14@imperial.ac.uk

John Wickerson
Imperial College London, UK

j.wickerson@imperial.ac.uk
Felix Winterstein

Imperial College London, UK
f.winterstein12@imperial.ac.uk

George A. Constantinides
Imperial College London, UK

g.constantinides@imperial.ac.uk

ABSTRACT
We provide a case study of work-stealing, a popular method
for run-time load balancing, on FPGAs. Following the Ceder-
man–Tsigas implementation for GPUs, we synchronize work-
items not with locks, mutexes or critical sections, but instead
with the atomic operations provided by Altera’s OpenCL
SDK. We evaluate work-stealing for FPGAs by synthesiz-
ing a K-means clustering algorithm on an Altera P385 D5
board, both with work-stealing and with a statically-parti-
tioned load. When block RAM utilization is maximized
in both cases, we find that work-stealing leads to a 1.5×
speedup. This demonstrates that the ability to do load bal-
ancing at run-time can outweigh the drawback of using ‘ex-
pensive’ atomics on FPGAs. We hope that our case study
will stimulate further research into the high-level synthesis
of fine-grained, lock-free, concurrent programs.

Keywords
atomic operations, high-level synthesis, K-means clustering,
load balancing, lock-free synchronization, parallelism.

1. INTRODUCTION
The central task for high-level synthesis (HLS) tools is

mapping the computation and data accesses described by
the source program into the FPGA’s execution and memory
hierarchies. Some computations can be straightforwardly
divided among parallel execution units on the FPGA, but it
is often the case that partitioning statically (i.e., at compile-
time) either is infeasible or leads to inefficient circuits. In
this paper, we explore a different approach that involves
balancing dynamically (i.e., at run-time) the computational
workload across execution units.

Our approach is based on work-stealing, a popular paradig-
m for programming those algorithms that can be phrased in
terms of many small tasks, and that have at least one of
the following characteristics: 1) data-dependent task execu-
tion time, and 2) dynamic sub-task creation. Each parallel

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FPGA’16, February 21-23, 2016, Monterey, CA, USA
c© 2016 ACM. ISBN 978-1-4503-3856-1/16/02. . . $15.00

DOI: http://dx.doi.org/10.1145/2847263.2847343

execution unit (‘work-item’) maintains its own task queue,
but can steal from another’s queue should its own become
empty. We present an implementation of work-stealing that
builds on an implementation for GPUs, by Cederman and
Tsigas [5], of an algorithm due to Arora et al. [3]. It is
written in OpenCL (a multi-threaded extension of C for
programming heterogeneous systems of CPUs, GPUs, and
FPGAs [13]) and automatically compiled to hardware using
Altera’s software development kit for OpenCL (AOCL) [2].
We describe how we have optimized the OpenCL code for
performance and compatibility with the restrictions imposed
by AOCL.

Our work-stealing implementation is particularly novel in
an FPGA context because we avoid the use of locks and
barriers, and rely instead on OpenCL’s atomic operations
(atomics) to synchronize threads. Atomics enable fine-grain-
ed concurrency whereby threads can execute without block-
ing other threads. Although atomics have recently been
demonstrated empirically to be the fastest synchronization
method for conventional multiprocessors [8], their support
on FPGAs is lacking. AOCL supports them for 32-bit inte-
gers, but discourages their use, warning that they are ‘ex-
pensive to implement on FPGAs’ and ‘might decrease ker-
nel performance or require a large amount of hardware’ [1],
while Xilinx’s OpenCL tool, SDAccel [21], does not support
them at all. In this work, we demonstrate that despite these
misgivings, atomics can in fact be usefully employed on FP-
GAs to give overall application speedup.

In our case study, we apply our work-stealing implemen-
tation to a K-means clustering (KMC) algorithm [11] with
data-dependent task execution time and dynamic sub-task
creation. On an Altera P385 D5 board, we compare the
performance (a) when the workload is statically determined
at compile-time, and (b) when work-stealing is enabled. In
both cases, we synthesize sufficiently many work-items to
maximize block RAM (BRAM) utilization. We show that
our use of dynamic data partitioning for KMC yields a 1.5×
overall speedup over an earlier implementation by Winter-
stein et al., which was already optimized for FPGAs but
which relied on static data partitioning [20]. We also show
best-case speedup of 1.9× when the number of work-items
is fixed. We encourage readers to view our codebase at
https://github.com/nadeshr/kmeans-stealing.git.

2. MOTIVATING EXAMPLE
Consider a program that traverses, depth first, binary

trees with integer-valued nodes with the help of a stack
from/to which pointers to sub-trees yet to be traversed can

be popped/pushed. The traverse program, shown in Al-
gorithm 1, represents a very common class of software pro-
grams, yet most HLS tools cannot synthesize it efficiently.
Here, pop updates the tree pointer that it is passed by ref-
erence, and it returns a Boolean encoding whether the op-
eration succeeded. Each tree node comprises some data (d)
and pointers to left and right sub-trees (l and r).

Algorithm 1 Tree traversal

1: procedure traverse(tree* t)
2: stack s ← new stack
3: s.push(t)
4: while s.pop(&t) do
5: if t=NULL continue
6: process(t->d)
7: s.push(t->r)
8: s.push(t->l)
9: end while

10: end procedure

The first serious attempt to automatically synthesize FP-
GA implementations of programs like traverse was made
by Winterstein et al. [20]. Under the assumption that the
order in which tree nodes are process’d is immaterial, they
divide the tree, at a fixed distance from the root, into a small
number (say, P) of disjoint sub-trees that can be traversed
in parallel. Applied to our traverse example, their trans-
formation with P = 2 would yield Algorithm 2, in which the
vertical line separates parallel threads. The chief shortcom-
ing of their approach is that the static distribution of the
workload is optimal only in the case that the input tree is
perfectly balanced.

Algorithm 2 Parallel tree traversal (static partitioning)

1: procedure traverse2(tree* t)
2: if t=NULL return
3: process(t->d)
4: stack s1 ← new stack

s1 .push(t->l)
tree* t1
while s1 .pop(&t1) do

if t1=NULL continue
process(t1->d)
s1 .push(t1->r)
s1 .push(t1->l)

end while

stack s0 ← new stack
5: s0 .push(t->r)
6: tree* t0
7: while s0 .pop(&t0) do
8: if t0=NULL continue
9: process(t0->d)

10: s0 .push(t0->r)
11: s0 .push(t0->l)
12: end while
13: end procedure

In this paper, we present an alternative approach to imple-
menting traverse-like programs, in which the workload is
dynamically distributed at run-time via work-stealing. This
overcomes the potential unpredictabilities caused by subop-
timal partitioning, data-dependent task execution time, and
dynamic sub-task creation. When applied to our traverse
example, again setting P = 2, we obtain Algorithm 3. Our
approach replaces the stacks with double-ended queues (de-
ques) to enable stealing. Each thread seeks to get work by
popping from the local deque (q[0] or q[1]), or stealing from
the other deque (q[1] or q[0]) if popping fails. This imple-
mentation uses a done array of Boolean flags to ascertain
when there is no remaining work in any deque.

Algorithm 3 Parallel tree traversal (dynamic partitioning)

1: procedure traverse3(tree* t)
2: deque q [2] = {new deque, new deque}
3: bool done[2] = {0, 0}
4: while done 6= {1, 1} do while done 6= {1, 1} do

tree* t1
done[1] ← q [1].pop(t)
‖ q [0].steal(t)

if t1=NULL continue
process(t1->d)
q [1].push(t1->r)
q [1].push(t1->l)

end while

5: tree* t0
6: done[0] ← q [0].pop(t)
7: ‖ q [1].steal(t)
8: if t0=NULL continue
9: process(t0->d)

10: q [0].push(t0->r)
11: q [0].push(t0->l)
12: end while
13: end procedure

3. DESIGNING THE BASELINE
This section introduces a K-means clustering algorithm,

explains why it stands to benefit from work-stealing, and
describes how we produced an OpenCL implementation to
serve as a baseline for our case study.
K-means clustering (KMC) refers to the problem of parti-

tioning a set of D-dimensional points X = {x1, . . . , xN} into
a set of clusters S = {S1, . . . , SK} where K is provided as
a parameter. A cluster Si is represented by the geometrical
center µi of its points. The goal is to assign each point in
X to the cluster with the nearest center. In this paper, we
consider an efficient algorithm for KMC [11] that uses a kd-
tree data structure instead of working directly on the point
set X. The algorithm begins by choosing a random initial
center-set, say M0 = {µ1, . . . , µK}. The set S is iteratively
refined until it no longer changes.

In order to assess the potential of work-stealing on the
KMC algorithm, we need a baseline OpenCL design for com-
parison. OpenCL applications are divided into host code
that runs on a CPU, and kernel code that runs on an ac-
celerator device (an FPGA in our case). In our application,
the host code builds the input tree and partitions it into
P sub-trees, each processed by one of P independent work
items. Algorithm 4 shows our OpenCL kernel for the KMC
algorithm, following Winterstein et al.’s implementation in
C that was optimized for Vivado HLS [20]. We also provide
a graphical representation of the kernel in Figure 2a. The
inputs of the KMC kernel are an array of sub-trees t and
a center-set M . The kernel uses a heap h that holds the
temporary candidate center-sets, a stack whose entries con-
sist of a tree pointer and a heap pointer, and a shared array
of center-sets Ms whose elements are reduced to the final
center-set result (line 16) after all while loops terminate.
This result can be then passed to future kernel iterations.

This kernel exhibits some of the features seen in Algo-
rithm 1 that make it a good candidate for acceleration with
work-stealing: the processing time of each tree node (line 10)
depends on the center-set data, and the decision to traverse a
node’s children is also data-dependent (line 11 and 12). The
effectiveness of parallelization depends on the balancedness
of the number of nodes in each sub-tree, which depends on
the input data set [20]. It is also known that the heuris-
tics used to generate the kd-tree are not optimal [11], which
means that even in the best-case the tree is not guaranteed
to be perfectly balanced.

Algorithm 4 OpenCL Baseline KMC algorithm

1: attribute(reqd work group size(P ,1 ,1))
2: kernel kmc1(global tree *t [P], local centerset *M)
3: local stack[P] s
4: global heap[P] h
5: local centerset[P] Ms
6: i ← get local id(0)
7: Ms[i] ← M
8: s[i].push(t [i], h[i])
9: while s[i].pop(&t [i], &h[i]) do

10: if process(t [i], &h[i], &Ms[i]) then
11: s[i].push(t [i]->r, h[i])
12: s[i].push(t [i]->l, h[i])
13: end if
14: end while
15: barrier
16: if i = 0 then M ← reduce(Ms)
17: end kernel

We found that OpenCL’s explicit parallelism simplified
our design entry considerably. Where the original C de-
sign was a sequential program annotated with special HLS
directives to eliminate inferred dependencies between paral-
lel execution units, our OpenCL design could simply define
each work-item with a piece of sequential code.

In order to efficiently implement our OpenCL kernel for
FPGAs, we need to consider restrictions imposed by AOCL.
Firstly, we used OpenCL’s reqd_work_group_size attribute
to ensure that AOCL synthesize only the required number
of work-items [1]. Secondly, we have to consider the size
of arrays when deciding whether they should be declared in
OpenCL private, local or global memory. AOCL implements
private memory as registers, local memory as BRAMs, and
global memory as DDR memory [2]. Although some arrays
could technically be declared private, we actually declare
them as local or global memory to save FPGA resources.
Based on the size constraints presented by Winterstein et
al., we declare the stacks and center-sets in local memory,
and the heaps and sub-trees in global memory.

4. ADDING WORK-STEALING
We now describe how we use work-stealing, which we have

implemented using OpenCL’s atomics, to add dynamic load
balancing to the KMC algorithm.

Our implementation of work-stealing follows Cederman
and Tsigas [5], who give an implementation for GPUs of an
algorithm due to Arora et al. [3]. The implementation is
based around a collection of double-ended queues (deques),
one per OpenCL work-item in this work. A deque com-
prises head and tail pointers to opposite ends of a task ar-
ray. Each deque provides three main operations: push, pop
and steal. Each OpenCL work-item owns a deque to which
it has exclusive push and pop access via the tail pointer,
as seen in Figure 1a and 1c. Since only one work-item can
push or pop a deque, the tail accesses can be non-atomic.
On the other hand, all work-items can steal tasks from any
non-empty deque via the head pointer (as seen in Figure
1b). Since any work-item can update the head pointer, ac-
cess to the head must be atomic (specifically, via OpenCL’s
atomic_cmpxchg function [13]) to eliminate data races. The
use of atomics during stealing arbitrates access to the deque

(a) push

t0 t1 t2 . . .

head tail

(b) steal

t1 t2 . . .

head tail

(c) pop

t1 . . .

head tail

(d) reset

. . .

head tail

Figure 1: Deque Chronological Sample Execution.

in a fine-grained manner, because multiple work-items can
attempt an atomic_cmpxchg operation at the same time but
only one will succeed. This policy is non-blocking and guar-
antees that at least one work-item makes progress.

Algorithm 5 presents the KMC algorithm with work-ste-
aling and Figure 2b provides a graphical representation.
Compared to the baseline (Algorithm 4), a key change is
that the stacks have become deques. We also replaced the
pop function with the get function (line 11), which updates
t [i] and h[i] if successful. get first attempts to pop from
the local deque q [i], and then steals from the next deque
q [sid] if popping fails. sid initially refers to the immediately-
following deque, but is updated in a round-robin style if
stealing fails. We use a Boolean field finish in the deque to
keep track of the system’s workload: if get fails to obtain
work (line 12), then the work-item is deemed to have fin-
ished. When all work-items have finished (line 10), the loop
terminates since there is no possibility of new tasks being
pushed.

Algorithm 5 OpenCL Work-stealing KMC algorithm

1: attribute(reqd work group size(P ,1 ,1))
2: kernel kmc2(global tree *t [P], local centerset *M)
3: local deque[P] q
4: global heap[P] h
5: local centerset[P] Ms
6: i ← get local id(0)
7: sid ← (i+ 1) mod P
8: Ms[i] ← M
9: q [i].push(t [i], h[i])

10: while ¬(q [0].finish && . . . && q [P − 1].finish) do
11: success ← get(&t [i], &h[i], q , i , &sid)
12: q [i].finish ← ¬success
13: if success then
14: if process(t [i], &h[i], &Ms[i]) then
15: q [i].push(t [i]->r, h[i])
16: q [i].push(t [i]->l, h[i])
17: end if
18: end if
19: end while
20: barrier
21: if i = 0 then M ← reduce(Ms)
22: end kernel

We use a single OpenCL work-group with P work-items
to allow our workload to be shared across all work-items.
This way, we can characterize the benefits of work-stealing
on-chip since otherwise work-stealing among multiple work-
groups would have to be performed on off-chip global mem-
ory.

In adding work-stealing to our design, we expect some
resource overhead and clock frequency penalty due to atom-
ics [1]. Figure 2 highlights a further architectural overhead
caused by work-stealing. In work-stealing, all the deques,

REDUCE

Mi+1

Mi
Input Sub-trees

0 1 2 3

FPGA

Heap 0

Stack 0

Work-
item 0

Ms [0]

Heap 1

Stack 1

Work-
item 1

Ms [1]

Heap 2

Stack 2

Work-
item 2

Ms [2]

Heap 3

Stack 3

Work-
item 3

Ms [3]

(a) Baseline implementation

REDUCE

Mi+1

Mi
Input Sub-trees

0 1 2 3

FPGA

Heap 0

Deque 0

Work-
item 0

Ms [0]

Heap 1

Deque 1

Work-
item 1

Ms [1]

Heap 2

Deque 2

Work-
item 2

Ms [2]

Heap 3

Deque 3

Work-
item 3

Ms [3]

(b) Work-stealing implementation

Figure 2: KMC algorithm for P = 4 (dark gray is global memory and light gray is local memory).

heaps and sub-trees are shared between all work-items (as
suggested by the crossbar in Figure 2b), where in the base-
line these were private to each work-item. Although we in-
troduce sharing in work-stealing, the cycle times of these
shared data structures remain comparable since we already
have to synthesize larger arrays in OpenCL local or global
memory for the baseline.

In addition, we noticed that AOCL replicates local data
structures that are accessed many times in a kernel [1]. This
replication policy penalizes large structures, since a struc-
ture is accessed every time one of its fields is accessed, so
we split such structures into individual fields wherever pos-
sible. We further reduce the replication effect by manually
partitioning the task arrays.

5. EVALUATION
This section evaluates how effectively work-stealing bal-

ances the processing load across work-items in the KMC
algorithm (Section 5.1). We also evaluate the effect of work-
stealing on wall-clock time (Section 5.2) and resource con-
sumption (Section 5.3). We used AOCL (version 15.0.0) for
HLS and Quartus (version 15.0.0) for RTL synthesis. All
results are taken from fully placed-and-routed designs run-
ning on a Nallatech P385 D5 board that includes an Altera
Stratix V D5 FPGA and 8GB DDR3 memory.

Our goal is to have as many work-items within a single
OpenCL work-group as resource utilization on the FPGA
permits. At full capacity of the FPGA, we are able to syn-
thesize 64 work-items for our baseline implementation and
32 work-items for our work-stealing implementation.

The inputs to the KMC algorithm are a tree built from
220 data-points and a 128-element center-set. Each stack
and deque holds 128 elements. We run the KMC algorithm
for 16 iterations.

5.1 Load Balancing
The goal of our work-stealing approach is to minimize the

variation in workload across OpenCL work-items, regard-
less of the shape of the input tree, to avoid situations where

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n
in

 n
od

es
 p

er
 w

or
k−

ite
m

2 4 8 16 32 64

1
10

10
0

10
00

stealing
balanced
unbalanced

baseline
balanced
unbalanced

Number of work−items

Figure 3: Processing load variation over work items.

the entire kernel has to wait for a single, heavily loaded
work-item to complete. The processing load of the KMC
algorithm is proportional to the aggregate number of node-
center-pairs, i.e. the cumulative number of candidate cen-
ters processed at the visited tree nodes to compute the clus-
tering result. This number depends on the initial choice of
centers and, more importantly, on the shape of the input
tree. The host code uses heuristics to produce trees that
are fairly balanced. To push our implementations to their
extremes, we also compare with trees that are perfectly un-
balanced, i.e. trees whose nodes form a single chain with no
branching.

Fig. 3 quantifies the variation in the processing load across
work-items for each P . It uses the coefficient of variation,
which is the standard deviation divided by the mean. We
make two observations about this graph. Firstly, the varia-
tions for the work-stealing cases are much smaller than either
of the baseline cases. Work-stealing is able to improve even
the best-case input tree because the routine that builds the

10
0

20
0

50
0

10
00

50
00

K
er

ne
l e

xe
cu

tio
n

tim
e

/m
s

2 8 16 32 641 4

baseline
work−stealing
ideal speed−up

Number of work−items

Figure 4: Kernel execution time for the filtering algorithm.

tree does not guarantee perfect balance and and the decision
to recurse on the children of a node, which in turn spawns
more subtasks, is data-dependent. Secondly, work-stealing
is immune to the shape of the tree and produce very similar
workload variations in both scenarios.

5.2 Execution time
Next, we demonstrate the effect of load balancing on the

overall kernel execution time (wall-clock time). The timing
results are obtained from the number of clock cycles divided
by the minimum achievable clock frequency. The achievable
clock frequencies range from 237 MHz (P = 1) to 163 MHz
(P = 64) for the baseline, and from 214 MHz (P = 1) to
201 MHz (P = 32) with an outlier of 184 MHz at P = 4 for
the work-stealing implementation.

Fig. 4 shows the kernel execution time (excluding host pre-
processing) for both implementations in logarithmic scale
with respect to P . We also include the theoretically achiev-
able speed-up, which we obtain by dividing the single work-
item baseline by P , to give an indicate to how these im-
plementations could scale. At P = 1 in Figure 4, work-
stealing performs worse than the baseline implementation
because it lowers the clock frequency, as seen in Table 1,
and is not applicable to a single work-item. From P = 4
onwards, work-stealing is closer to the ideal speed-up trend.
The speed-ups for fixed P are shown in the last row of Ta-
ble 1. At full BRAM capacity on the FPGA, work-stealing
achieves an overall speed-up of 1.5× over the baseline. This
comparison is made between P = 64 for the baseline and
P = 32 for the work-stealing implementation, showing that
the load-balanced version only requires half the number of
work-items to achieve better performance.

5.3 Resources
The acceleration gained from load balancing comes at the

cost of additional FPGA resources. The total logic utiliza-
tion (as reported by Quartus II Fitter) for both implementa-
tions varies between 47% and 57%. The utilization of DSP
blocks is below 3% and remains the same for both the base-
line and work-stealing implementations. Table 1 quantifies
the resource overheads of work-stealing relative to the base-
line for each P in terms of logic utilization, BRAM and clock
frequency degradation. Ultimately, BRAM is the resource
that limits the scaling of P that is synthesizable for the

Table 1: Relative resource overhead and relative clock rate
penalty due to the work-stealing implementation (negative
values indicate increase in clock frequency).

P 1 2 4 8 16 32

Logic overhead 15% 2% 4% 6% 6% 8%
RAM overhead 57% 45% 68% 58% 58% 39%
Clock penalty 10% 1% 16% 7% 0% −1%
Speedup 0.8× 1.0× 1.2× 1.5× 1.7× 1.9×

20 40 60 80 100

50
0

10
00

20
00

50
00

K
er

ne
l e

xe
cu

tio
n

tim
e

/m
s

1

2

4

8

16
32

1

2

4

8

16 32 64

baseline
work−stealing

Block RAM utilization (%)

Figure 5: BRAM utilization vs. kernel execution time, for
various values of P

FPGA. The work-stealing implementations requires 350 to
550 additional BRAMs for the same P . The BRAM over-
head is due to the replication performed by AOCL as dis-
cussed in Section 4, which limits work-stealing to P = 32
work-items and the baseline to P = 64.

Fig. 5 compares the BRAM-time graphs of both imple-
mentations. The break-even point occurs at 1500 BRAMs.
The work-stealing implementation provides enough speed-
up such that, despite its BRAM overhead, it becomes more
efficient in terms of BRAM-time product beyond this point.
For the two end-points of the BRAM-time graphs (P = 64
for the baseline, P = 32 for work-stealing), we spend 3.6%
more BRAMs (5.6% more logic utilization, no DSP blocks
overhead) for a 1.5× improvement of execution time.

6. RELATED WORK
Several authors have investigated the capabilities of Open-

CL for FPGAs [6, 14, 16, 10, 17], but their focus has been on
highly-uniform, FPGA-friendly benchmarks such as vector
addition and matrix multiplication.

Wang et al. have studied the problem of data partitioning
within an FPGA, but consider only static partitioning [19];
in our work we move towards dynamic partitioning. Wang
et al.’s work provides the only other case study of OpenCL’s
atomics of which we are aware; they use atomics to imple-
ment locks where we use them in lock-free context. They
report that atomics are ‘expensive’ and that their use is a
‘disadvantage’. While our work does not contradict their
claims in general, it does provide evidence that atomics can
play a vital role in highly-efficient FPGA implementations.

Principles of work-stealing appear in Kestur et al.’s FPGA
implementation of matrix–vector multiplication [12], but the-
ir design is at the register transfer level (RTL). We believe
our work to be the first FPGA work-stealing implementa-
tion programmed in a high-level language, in the form of
OpenCL. Similarly, Nahill et al. have investigated imple-

menting non-blocking synchronization on FPGAs [18], but
they also work at the RTL level.

The compilation of parallel software threads to hardware
has been studied in the context of the Kiwi [9] and LegUp [4]
HLS tools, and George et al. have looked into mapping
parallel computation patterns, such map, reduce, zipWith

and foreach, into efficient hardware models for FPGAs [7].
All of these tools are limited to lock-based concurrency; our
work explores the lock-free case.

Finally, Kumar et al. have devised a task-based paral-
lel programming model that involves work-stealing between
CPUs and digital signal processors (DSPs) [15]. Our work,
on the other hand, implements work-stealing within a single
FPGA device.

7. CONCLUSION
We have demonstrated an effective use case of the OpenCL

programming language’s explicit parallelism constructs to
achieve an implementation of work-stealing on FPGAs. Our
work is particularly interesting because we are able to de-
scribe a work-stealing implementation in a lock-free man-
ner using a state-of-the-art HLS tool (AOCL). Lock-freedom
properties require concurrent programs to be non-blocking
and synchronized in a fine-grained manner using atomics.
Atomics have been deemed ‘expensive’ in terms of perfor-
mance and resources by the Altera OpenCL Programming
Guide [1]. However, we show an overall speedup 1.5× for
the KMC algorithm that incorporates work-stealing (using
atomics) to perform dynamic load balancing, compared to a
baseline with static partitioning. Our work thereby provides
demonstrates that the dynamic load-balancing advantages
of work-stealing far outweigh the performance and resource
overhead penalties that atomics introduce.

Acknowledgements. We thank David Thomas, Gordon
Inggs and our reviewers for their feedback and encourage-
ment. The support of the EPSRC Centre for Doctoral Train-
ing in High Performance Embedded and Distributed Sys-
tems (HiPEDS, Grant Reference EP/L016796/1) and grants
EP/I020357/1 and EP/K015168/1, the Royal Academy of
Engineering and Imagination Technologies is gratefully ac-
knowledged.

8. REFERENCES
[1] Altera. Altera SDK for OpenCL - Best Practices

Guide. OCL003-14.1.0, 2014.

[2] Altera. Altera SDK for OpenCL - Programming
Guide. OCL002-14.1.0, 2014.

[3] N. S. Arora, R. D. Blumofe, and C. G. Plaxton.
Thread scheduling for multiprogrammed
multiprocessors. In SPAA, 1998.

[4] A. Canis, J. Choi, M. Aldham, V. Zhang,
A. Kammoona, J. Anderson, S. Brown, and
T. Czajkowski. LegUp: High-level synthesis for
FPGA-based processor/accelerator systems. In FPGA,
2011.

[5] D. Cederman and P. Tsigas. Dynamic load balancing
using work-stealing. In GPU Computing Gems.
Elsevier, 2012.

[6] T. Czajkowski, U. Aydonat, D. Denisenko, and
J. Freeman. From OpenCL to high-performance
hardware on FPGAs. In FPL, 2012.

[7] N. George, H. Lee, D. Novo, M. Owaida, D. Andrews,
K. Olukotun, and P. Ienne. Automatic support for
multi-module parallelism from computational
patterns. In FPL, 2015.

[8] V. Gramoli. More than you ever wanted to know
about synchronization. In PPoPP, 2015.

[9] D. Greaves and S. Singh. Kiwi: Synthesis of FPGA
circuits from parallel programs. In FCCM, 2008.

[10] M. Hosseinabady and J. L. Nunez-Yanez. Optimised
OpenCL workgroup synthesis for hybrid ARM-FPGA
devices. In FPL, 2015.

[11] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko,
R. Silverman, and A. Wu. An efficient k-means
clustering algorithm: Analysis and implementation.
Pattern Matching and Machine Intelligence,
24(7):881–892, July 2002.

[12] S. Kestur, J. D. Davis, and E. S. Chung. Towards a
universal FPGA matrix–vector multiplication
architecture. In FCCM, 2012.

[13] Khronos Group. The OpenCL 1.0 Specification. 2009.

[14] H.-S. Kim, M. Ahn, J. A. Stratton, and W.-m. W.
Hwu. Design evaluation of OpenCL compiler
framework for coarse-grained reconfigurable arrays. In
FPT, 2012.

[15] V. Kumar, A. Sb̂ırlea, A. Jayaraj, Z. Budimlić,
D. Majeti, and V. Sarkar. Heterogeneous work-stealing
across CPU and DSP cores. In HPEC, 2015.

[16] V. Mirian and P. Chow. Using an OpenCL framework
to evaluate interconnect implementations on FPGAs.
In FPL, 2014.

[17] T. T. Mutlugün and S.-D. Wang. OpenCL computing
on FPGA using multiported shared memory. In FPL,
2015.

[18] B. Nahill, A. Ramdial, H. Zeng, M. Di Natale, and
Z. Zilic. An FPGA implementation of wait-free data
synchronization protocols. In ETFA, 2013.

[19] Z. Wang, B. He, and W. Zhang. A study of data
partitioning on OpenCL-based FPGAs. In FPL, 2015.

[20] F. Winterstein, S. Bayliss, and G. A. Constantinides.
High-level synthesis of dynamic data structures: A
case study using Vivado HLS. In FPT, 2013.

[21] Xilinx. SDAccel Development Environment. UG1023
(v2015.1), 2015.

